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Figure 3.11: Heterogeneity of dynamical social strategies: A and B shows different snapshots of
the neighborhood of two different individuals (in red) at 4 equally spaced times in the observation
time window t = 52, 105, 158, and 211 days. Each black (grey) line corresponds to an open
(closed) tie at that particular instant. C Log-density plot of the social activity n↵,i as a function
of the social capacity i for each individual in our database. Solid line corresponds to the
line n↵,i = 0.75i obtained through PCA. Dashed curves are the iso-connectivity lines ki =
i + n↵,i for ki = 10, 20, 50. D shows the average value for the persistence pi and clustering
coefficient ci for three groups of equal connectivity (dashed lines in panel C) but for different
quantiles of �i. Specifically, �i < 0.43 (black), 0.43 < �i < 0.88 (gray) and �i > 0.88 (white)

It is very important to note that, despite the strict relation between �i (or both n↵,i and
i) and the social connectivity ki, individual social strategies of communication can
not be identified only by means of ki.

This becomes clear by looking at panel C of Fig. 3.11, where we show that users
with exactly the same ki (dashed curves) can be characterized by very different com-
binations of social capacity and social activity. As we will see in the following section,
the implications of this result go beyond the characterization of how people allocate
time and resources across their social circle. In fact, the adoption of one strategy or the
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Using BigData to infer behavior or society situation 
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You are what you repeatedly do [Aristóteles]
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Figure 3.11: Heterogeneity of dynamical social strategies: A and B shows different snapshots of
the neighborhood of two different individuals (in red) at 4 equally spaced times in the observation
time window t = 52, 105, 158, and 211 days. Each black (grey) line corresponds to an open
(closed) tie at that particular instant. C Log-density plot of the social activity n↵,i as a function
of the social capacity i for each individual in our database. Solid line corresponds to the
line n↵,i = 0.75i obtained through PCA. Dashed curves are the iso-connectivity lines ki =
i + n↵,i for ki = 10, 20, 50. D shows the average value for the persistence pi and clustering
coefficient ci for three groups of equal connectivity (dashed lines in panel C) but for different
quantiles of �i. Specifically, �i < 0.43 (black), 0.43 < �i < 0.88 (gray) and �i > 0.88 (white)

It is very important to note that, despite the strict relation between �i (or both n↵,i and
i) and the social connectivity ki, individual social strategies of communication can
not be identified only by means of ki.

This becomes clear by looking at panel C of Fig. 3.11, where we show that users
with exactly the same ki (dashed curves) can be characterized by very different com-
binations of social capacity and social activity. As we will see in the following section,
the implications of this result go beyond the characterization of how people allocate
time and resources across their social circle. In fact, the adoption of one strategy or the

• Blondel, V. D., Decuyper, A., & Krings, G. (2015). A survey of results on mobile phone datasets analysis. EPJ Data Science, 4(1), 10. 
http://doi.org/10.1140/epjds/s13688-015-0046-0


• MOBILE PHONE NETWORK DATA FOR DEVELOPMENT. (2013). UN Global Pulse

• Saramaki, J., & Moro, E. (2015). From seconds to months: an overview of multi-scale dynamics of mobile telephone calls. The 

European Physical Journal B, 88(6). http://doi.org/10.1140/epjb/e2015-60106-6

• Naboulsi, D., Fiore, M., Ribot, S., & Stanica, R. (n.d.). Large-scale Mobile Traffic Analysis: a Survey. IEEE Communications Surveys & 

Tutorials, 1–1. http://doi.org/10.1109/COMST.2015.2491361

with r0
g ~5:8 km, br 5 1.65 6 0.15 and k 5 350 km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t) , t3/(2 1 b)

(ref. 21), whereas, for an RW, rg(t) , t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T) # 3 km),
medium (20 , rg(T) # 30 km) or large (rg(T) . 100 km) at the end
of our observation period (T 5 6 months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T 5 6 months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg

