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Using human mobility data to quantify 
experienced urban inequalities
 

Fengli Xu    1  , Qi Wang    2, Esteban Moro    3,4, Lin Chen    5, 
Arianna Salazar Miranda    6,7, Marta C. González    8, Michele Tizzoni    9, 
Chaoming Song10, Carlo Ratti6, Luis Bettencourt    11,12, Yong Li    1   & 
James Evans    12,13 

The lived experience of urban life is shaped by personal mobility through 
dynamic relationships and resources, marked not only by access and 
opportunity, but also inequality and segregation. The recent availability 
of fine-grained mobility data and context attributes ranging from venue 
type to demographic mixture offer researchers a deeper understanding of 
experienced inequalities at scale, and pose many new questions. Here we 
review emerging uses of urban mobility behaviour data, and propose an 
analytic framework to represent mobility patterns as a temporal bipartite 
network between people and places. As this network reconfigures over time, 
analysts can track experienced inequality along three critical dimensions: 
social mixing with others from specific demographic backgrounds, access 
to different types of facilities, and spontaneous adaptation to unexpected 
events, such as epidemics, conflicts or disasters. This framework traces the 
dynamic, lived experiences of urban inequality and complements prior work 
on static inequalities experience at home and work.

Cities emerged about 10,000 years ago as ‘central places’ where people, 
goods and services converged. The spatial agglomeration of opportu-
nities has become the engine of prosperous urban economies and the 
driving force of increased urbanization, and modern cities now account 
for more than 55% of the world population and 80% of the world gross 
domestic product (GDP). Nevertheless, urban spatial agglomeration 
is not uniform. People, opportunities and infrastructure networks are 
unevenly distributed, as is manifest in racially segregated residences 
and unequal facility and amenity distributions1. This unevenness leads 
to a wide variety of explicit and subtle inequalities in how different 
people can leverage urban resources for education, employment, 

healthcare and more, which is reflected in urban mobility behaviour. 
Accordingly, quantifying experienced urban inequality via the lens of 
mobility behavioural data is an important starting point for equitable 
and inclusive urban policy design.

The idea of measuring urban interactions can be traced to the 
seminal work of Torsten Hägerstrand2, which proposed ‘space–time 
prisms’ to depict the boundaries of personal activities through feasible 
‘space–time paths’. This work gave rise to the vibrant research commu-
nity of time geography, which focused on the personal boundaries of 
human activities3. Increasingly available human mobility data gradually 
directed more attention from spatiotemporal constraints to realized 
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opportunities to interact with people from different demographic 
backgrounds; (2) place access—uneven access to urban amenities and 
facilities with distinct functions; and (3) spontaneous adaptability—the 
dynamic capacity to adapt mobility behaviour to unexpected exo
genous shocks, such as extreme weather events, public health crises or 
emergent urban conflict. Moreover, the meaning of projected person–
person or place–place connections can be deepened by considering the 
context provided by the intermediary nodes of places or persons. For 
example, the social implications of eating together in a restaurant are 
markedly different from those associated with random encounters in 
a supermarket. Incorporating such contextual information may allow 
researchers to infer more nuanced social interactions embedded in 
mobility patterns. To introduce state-of-the-art methodologies that 
support the proposed framework, we provide a systematic review of 
pioneering work that maps mobility behaviour data to forms of expe-
rienced inequality in urban life.

A large body of literature has sought to provide formal guarantees 
for equal opportunity among citizens, and legal statutes have sought 
to incorporate these in policy. Nevertheless, these are often of limited 
worth to disadvantaged and marginalized urban populations. For 
example, most COVID-19 prevention policies are non-discriminatory, 
but empirical studies found extensive evidence that disadvantaged 
urban communities faced higher infection and mortality risks because 
they could not afford to reduce mobility behaviour for a sustained 
period6,7. The proposed framework allows us to systematically measure 
the effective equality of urban opportunities with real-world mobility 

human behaviours. Early work proposed the use of self-reported travel 
diaries from 5,000 residents in three US counties to quantify experi-
enced segregation4, and recent work uses Global Positioning System 
(GPS)-based indicators to measure urban activities on a much larger 
scale5. Partly triggered by the data requirements for COVID-19 control, 
an unprecedented trove of large-scale high-precision mobility data 
and the associated context attributes (for example, demographics and 
venue types) has become available, and this has attracted substantial 
scholarly attention to measure the inequality embedded in urban 
mobility behaviour. In this Perspective we argue that such mobility 
behaviour data could provide an important complement to previ-
ous research that focused on static urban spatial arrangements and 
surveys, revealing experienced inequalities in large-scale, passively 
sensed urban interactions.