!!" #
*r{a

g F Dr
$

rg

" #
, where a < 1.2 6 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x) , x2a for x , 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that the measured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to a mobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T 5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.
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Social networks are dynamical by nature
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2 Social dynamical process
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Figure 3.11: Heterogeneity of dynamical social strategies: A and B shows different snapshots of
the neighborhood of two different individuals (in red) at 4 equally spaced times in the observation
time window t = 52, 105, 158, and 211 days. Each black (grey) line corresponds to an open
(closed) tie at that particular instant. C Log-density plot of the social activity n↵,i as a function
of the social capacity i for each individual in our database. Solid line corresponds to the
line n↵,i = 0.75i obtained through PCA. Dashed curves are the iso-connectivity lines ki =
i + n↵,i for ki = 10, 20, 50. D shows the average value for the persistence pi and clustering
coefficient ci for three groups of equal connectivity (dashed lines in panel C) but for different
quantiles of �i. Specifically, �i < 0.43 (black), 0.43 < �i < 0.88 (gray) and �i > 0.88 (white)

It is very important to note that, despite the strict relation between �i (or both n↵,i and
i) and the social connectivity ki, individual social strategies of communication can
not be identified only by means of ki.

This becomes clear by looking at panel C of Fig. 3.11, where we show that users
with exactly the same ki (dashed curves) can be characterized by very different com-
binations of social capacity and social activity. As we will see in the following section,
the implications of this result go beyond the characterization of how people allocate
time and resources across their social circle. In fact, the adoption of one strategy or the
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• Cognitive limits 
• Dunbar’s number 

•There is a cognitive limit to the number of 
people with whom one can maintain stable 
social relationships. (Dunbar 1992) 

• The magical number Seven Plus Minus 
Two 
• The number of objects an average human 

can hold in working memory is 7 ± 2 (Miller 
’56)
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Miritello, G. et al., 2013. Time as a limited resource: Communication 
strategy in mobile phone networks. Social Networks.
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• Embeddedness / clustering / triadic closure / weak ties 
• Embeddedness, clustering:  

People who spend time with a third 
are likely to encounter each other 
(triadic closure). Minimizes conflict,  
maximizes trusts,… 

• Bridges, structural holes (Burt):  
Bridges have structural advantages 
since they have access to non- 
redundant information 

• Weak ties (Granovetter): weak ties  
tend to connect different areas of  
the network (they are more likely to  
be sources of novel information)

Rivera, M.T., Soderstrom, S.B. & Uzzi, B., 2010. Dynamics of 
Dyads in Social Networks: Assortative, Relational, and 
Proximity Mechanisms. Annual Review of Sociology, 36(1), 
pp.91–115.
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• Contagion 

• Human behaviors spread on the network 

• Dynamics too 

• Homophily 

• The greater the similarity between individuals the more likely they are to 
establish a connection 

measure the relative topological overlap of the neighborhood of 
two users A and B, representing the proportion of their common 
friends, as OAB = NAB/((KA-1)+(KB-1)-NAB), where NAB  is the 
number of common neighbors of A and B, and KA (KB) denotes 
the degree of node A(B).1 Fig. 3(d) demonstrates the effect of 
removing links in order of strongest (or weakest) overlaps. In both 
cases, we find that removing ties in rank order of weakest to 
strongest ties will lead to a sudden disintegration of the network. 
In contrast, reversing the order shrinks the network without 
precipitously breaking it apart.  
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Figure 2. Probability of churning when (a) k friends have 
already churned (b) adjacent pairs of friends have already 
churned 

This result is broadly consistent with the strength of weak ties 
hypothesis [5], offering one of its first confirmations in mobile 
networks. Accordingly, tie strength is driven not only by the 
individuals involved in the tie, but also by the network structure 
in the tie’s immediate vicinity. Further, given that the strong ties 
are predominantly within communities, their removal will only 

                                                                 
1 If A and B have no common acquaintances we  have OAB =1. 

locally disintegrate a community, while the removal of the weak 
links will delete bridges that connect different communities, 
leading to a network collapse. Further, we believe that the 
observed local relationship, between network topology and tie 
strength affects any global information diffusion process (like 
churn). In fact, we opine that churn as a behavior can be viewed 
less as a dyadic phenomenon (affected only by strong churner-
churner ties), but more as a diffusion process where both strong 
and weak ties play a significant role in spreading the influence 
through the network topology. 

4. PREDICTING CHURNERS IN THE 
CALL GRAPH 
We next discuss how to exploit social ties to identify potential 
churners in an operator’s network. Our approach is as follows. We 
start with a set of churners (e.g. for April) and their social 
relationships (ties) captured in the call graph (for March). Using 
the underlying topology of the call graph, we then initiate a 
diffusion process with the churners as seeds. Effectively, we 
model a “word-of-mouth” scenario where a churner influences 
one of his neighbors to churn, from where the influence spreads to 
some other neighbor, and so on. At the end of the diffusion 
process, we inspect the amount of influence received by each 
node. Using a threshold-based technique, a node that is currently 
not a churner can be declared to be a potential future one, based 
on the influence that has been accumulated. Finally, we measure 
the number of correct predictions by tallying with the actual set of 
churners that were recorded for a subsequent month (e.g. for 
May). The diffusion model is based on Spreading Activation 
(SPA) techniques proposed in cognitive psychology and later used 
for trust metric computations [32]. In essence, SPA is similar to 
performing a breadth-first search on the call graph GMarch=(V,E). 
The basic steps are outlined below:- 

Node Activation: During each iterative step i, there is a set of 
active nodes. Let X be an active node which has associated energy 
E(X,i) at step i. Intuitively, E(X,i) is  the amount of (social) 
influence2  transmitted to the node via one or more of its 
neighbors. A node with high influence has a greater propensity to 
churn. Let N(X) be the set of neighbors of X.  Active nodes for  
step i+1 comprises of nodes which are neighbors of currently 
active members. Further, a currently active node X transfers a 
fraction of its energy to each neighbor Y (connected by a directed 
edge <X,Y>), in the process of activating it. The amount of 
energy that is transferred from X to Y depends on the Spreading 
Factor d and the Transfer Function F, respectively. 

Spreading Factor:  SPA starts with a set of active nodes (seed 
nodes) each having initial energy E(X,0). At each subsequent step 
i, an active node transfers a portion of its energy d· E(X,i)  to its 
neighbors, while retaining (1 − d) · E(X,i)  for itself, where d is 
the global Spreading Factor. The spreading factor concept is very 
intuitive and, in fact, very close to real models of energy 
spreading. Observe that the overall amount of energy in the 
network does not change over time, i.e. ∑X E(X,i) = ∑X∈V E(X,0) = 
E0, for each step i. The spreading factor determines the amount of 

                                                                 
2 The terms “energy” and “influence” are used interchangeably in 

this context. 
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Attribute Random Communicate
Age -0.0001 0.297
Gender 0.0001 -0.032
ZIP -0.0003 0.557
County 0.0005 0.704
Language -0.0001 0.694

Table 5: Correlation coe�cients for random pairs of people and pairs of people who communicate.

We compare the degree of homophily of random pairs of users with pairs of users that communicate.
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Figure 21: Number of pairs of people of di↵erent ages. We plot ages of two people and color

corresponds to the number of such pairs. (a) Ages of randomly selected pairs of people; we note

there is little correlation. (b) Ages of people who communicate with one another, i.e., ages of people

at the endpoints of links in the communication network. The high correlation is captured by the

diagonal trend.

We contrast this statistic with the correlation coe�cient where we choose users via a process
of uniform random sampling across 1.3 billion users.

We also consider two measures of similarity—the correlation coe�cient and the probabil-
ity that users have the same attribute value, e.g., that users come from the same countries.

Table 5 compares correlation coe�cient of various user attributes when pairs of users
are chosen uniformly at random with pairs of users that communicate. As attributes are
not correlated for random pairs of people, they are highly correlated for users who com-
municate. Also, notice that gender communication is negatively correlated—people tend to
communicate more with people of a di↵erent gender.

Figure 21 further illustrates the results of table 5. We plot the number of pairs of people
of particular age. Figure 21(a) shows the distribution over the randomly sampled pairs, i.e.,
the Messenger user base created by sampling from 1.3 billion random user pairs, and plot
the distribution over reported ages. As most of the population comes from the age group
10-30, the distribution of random pairs of people reaches the mode at those ages but there
is no correlation. Figure 21(b) shows the distribution of ages over the pairs of people that
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Leskovec, J. & Horvitz, E., 2008. Planetary-scale views 
on a large instant-messaging network. pp.915–924.

Dasgupta, K. et al., 2008. Social ties and their relevance 
to churn in mobile telecom networks.
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• Contagion = Homophily? 

• Influence and homophily are usually confounded in observational social 
network studies

launched in July 2007 (Yahoo! Go) (Fig. 2A), and (iii) precise
attribute and dynamic behavioral data on users’ demographics,
geographic location, mobile device type and usage, and per-day
page views of different types of content (e.g., sports, weather, news,
finance, and photo sharing) from desktop, mobile, and Go plat-
forms. Much of these data, such as mobile device usage and page
views of different types of content, provide fine-grained proxies for
individuals’ tastes and preferences. The complete set of covariates
includes 40 time-varying and 6 time-invariant individual and net-
work characteristics. Taken together, the sampled users of the IM

network registered !14 billion page views and sent 3.9 billion
messages over 89.3 million distinct relationships. For details about
the service, the data, and descriptive statistics see the Data section
of the SI.