Here we present a general analytic framework to quantify experi-
enced inequalities in urban interactions via the lens of big mobility data. 
We model urban mobility behaviour as a temporal bipartite network 
(Fig. 1), where nodes represent people and places, and dynamic edges 
represent visitation at specific times. Temporal connectivity reflects 
mobility behaviour changes over time, which can capture residents’ 
adaptability to exogenous shocks, such as the COVID-19 pandemic. This 
general formulation allows researchers to model inequality embed-
ded in social encounters as uneven person–person co-locations, and 
inequality of opportunity access as uneven person–place visitations. 
This framework can thus facilitate urban inequality quantification 
along at least three conceptual dimensions: (1) social mixing—unequal 
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Fig. 1 | Conceptualizing experienced inequalities in urban mobility. 
a, Examples of urban mobility data, showing how citizens with different 
demographic backgrounds (represented by colours) visit various urban places 
across time. b, ‘Social mixing’ characterizes the unequal opportunities for 
human interaction. In the extracted co-location network at time t1, citizen C only 
encounters persons with same demographic background (orange), whereas 
citizen F encounters persons with three different demographic background 
(orange, blue and green). Hence, citizen C has more opportunities to interact 
with a diverse population. c, ‘Place access’ captures urban place functions (for 

example, bank, park, restaurant) one can access through daily mobility, which 
measures the opportunity gap in leveraging urban resources. In the place 
visitation network at time t1, citizen A can access more urban facilities and 
amenities (for example, a bank) than citizen B. d, ‘Spontaneous adaptability’ 
characterizes how well citizens can adapt their mobility behaviour in response to 
exogenous shocks. As an example, if we compare the mobility behaviour at t1 and 
t2 timestamps, citizen A shows better ‘spontaneous adaptability’ than F, because 
A can reduce mobility more dramatically during a pandemic.
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behaviour. We demonstrate that subtle but important urban inequali-
ties, such as experienced segregation, gaps in facility access, and vul-
nerability to pandemics and climate crises, can be quantified at scale 
with this approach. Such measurements carry profound implications 
for equitable policymaking under scenarios of pandemic prevention, 
climate adaptation and sustainable lifestyle adoption. For example, as 
citizens increasingly adopt local lifestyles and sustainable modes of 
transportation, opportunities can be more equitably distributed by 
changing or relaxing zoning regulations. Moreover, our measurement 
framework allows us to more accurately identify communities exposed 
to disproportionate damage in increasingly extreme weather events 
and engineer more resilient city systems. These use cases highlight 
the potential of mobility behaviour data for reducing experienced 
inequalities in urban space.

Sensing mobility behaviour in urban space
The advance of information technology has opened unprecedented 
opportunities to study urban inequality with ubiquitously collected 
fine-grained mobility behaviour data. Promising data sources include 
platforms for shared bicycles, e-scooters, public transit, ride-hailing, 
social media and mobile devices. Table 1 summarizes exemplary data-
sets. Recent years have seen substantial advancements in sensing tech-
nologies and machine-learning techniques that enhance the richness of 
mobility behaviour datasets. For example, algorithms have been devel-
oped to identify stay points from GPS trajectories in mobile devices8, 
linking them to points of interest and enabling the inference of trip 
purposes. Additionally, data-mining algorithms have been designed to 
predict unobserved locations9 and hidden context in urban mobility10. 
Furthermore, the advent of lightweight mobile sensors has facilitated 
portable sensing11, which unobtrusively captures associated activities. 
Moreover, computer vision models have been used to characterize 
urban environments using satellite imagery and street views12,13, provid-
ing contextual data that enrich urban mobility analyses.

The contextual attributes associated with mobility behaviour data 
can be leveraged to infer social implications encoded in person–place 
visitations and person–person encounters. For example, a recent 
study proposed the consideration of industry categories and areas 
of co-located places when modelling the probability of person–per-
son virus transmission6. Moreover, contextualizing the frequency 

of person–place visitation with counterfactual random walks can 
facilitate more rigorous analysis of income and racial gaps in place 
access14. Similar techniques can be used to enrich the edges of mobility  
networks with attributes such as interaction strength, importance 
and types of social opportunity. By doing so, researchers can more 
effectively characterize complex social processes within mobility 
networks, including the spread of ideas, the formation of friendships 
and access to services. This enriched understanding enables a deeper 
analysis of urban inequalities, revealing how different social dynamics 
are facilitated or hindered by physical mobility patterns.

Mapping mobility behaviour to experienced 
inequality in urban life
The increasing availability of mobility behaviour data is promoting the 
quest for methodologies that map mobility behaviour to experienced 
inequalities in urban life. To conceptualize recent methodologies in 
a unified analytic framework, we propose to model urban mobility 
behaviour as a temporal bipartite network between people and places 
(Fig. 1a). This framework allows researchers to measure inequality in 
the following three dimensions: social mixing and experienced segre-
gation, unequal access to urban places, and spontaneous adaptability 
to exogenous shocks.

Social mixing and experienced segregation
The diversity and density of interactions in cities catalyse innovation, 
opportunities, jobs and economic development15. Cities are becoming 
more segregated, and also a significant force in creating inequalities 
and eroding the social fabric of neighbourhoods, institutions, com-
panies and society. Income and racial segregation have been shown to 
affect access to critical urban resources, such as housing, community 
facilities, health services and clean environments. Despite this, our 
current understanding of segregation and its relationship with other 
urban problems such as transportation, gentrification and even social 
participation is based primarily on residential information collected 
via census or survey, which is coarse-grained and updated infrequently. 
Recent years have witnessed substantial progress in technologies for 
augmenting census data. Researchers have designed methods to use 
satellite images and mobile phone records to downscale census pop-
ulation data into finer spatial and temporal resolutions16,17. Several 
bottom–up approaches have also been proposed to estimate the popu-
lation distribution in the absence of national census data18, which is par-
ticularly important for developing regions that have limited resources 
to sustain accurate and updated population information. Despite this 
recent boost in progress in the resolution and coverage of census data, 
we remain limited in our ability to capture personal movements and 
social encounters in resource-constrained regions, and hence cannot 
provide a full picture of how social interactions unfold across all cities.

Using recently available large-scale data on mobility and its associ-
ated social and cultural context, researchers have begun to document 
unequal patterns of mobility among different socio-demographic 
groups and, more importantly, how spatial residential segregation in 
cities extends to the activity spaces where most of our working hours, 
leisure and social interactions occur19,20. As individuals move around 
the city, they encounter and interact with more diverse people than 
they could within their own neighbourhoods. Even though residents 
of disadvantaged neighbourhoods travel widely, they predominantly 
visit poor or underprivileged communities, so their relative isolation 
and segregation persist21,22. Diverse social interactions do not hap-
pen everywhere: commercial venues such as restaurants, retail shops 
and office workplaces are particularly strong forces that pull against 
segregation19. By contrast, amenities such as schools or churches, 
cultural and entertainment spaces, and single-status workplaces such 
as factories or warehouses are more segregated. As a result, segrega-
tion can occur at the street level or even inside a classroom. Places 
located in the very same block can have a very different composition of 

Table 1 | Various data sources for urban mobility behaviour

Data source Example dataset Brief description of typical datasets

Shared bike BikeRio, EcoBici, 
Divvy, NYC Citi

Often include trip duration, start 
and end locations and timestamps, 
capturing short-range, flexible, 
green urban mobility

Ride-hailing Uber, Lyft, NYC TLC, 
Chicago TNP

Often include trip origins, 
destinations, ride duration and 
timestamps, capturing on-demand 
mobility in urban space

E-scooter US BTS, Chicago 
E-scooter Pilot

Often include trip origin stations, 
trip end stations, ride duration and 
timestamps

Public transit Jakarta Data, 
Toronto Data, NYC 
MTA

Often include ridership numbers, 
routes, timestamps and 
public-transit modes, for example, 
buses, trains and subways

Social media Foursquare, 
Gowalla, Weibo, 
Brightkite

Often include venues visited, 
timestamps and sometimes 
semantic-rich metadata such as user 
reviews or ratings

Mobile device GeoLife, SafeGraph, 
MIT Reality Mining

Provide fine-grained and dense 
movements information of 
anatomized individuals or 
aggregated population at scale
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visitors23. Segregation can also occur at different times of the day due 
to the distinct urban mobility rhythms of different socio-demographic 
groups20,24. Because individuals spend most of their time away from 
their neighbourhoods, these findings challenge our traditional under-
standing of segregation and inequality in a city. Segregation is not only 
reflected in economic or racial sorting within neighbourhoods—it is 
encoded in our behaviour as we move, interact and communicate with 
the rest of the city.

This recent work demonstrates how experienced segregation can 
be measured with co-location networks extracted from the temporal 
bipartite network of human mobility, which reveals the distribution 
of social encounters across urban space (Fig. 1b). Specifically, it allows 
researchers to easily quantify the segregation individuals experience 
in daily life with diversity metrics over the demographic profiles of 
individuals connected in the co-location network. As an example, we 
have computed the co-location network of New York neighbourhoods 
with real-world mobility data from SafeGraph25. Figure 2a shows the 
percentages of racial backgrounds of neighbourhoods connected 
to focal neighbourhoods. It reveals that majority-white, Black and 
Hispanic neighbourhoods all experience segregation in their daily 
activities because their members undertake more frequent trips to 
neighbourhoods with similar backgrounds than the average.