Evidence of Assortative Mixing and Temporal Clustering
We observe strong evidence of both assortative mixing and tem-
poral clustering in Go adoption. At the end of the 5-month period,
adopters have a 5-fold higher percentage of adopters in their local
networks (t " stat # 100.12, p $ 0.001; k.s. " stat # 0.06, p $ 0.001)
and receive a 5-fold higher percentage of messages from adopters
than nonadopters (t " stat # 88.30, p $ 0.001; k.s. " stat # 0.17,
p $ 0.001). Both the number and percentage of one’s local network
who have adopted are highly predictive of one’s propensity to adopt
(Logistic: !(#) # 0.153, p $ 0.001; !(%) # 1.268, p $ 0.001), and to
adopt earlier (Hazard Rate: !(#) # 0.10, p $ 0.001; !(%) # 0.003,
p $ 0.001). The likelihood of adoption increases dramatically with
the number of adopter friends (Fig. 2C), and correspondingly,
adopters are more likely to have more adopter friends (Fig. 2B),
mirroring prior evidence on product adoption in networks (29).

Adoption decisions among friends also cluster in time. We
randomly reassigned all Go adoption times (while maintaining the
adoption frequency distribution over time) and compared observed
dyadic differences in adoption times among friends to differences
among friends with randomly reassigned adoption times, a proce-
dure known as the ‘‘shuffle test’’ of social influence (25). Compared
with these randomly reassigned adoption times, friends are between
100% and 500% more likely to adopt within 2 days of each other,
after which the temporal interdependence of adoption among
friends disappears (Fig. 1D).

Evidence of assortative mixing and temporal clustering may
suggest peer influence in Go adoption, but is by no means conclu-
sive. Demographic, behavioral, and preference similarities could
simultaneously drive friendship and adoption, creating assortative
mixing. Such homophily could also explain the temporal clustering

Fig. 1. Diffusion of Yahoo! Go over time. (A–C and D–F) Two subgraphs of the
Yahoo! IM network colored by adoption states on July 4 (the Go launch date),
August 10, and October 29, 2007. For animations of the diffusion of Yahoo! Go
over time see Movies S1 and S2.

Fig. 2. Assortative mixing and temporal clustering. (A) The number of Go adopters per day from July 1 to October 29, 2007. (B) The fraction of adopters and
nonadopters with a given number of adopter friends. (C) The ratio of the likelihood of adoption given n adopter friends Pa(n) and the likelihood of adoption given
0adopterfriendsPa(0)wherethenumberofadopter friends isassessedatthetimeofadoption. (D) Frequencyofobserveddyadicdifferences inadoptiontimesbetween
friends compared with differences in adoption times between friends with randomly reassigned adoption times. %t # ti" tj, where tirepresents the time of i’s adoption.

Aral et al. PNAS ! December 22, 2009 ! vol. 106 ! no. 51 ! 21545
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early Go adopters. Random matching also implies that the marginal
influence of an additional adopter friend grows with the number of
adopter friends, whereas propensity score results show linear to
diminishing marginal influence effects of additional adopter friends
(Fig. 3B Right Inset). This occurs in part because there is exagger-
ated homophily among larger clusters of adopter friends (Fig. 3B
Left Inset). The more adopters there are in a group of friends the
more likely they are to be more similar to one another. Comparisons
to random therefore incorrectly imply that influence grows super-
linearly with the number of adopter friends, whereas there is simply
greater homophily in larger groups of adopters.

Homophily also accounts for temporal clustering. We redefined
treatment to capture the effect of having a friend who adopted
within a certain time period (or recency)(!t " ti

a # tj
a $ R) and

reevaluated results under random and propensity score matching
(Fig. 3D). Random matching overestimates the contribution of
influence to the temporal clustering of adoption decisions by
% 200% for dyads that adopt on the same day (!t $ 0), % 100% for
dyads that adopt 1 day apart (!t $ 1), and so on. Friends who adopt
contemporaneously are again more similar along observable de-
mographic and behavioral dimensions [measured by cos(xit

a, xjt
a), Fig.