Unequal access to urban places
The spatial agglomeration of people and infrastructures in cities ena-
bles convenient access to facilities and opportunities across urban 
space, a crucial factor in the quality of urban life. A large literature has 
documented long-term negative consequences from limited access 
to high-quality schools, banks, green spaces and other urban places 
on household finance, physical health and subjective well-being26,27. 
Nevertheless, opportunities for accessing urban places are often une-
venly distributed, creating inequalities between neighbourhoods. 
Researchers have long sought to develop methodologies that measure 
inequality in urban place access with a variety of data sources, including 
surveys, spatial information and mobility behaviour traces28. Surveys 
collect direct feedback from urban residents, but tend to be expensive 
and challenging to scale in sample size and measurement frequency. 
Studies using spatial information differentiate between place- and 

people-based measures29. Place-based measures assess the spatial 
distance between a focal neighbourhood and urban amenities or ser-
vices, and people-based measures also consider individuals’ activity 
schedules and spatiotemporal constraints. These measures provide 
valuable insights based on static urban configurations. For example, 
a recent study found that alternative financial institutions, such as 
payday lenders, are more frequently located closer to racial/ethnic 
minority neighbourhoods than regular banks, even when accounting 
for poverty rates and other factors30. Moreover, previous work has 
considered the spatial configuration of road networks and determined 
that redistributing facilities could reduce average travel distance by 
half1. Although spatial information can measure available urban places 
with travel costs, it may not accurately predict the actual mobility pat-
terns of urban residents. For example, studies have demonstrated that 
models solely based on spatial information tend to produce biased 
estimates of realized place visits31.

Hence, mobility data offer crucial insights into the experienced 
inequality of urban life31–34. To integrate methodologies using mobility 
data into our analytic framework, we represent recorded urban place 
visits as a bipartite people–places network, where edges indicate visita-
tion frequency or duration (Fig. 1c). Variability in edges linked to each 
individual or subpopulation, gauged by metrics such as total out-degree 
or number of places serving specific functions, acts as a reliable proxy 
for experienced inequality in access to urban places. This enables 
researchers to transcend mere spatial distance, providing a holistic 
view that accounts for subtle inequalities rooted in social or cultural 
contexts, such as disparities in time spent waiting for basic services35. 
We conducted a case study on park visits in New York City (Fig. 2b), and 
found majority-Hispanic neighbourhoods have the most parks available 
within 15 min via public transit. Both Hispanic and Black neighbourhoods  
register significantly fewer actual park visits compared to white neigh-
bourhoods, however, echoing previous work on the discrepancy between 
park proximity and park visitation31. These results underscore the value 
of mobility data in revealing the effective inequalities of urban life.

Spontaneous adaptability to exogenous shocks
Exogenous shocks include unexpected external events that can sig-
nificantly affect society, often leading to alterations in human mobility 
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Fig. 2 | Demonstrating experienced inequalities with empirical mobility 
data collected from New York City. a, Different places show distinct patterns 
of experienced segregation (by income). Specifically, neighbourhood places 
that provide groceries, services, religious and natural experiences are visited 
by less diverse income groups. On the other hand, places such as coffee shops, 
museums or entertainment venues are more diverse19,23. b, Majority-Hispanic 
neighbourhoods have the most parks accessible within 15 min via public 
transit (red bars). Nevertheless, empirical mobility data show that majority-
white neighbourhoods have significantly higher park visits compared with 
both majority-Black and -Hispanic neighbourhoods (blue bars), revealing 

the importance of leveraging empirical mobility traces. Error bars in a and 
b represent 95% confidence intervals. c, Rich neighbourhoods (top income 
decile) have higher per capita mobility frequency than poor neighbourhoods 
(bottom income decile) before the COVID-19 pandemic. This pattern reversed 
during the COVID-19 pandemic in 2020 due to a higher mobility drop in rich 
neighbourhoods, which gradually returned to the pre-pandemic norm in 2021. 
This suggests that rich neighbourhoods have better spontaneous adaptability 
in their capacity to reduce mobility and minimize viral exposure risk due to their 
outsized economic opportunities and abundance7.
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behaviours. Such changes in mobility patterns can result directly from 
events such as natural disasters36,37, climate change38, pandemics39,40 and 
geopolitical conflicts41, or indirectly due to impaired socioeconomic 
capability21,42. These shocks often exacerbate pre-existing inequalities 
in urban space, disproportionately affecting vulnerable populations 
and widening the gap between different social groups42,43. Research on 
exogenous shocks has uncovered significant effects on both short-term 
mobility fluctuations and long-term immigration patterns, emphasiz-
ing the need to comprehend the interplay between these events and 
human mobility. Traditional studies, which rely on household surveys, 
census data, panel data and qualitative interviews, provide valuable 
insights but are limited in capturing the subtle intricacies of mobility 
change. Furthermore, their static nature precludes real-time prediction 
or the capacity for intervention.

In response, researchers are increasingly turning to alternative 
mobility datasets, either to supplement or replace traditional data 
sources, offering finer-resolution metrics such as travel distance, 
number of trips, evacuation distance and evacuation percentage. 
These recent methodologies can be understood as measurements 
capturing dynamic changes in the proposed bipartite network link-
ing people and places. We illustrate this concept with a toy example 
in Fig. 1. Specifically, citizen A demonstrates greater spontaneous 
adaptability than citizen F, as evidenced by a more significant reduc-
tion in number of trips following a pandemic outbreak. We analysed 
this phenomenon with real-world mobility data in New York City during 
the COVID-19 outbreak (Fig. 2c) and found that rich neighbourhoods 
(top 10% income) had greater mobility reduction compared with poor 
(bottom 10% income) at the outbreak onset, and swifter recovery after 
vaccines became available. Such differences probably exist because 
low-income and marginalized populations have fewer options to work 
remotely or access essential services without travel6,7. This shows how 
mobility data can capture the disproportionate effect of exogenous 
shocks. Furthermore, graph-based approaches have been employed to 
investigate the role of social networks in mobility during emergencies36. 
A notable example of these advanced models is the spatiotemporal 
decay model proposed by Li and colleagues42, which captures the 
interplay between geographic distance and time in mobility during 
disasters. This mathematical framework allows for a more compre-
hensive understanding of the complex dynamics governing human 
mobility under exogenous shocks, contributing to the development 
of more effective disaster response, recovery and policy intervention.

Example use cases
We introduce three example use cases featuring our proposed frame-
work to underscore its applicability in scenarios such as pandemic 
prevention, climate change adaptation and promoting locality in urban 
lifestyle.

Equitable policymaking in pandemic response
As human movement and social interaction are key drivers of infectious 
disease spread across a population, the availability of fine-grained 
mobility data allows us to measure such processes with unprecedented 
detail, providing valuable information to guide policymakers in 
response to epidemic outbreaks44. For example, by leveraging the high 
granularity of large-scale mobility data and integrating mobility flows 
into epidemic agent-based models, several studies have investigated 
how differential responses to mobility restrictions are explained by 
differences in socioeconomic status6,45. Furthermore, by using dynamic 
neighbourhood–place interaction networks (similar to Fig. 1a) in sev-
eral US metro areas, and combining them with an epidemic susceptible–
exposed–infectious–removed (SEIR) compartmental model, Chang 
and colleagues6 explained higher infection rates among disadvantaged 
groups. Counterfactual scenarios on large-scale mobility data-driven 
simulations were also used to assess the viability of contact tracing and 
quarantine policies during the first waves of the pandemic46. Similar 

simulation studies can help to analyse trade-offs between economic 
output and public health47. Finally, our proposed framework to quantify 
urban inequality can inform data-driven simulations of pharmaceutical  
interventions during a pandemic, such as vaccination distribution. 
Chen and colleagues7 demonstrated how an epidemic model combin-
ing mobility data with socio-demographic information offers valu-
able guidance for vaccine prioritization (Fig. 3a). This approach can 
simultaneously improve utility and equity across different vaccination 
rates and timing. These findings should inspire stakeholders to design 
vaccine distribution schemes that simultaneously pursue enlightened 
self-interest and benefit overall population health48.

As the need to address socioeconomic inequalities in infec-
tious disease modelling becomes more pressing49, the integration of 
high-resolution mobility data in epidemic models represents a key 
ingredient to fill the gap. This is especially important as changes in 
behaviour during the pandemic from social distancing have changed 
continuing co-location and mixing patterns in our cities50,51, increas-
ing experienced segregation. Our framework can guide epidemiolo-
gists and public health officials to define comprehensive modelling 
approaches that inform improved policies.

Adapting to extreme weather events
Climate change is exerting a heterogeneous adverse effect on urban 
populations52,53. This effect has a pronounced correlation with urban 
residents’ exposures to environmental stressors54–57. Consequently, 
urban mobility research is paramount, not only to comprehend the 
complex implications of climate change, but also to weave the threads 
of social justice into climate adaptation strategies, ensuring equitable 
solutions for all urban residents55,58.