3D Inset], indicating that homophily explains a good deal of variance
in the temporal clustering of Go adoption decisions.

Thus, homophily can, to a large extent, explain what seems at first
to be a contagious process driven by peer influence. Over half of the
cumulative adoption of treated users (those with at least one
adopter friend) can be attributed to homophily effects (Fig. 4 A and
B). The remaining adoption events (49.8%) represent the upper
bound of influence effects established by our matched sample
estimates. We also evaluated these influence effects under various
environmental conditions (by holding out and varying one charac-
teristic (xi) at a time while matching on all other characteristics, SI,
Environmental Conditions) and found the upper bounds of influ-

ence vary across different segments of the population. When ego’s
average strength of ties to adopter friends is above the median, the
likelihood of adoption controlling for homophily is on average 2
times higher than when below the median (Fig. 4C). Those with
cohesive, dense local networks (with more ties among their friends)
adopt at a higher rate in the presence of an adopter friend
controlling for observed homophily (Fig. 4D), reinforcing prior
arguments that cohesive networks magnify information exchange
and persuasion via redundancy and trust (39). Finally, greater
consumption of news content makes ego more susceptible to
potential influence. Because Yahoo! Go delivers personalized
news, those with greater interest in such content are more suscep-
tible to influence, demonstrating the importance of creating robust
matches based on contextual behavioral variables (Fig. 4E). These
estimates provide examples of the types of environmental condi-
tions that affect the prevalence of influence in networks and
demonstrate how to test them.

Discussion
We present a generalized statistical framework for distinguishing
peer-to-peer influence from homophily in dynamic networks of any
size. Application of this framework to a network of 27 million
individuals connected by instant message traffic provides an esti-
mate of the degree to which peer influence and homophily affect
the diffusion of a new mobile service application across this
network. Most critically, the results show that previous methods
overestimate peer influence in this network by 300–700% and that
homophily explains % 50% of the perceived behavioral contagion in
mobile service adoption. These findings demonstrate that homoph-
ily can account for a great deal of what appears at first to be a
contagious process.

Overestimates of influence are magnified at early stages of the
diffusion process because those who are most susceptible are also

Fig. 3. Distinguishing homophily and influence. (A and B) The fraction of observed treated to untreated adopters (n& /n# ) under random (A) and propensity score
(B) matching over time. The dotted line shows a ratio of 1, when treatment has no effect. The Right Inset in B graphs the average marginal influence effects of having
1, 2, 3, or 4 adopter friends implied by random (open circles) and propensity score (filled circles) matching. The Left Inset graphs the average cosine distance of attribute
andbehaviorvectorsofadopters toadopterfriendsasthenumberofadopters inthe localnetwork increases ('i,j

n cos(xi
a,xj

a)/n). (C)Graphsthecosinedistancesofadopters
to their adopter friends cos(xit

a, xjt
a), their nonadopter friends cos(xit

a, xjt), and a random alter cos(xit
a, xrt) over time with trend lines fitted by ordinary least squares. (D)

The fraction of treated and untreated adopters, where treatment is defined as having a friend who adopted within a certain time period (or recency) (!t " ti
a # tj

a $
R), under random matching (open circles) and propensity score matching (filled circles). The Inset graphs the cosine distances of dyads of adopters cos(xit

a, xjt
a) by the time

interval between their adoption.
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Aral, S., et al. 2009. Distinguishing influence-based contagion from homophily-driven 
diffusion in dynamic networks. Proceedings of the National Academy of Sciences, 
106(51), p.21544.
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• Humans distribute their time differently along the day (circadian rhythms)

Jo, H.-H., Karsai, M., Kertesz, J., & Kaski, K. (2012). 
Circadian pattern and burstiness in mobile phone 
communication. New Journal of Physics, 14(1), 013055. 
http://doi.org/10.1088/1367-2630/14/1/013055

Circadian pattern and burstiness 8
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Figure 4. De-seasoning of MPC patterns for groups with the same strengths: s = 200
(a), 400 (b), 800 (c), and 1600 (d). The original and rescaled distributions of burstiness
are plotted in Fig. 3(b).

their strengths and then perform the de-seasoning separately for the di↵erent groups.

2.3. De-seasoning the groups of individuals with broad ranges of strength

For the larger scale analysis, we consider the strength dependent grouping of users, i.e.

groups of individual users with a broad range of strengths, denoted by ⇤m1,m2 ⌘ {i|m1 
si < m2}, as similarly done in [19, 20]. The values of ms are determined in terms of the

ratio to the maximum strength smax = 7911, see Table 1 for the details of the groups.

We determine the averaged event rates of the groups and some of them are shown in

the left column of Fig. 5. By means of the event rates, we perform the de-seasoning

to get the rescaled inter-event time distributions, see the right column of Fig. 5. It is

found that the values of burstiness initially decrease slightly and then stay constant at

relatively large values as T increases, shown in Fig. 3(c). These results again confirm

our conclusions that de-seasoning the circadian and weekly patterns does not wipe out

the bursty behavior of human communication patterns.

Louail, T., Lenormand, M., Cantú, O. G., Picornell, M., 
Herranz, R., Frias-Martinez, E., et al. (2014). From mobile 
phone data to the spatial structure of cities. Scientific 
Reports, 4. http://doi.org/10.1038/srep05276
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FIG. 4: Number of mobile phone users according to the hour of the day, for each day of the week, in six Spanish

metropolitan areas.

(a) (b)

FIG. 5: Time evolution of the number of mobile phone users per hour during an average weekday (a) Total
number of unique mobile phone users per hour (shown here for the eight biggest Spanish cities). (b) Rescaled numbers of
unique users per hour for 31 cities. Each value Ui(t) is equal to the number of phone users in city i at time t, Ni(t), divided
by the total number of phone users in i during the entire day : Ui(t) = Ni(t)/

Pt=24
t=1 Ni(t). The good collapse suggests the

existence of an urban rhythm common to all cities.

broad categories according to the spatial organization of residences and activities:
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• Individual heterogeneity is significant and persistent.

Aledavood, T., López, E., Roberts, S. G. B., Reed-Tsochas, F., Moro, E., Dunbar, R. I. 
M., & Saramaki, J. (2015). Daily Rhythms in Mobile Telephone Communication. 
PLoS ONE, 10(9), e0138098. http://doi.org/10.1371/journal.pone.0138098

Results
Persistence of individual daily call patterns
We begin by computing the daily call patterns for all 24 egos. The data time span is divided to
three consecutive 6-month intervals I1, I2, and I3. For each ego and each 6-month interval, we
compute the average fraction of calls placed at each hour of the day. Considering 6-month
intervals separately allows investigation of the persistence of any observed differences: were
specific features of individual patterns due to random fluctuations alone, they would not persist
over all intervals.

The resulting daily call patterns for 8 representative egos (4 male, 4 female) for all intervals
are displayed in Fig 1. Two features clearly stand out: First, while the call patterns of all egos
follow the day-night cycle and calls at night are infrequent, there are significant differences
between individuals. As an example, the ego whose pattern is displayed in panel a) makes more
calls in the morning than others, whereas for the ego of panel g) there are frequent calls at late
hours. Second, it appears that each individual’s specific patterns are rather similar in all
6-month intervals. Both observations hold for all 24 egos. This persistence is noteworthy, since
it is known that at the same time, the social networks of these individuals undergo major turn-
over [19]. Because of this, the observed persistence points towards intrinsic driving forces
behind the daily patterns, as these do not strongly depend on an ego’s personal network
composition.

The persistence of individual daily patterns is confirmed with a more detailed analysis. Here
we use the approach of Ref. [19] to show that the daily call patterns of an individual in different
time intervals are more similar than the patterns of different egos within one time interval. We
use the Jensen-Shannon divergence (JSD) (see Materials and Methods for details) to measure
the difference between daily call patterns. For each ego, we calculate two different distances:
self (dself) and reference (dref). The self-distance dself for an individual i is the average JSD
between the call patterns in (I1, I2) and (I2, I3): di;self ¼ 1

2
di;self
12 þ di;self

23

! "
. The reference distance

measures the divergence of patterns of different egos in one time interval. For each time inter-
val we calculate JSD between daily patterns of egos i and j: dij

ref ¼ 1
3

dij
11 þ dij

22 þ dij
33

! "
. As seen in

Fig 2, dself takes on average lower values than dref, meaning that there is more similarity
between an ego’s consecutive daily patterns than between the patterns of different egos in one
interval. The motivation behind this approach is as follows: while an ego’s consecutive patterns