Figure 3b illuminates the spatial correlations in human mobility 
across the Greater Houston area amid the 2021 tropical storm Imelda, 
as captured by Moran’s I. During the storm’s zenith, a marked decline 
in this spatial correlation was observed, indicating a transition towards 
more randomized movement patterns among neighbouring grids. This 
transition could be attributed to a myriad of potential factors: unpre-
dictable flood patterns, areas perceived as refuges, or the operation 
of essential services in specific locations. For policymakers and emer-
gency responders, such irregularity not only signals the necessity for 
adaptive strategies, but also underscores a departure from monolithic 
approaches toward tailored interventions. Certain locations might 
become inundated with displaced populations, necessitating amplified 
resources. Other locations characterized by diminished movement 
might be those most severely affected and thus warrant more imme-
diate attention and assistance. This underscores the urgent need for 
robust infrastructure and agile mobility plans during extreme weather 
events, which are crucial for safeguarding residents and preserving 
indispensable city functions during crises.

Promoting locality in urban life
To reduce traffic congestion and curb emissions, policymakers world-
wide are exploring innovative urban planning models that aim to reduce 
the reliance on automobiles. One prominent vision is the ‘15-minute 
city’ model, which suggests that cities will be more energy-efficient and 
socially cohesive if residents can access most necessities within a 15-min 
walking or cycling distance from home59,60. Previous studies examin-
ing the potential of residential neighbourhoods to provide essential 
services within walking distance have primarily focused on assessing 
the proximity of amenities such as grocery stores and restaurants61–63. 
However, simply arranging amenities close to residences does not 
guarantee utilization, because mobility decisions are driven by diverse 
behavioural factors that vary across social groups and locations. Under-
standing the effects of reorganizing cities around walkable amenities 
necessitates the utilization of large-scale data based on actual trips.

A recent work has analysed local trip behaviour in US cities by ana-
lysing the GPS data from 40 million mobile devices64. Using such data, 
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the study establishes a baseline of local living in the USA to examine the 
relationship between trip length and access to nearby amenities. This 
allows for an exploration into whether shorter trips might aggravate 
socioeconomic segregation (Fig. 3c). The results suggest that adopting 
less restrictive zoning regulations, such as allowing for more mixed-use 
development, could reduce trip lengths. However, such policies also 
carry the risk of increasing social isolation for low-income individuals. 
Thus, these findings highlight the importance of our behaviour-centric 
framework, which can shed light on the trade-off between enhanced 
access to diverse local amenities and opportunities for encounter-
ing diverse populations. Moreover, a trade-off emerges between the 
environmental goal of promoting shorter trips and social goals that 
necessitate intensive mobility to facilitate social mixing. This urges 
stakeholders to comprehensively consider all relevant factors when 
formulating policies.

Future directions
Exploring higher-order structures
Our framework offers a complementary network perspective to urban 
inequality research, enabling researchers to explore more complex 
mobility patterns as higher-order structures within mobility networks. 
We provide three illustrative examples in Fig. 4. First, the betweenness 
of a node captures its mediating role in effectively bridging other nodes 
(Fig. 4a), which can be quantified by the number of shortest paths pass-
ing through it65. It can be an effective measure for identifying de facto 
‘hub’ neighbourhoods or infrastructures that serve as critical bottle-
necks for mobility throughput66, as well as bridges facilitating interac-
tions across different social groups. Future research may investigate 
the temporal dynamics of infrastructure betweenness to understand 

how the importance of different locations evolves over time and the 
effect on urban space. Second, network communities emerge from 
heterogeneous network connections as groups of nodes that are more 
densely connected internally than with other nodes outside the group67 
(Fig. 4b). To detect communities on people–places bipartite networks, 
one can adopt modularity-based techniques such as bi-clustering68 and 
Louvain69 or random walk-based techniques such as Infomap70. These 
identified communities can reflect multiple dimensions of experienced 
urban inequalities in terms of commuting patterns, activity modes, 
resource access32 and social interaction structures, which are jointly 
shaped by infrastructure distribution, transportation accessibility and 
individual travel budgets. For example, the fragmentation of urban 
mobility networks indicated by distinct community structures is found 
to be correlated with increased income inequality71. Third, the backbone 
of a network (Fig. 4c), identified by percolation analysis72, can reveal the 
‘core’ set of nodes and edges that account for the most connectivity.  
In the context of urban mobility networks, the network backbone 
corresponds to the critical neighbourhoods and infrastructures that 
sustain the overall integrity of the urban mobility network, especially 
during times of shock and disturbance73,74. Meanwhile, neighbourhoods 
excluded from the network backbone tend to be more susceptible to 
isolation during crises, thus suffering a disproportionate effect from 
reduced place access and people encounters.

Implications for sustainable urban development
The discussed use cases in pandemic prevention, climate adaptation 
and the ‘15-minute city’ connect our urban mobility analytic framework 
to broader sustainable development goals (SDGs). As illustrated in 
Fig. 5, mobility big data enable researchers to measure experienced 
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Fig. 3 | Example use cases featuring our proposed framework for advancing 
sustainable urban development. a, Designing pandemic policy: an epidemic 
model integrated with mobility data and socio-demographic profile can 
accurately identify high-risk neighbourhoods in viral spreading, which not only 
face higher mortality risk but may also cause more secondary infection7. SVI 
is the CDC’s social vulnerability index, which uses demographic variables to 
identify vulnerable communities. b, Adapting to extreme weather: the temporal 
bipartite network of neighbourhoods and places captures mobility behaviour 

change in the Greater Houston area amid the 2021 tropical storm Imelda. 
Spatial correlations, measured by Moran’s I, dropped sharply during the storm, 
indicating a transition towards more randomized movement patterns among 
nearby neighbourhoods. c, Promoting the ‘15-minute city’ lifestyle: shaded 
areas show neighbourhoods connected through co-location encounters when 
trips for more than 15 min are removed. Using GPS data from 40 million mobile 
devices in US cities64, we find that this lifestyle could exacerbate socioeconomic 
segregation.
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inequality in place access, social mixing and spontaneous adaptability. 
Various combinations of these measurements can be used in ‘15-minute 
city’ adoption, climate adaptation and pandemic prevention, which 
have important roles in a range of SDGs, such as SDG 3 (good health and 
well-being), 9 (industry, innovation and infrastructure), 10 (reduced 
inequality) and so on.

We also note that mobility behaviour data may have an even 
more important role in developing nations, where the classic survey 
methods, such as travel surveys, could be prohibitively expensive and 
time-consuming. By contrast, recent advancements in using mobile 
phone data and other passive data-collection sources75 have enabled 
the generation of travel demands that cover a larger portion of the 
population at low cost, allowing for more comprehensive analyses 
of different subpopulations. Nevertheless, cities in developing and 
disaster-prone nations face unique challenges in modelling and plan-
ning due to limited economic resources, data scarcity and limited 
expertise. With the increasing frequency and severity of natural dis-
asters induced by climate change, better decision-making tools are 
required to mitigate the effects of extreme events. For example, data 
from past landslide and flooding events in Freetown, Sierra Leone, 
have been used to simulate the effect of such events on transportation 
infrastructure76. Taken together, properly mining and analysing novel 
data sources of human mobility represents an important direction for 
informing urbanization policies and supporting sustainable develop-
ment. The utility of these resources is maximized when traditional 
datasets and statistics are compared for calibration and context.

Data fairness and marginalized populations
As the utilization of novel mobility datasets substantially advances our 
understanding of human mobility dynamics, it is crucial to address the 
implications of data fairness and its effect on marginalized populations. 

This concern arises from the possibility that the available datasets may 
not represent the entire population, as ownership rates and usage 
patterns vary across socioeconomic and demographic groups. For 
example, work has identified modest income biases in mobility across 
large US cities19, but those biases are more prevalent in rural cities and 
developing countries. These disparities can result in biased estimates 
and analyses, neglecting the challenges faced by marginalized popula-
tions in low-income, older or rural communities. Consequently, policies 
derived from these novel datasets and methods may inadvertently 
reinforce existing inequalities, exclude demographic groups or exac-
erbate disparities in resource access.

Addressing these fairness concerns requires a rigorous exami-
nation of bias in mobility data and the development of cutting-edge 
mitigation strategies, such as pre- or post-stratification methods to 
obtain representative demographic panels of users, or comparison 
with ground-truth and other datasets7,19. Moreover, integrating emerg-
ing mobility data with traditional survey and census data can pro-
vide a more comprehensive and representative picture of mobility 
patterns. Researchers can also harness machine learning to develop 
fairness-enhancing techniques that amplify data from underrepre-
sented groups. Policymakers have a crucial part to play in ensuring 
data fairness. They should work towards reducing digital divides by 
investing in infrastructure, education and access to digital technolo-
gies, thereby ensuring that all demographic groups are represented 
in mobility research. Moreover, community engagement is vital for 
fairness. Researchers, institutions and policymakers should develop 
and adhere to robust data ethics guidelines that prioritize fairness and 
inclusion. Furthermore, researchers and policymakers should collabo-
rate with marginalized communities to understand their unique needs 
and perspectives, incorporating their insights into research designs 
and policy interventions.
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Fig. 4 | Exploring the higher-order structures in a mobility network.  
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one is part of more shortest paths across the network. b, Network communities: 
social segregation is observed as residents tend to visit places within their 

own community, and the higher-order communities can be detected using a 
bi-clustering algorithm. c, Network backbones: the backbone identified through 
percolation analysis consists of critical nodes and edges that sustain the overall 
integrity of the network, especially when faced with unexpected shocks and 
disturbances. Consequently, neighbourhoods within the purple circles are more 
susceptible to isolation during crises.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Perspective https://doi.org/10.1038/s41562-024-02079-0

Privacy risks in mobility behaviour data
Despite the great potential of mobility behaviour data, privacy risks 
are often a concern because such datasets can be easily linked with 
sensitive personal information. Anonymization and aggregation are 
two commonly used techniques to sanitize mobility behaviour data. 
Nevertheless, previous studies have demonstrated that anonymized 
mobility behaviour data can often be accurately reidentified using 
minimal side information77,78. Similar risks of reidentification have also 
been observed in anonymized credit-card transaction records78. More 
recent research has indicated that aggregated mobility data remain 
vulnerable to privacy breaches79,80. Adversaries can reconstruct indi-
vidual trajectories from aggregate mobility data with high accuracy 
by exploiting the inherent uniqueness and regularity of individual 
mobility patterns79.

In response to these risks, several advanced privacy preserva-
tion techniques have been proposed. A recent study introduced a 
data-coarsening technique designed to ensure that each individual is 
hidden within an anonymity group of a certain size81. Another prom-
ising avenue for the deidentification of personal data will probably 
involve federated learning, an approach that would obscure personal 
mobility traces within published models82. Synthesizing mobility 
behaviour data has also emerged as an encouraging new research 
direction83, especially in light of recent generative AI advancements. 
Recent work has demonstrated how large language models can be 
adapted to generate plausible mobility behaviour data84, offering 
the potential for privacy-preserving simulations that retain practical 
utility. Despite notable advances in privacy preservation techniques, 
achieving an ideal balance between data utility and privacy protection 
remains a challenge. Consequently, stringent privacy regulations and 
robust data management protocols are essential to ensure responsible 
practices in the analysis of mobility data. Policymakers, institutions and 
researchers must collaborate to establish enforceable mechanisms 
that guarantee that data access is properly authorized.

Data-driven urban simulation and policy evaluation
Accurate simulation of urban mobility is crucial for finding effective 
intervention policies to reduce urban inequality. Traditional urban 

simulations rely on intensive expert knowledge and simplified models85. 
By contrast, recently available novel mobility data sources, such as 
social media check-ins and mobile phone records, provide important 
opportunities for researchers to comprehensively model people’s 
movement across urban environments. More importantly, by extract-
ing and leveraging empirical patterns in observed mobility behaviour, 
data-driven simulation models have the potential to accurately identify 
vulnerable neighbourhoods under different scenarios86. Accurate simu-
lation is also helpful for revealing potential mechanisms that produce 
the inequality in social mixing, place access and spontaneous adapt-
ability. Moreover, data-driven urban simulations can serve as a useful 
tools for informing urban policymaking. For example, transportation 
planners can identify gaps in simulated public transit accessibility, 
and subsequently develop strategies to enhance service provision in 
disadvantaged neighbourhoods. Simulated urban mobility in disaster 
scenarios can inform the location choices of shelters and the design of 
evacuation routes, ensuring that residents receive equitable rescues 
when facing similar risks. By comparing the simulated outcomes of 
counterfactual policy scenarios, decision-makers can identify the most 
promising strategies to address urban inequality and promote social 
inclusion. The use of advanced data science techniques, including deep 
learning and complex system analytic frameworks87,88, can facilitate 
the modelling of hidden patterns and correlations in urban systems. 
Recently available big mobility data provide important opportuni-
ties for accurate data-driven simulation of urban systems, which can 
serve as a useful toolset for understanding, modelling and mitigating 
inequalities in urban space.

Conclusion
This Perspective aims to highlight the critical role of mobility behaviour 
data in quantifying experienced inequalities across urban space. We 
present a general analytic framework, leveraging temporal bipartite 
networks, to capture the dynamics of access to urban opportunities. 
This framework summarizes recent advances in data-driven urban 
inequality measurement along three fundamental dimensions: social 
mixing, place access and spontaneous adaptability. These dimensions 
characterize the contemporary urban landscape shaped by the complex 
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interplay of social interactions, spatial access and the distribution 
of resources. We demonstrate how such measurements provide an 
important perspective on experienced urban inequality, complement 
conventional studies leveraging survey and static spatial information, 
and uncover the subtle experienced inequalities of urban life. Through 
case studies involving large-scale, high-precision mobility data, we 
show how insights derived from mobility data-based measurement are 
essential for equitable policy design. As we better harness the power of 
mobility data, we hope that it will enable the creation of more inclusive, 
resilient and flourishing cities for all inhabitants.
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