Fig 1. The daily call patterns of 8 individuals (a-h). The red lines denote the average fraction of calls
placed at the corresponding hour for each of the three intervals I1 (solid line), I2 (dashed line), and I3 (dash-
dotted line). The black line is the average call pattern of all 24 individuals over all intervals. Areas shaded
green show where an individual’s fraction of calls exceeds the average, while areas shaded red show where
it falls below the average.

doi:10.1371/journal.pone.0138098.g001

Daily Rhythms in Mobile Telephone Communication

PLOS ONE | DOI:10.1371/journal.pone.0138098 September 21, 2015 3 / 14
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• Calling patterns are different at different times of the day 
• At mornings we call a lot of new people 
• At nights we call less people and those are the more significant ones

Because Figs 3 and 4 point towards a correlation between low entropy and calls to top-
ranked alters, we next quantify this as follows: As the baseline levels and slopes of Fig 4 have a
lot of variation, we take each ego and their relative entropies and fractions of calls to top-
ranked alters at each 6-hour interval. Then, we compute the Pearson correlation coefficient
between entropies and top-alter fractions for all egos. Out of the resulting 24 correlation coeffi-
cients, 14 were significant with p< 0.05, with three positive coefficients and 11 negative aver-
aging at r! −0.71. Thus for more than half of the egos, low entropy is clearly associated with a
high fraction of calls to top alters, while for almost all the rest, no conclusive results can be
drawn (note that taking a very conservative approach regarding false positives and applying
the Bonferroni correction as if we were dealing with a multiple comparison test would result in
4 significant negative coefficients and 1 significant positive coefficient, with the majority of the
few surviving coefficients still negative).

Since there are alter-specific communication patterns and the nature of communication
depends on the time of day, we also look at call durations at different times. Here, we use data
on ego and alter attributes from the conducted surveys. Previous studies have looked at gender
differences in talkativeness as well as differences in usage of phones(both for landlines and
mobile phones) [20–22], using data from different countries and age groups. Most of the recent
studies of talkativeness suggest that men and women are similar [20, 23]. However in most
studies which compare phone usage difference between men and women, women have been
reported to have longer calls [24, 25]. The differences in phone usage of males and females
have been linked to their different social roles [26–28]; it has also been observed that the tem-
poral communication patterns formed by groups of male or female participants differ [29].
Here, we add two more dimensions and look at call durations at different times of the day, as
well as durations of calls to different types of social links (kin or friend/acquaintance).

Fig 4. The fractions of calls to the two top-ranked alters for the same 8 individuals as in Fig 1, calculated for the same 6-hour intervals as in Fig 3
(M, A, E, N). (ο): interval I1, (◻): interval I2, (^): interval I3.

doi:10.1371/journal.pone.0138098.g004

Daily Rhythms in Mobile Telephone Communication

PLOS ONE | DOI:10.1371/journal.pone.0138098 September 21, 2015 7 / 14
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• Bursty human dynamics: inter-event time between activities is heavy-tailed 
distributed

We obtained the letter correspondence records
for 16 writers, performers, politicians, and scien-
tists. Each data set consists of a list of letters that
were sent by each of these individuals, and each
record comprises the name of the sender, the name
of the recipient, and the date when the letter was
written [see supporting online material (SOM) text
S1 for details]. The nature of the data raises two
issues to consider during analysis. First, the precise
authorship date of some letters is unknown, so
we restricted our analysis to only those letters that
have precise authorship dates. Second, it is highly
unlikely that all of the letters written by a partic-
ular individual are present in the database.We have
confirmed that our results are insensitive to sam-
pling effects from this method of data collection
(SOM text S2).

An important consideration in studying the
letter correspondence patterns of these individu-
als is that the data cover their entire lifetimes. As
a result, it is conceivable that changing commu-
nication needs might affect letter correspondence
patterns. For example, before Einstein became
widely known, the bulk of his recorded commu-
nication was to friends and relatives. After the
confirmation of his theory of relativity in 1919,
Einstein’s need to communicate with other indi-
viduals substantially increased. By that time, his
stepdaughter Ilse Einstein was helping him with
secretarial tasks, resulting in greatly improved cov-
erage of his recorded correspondence (23). Because
of this secretarial assistance and his increased fame,
we expect that the average time between consecu-

tively sent letters, the average interevent time 〈t〉,
is significantly larger during the beginning of
Einstein’s life than during the latter part of his
life. Our expectations are verified in Fig. 1, A and
B, demonstrating that these time series are non-
stationary; that is, the heavy-tailed t distribution
results from a mixture of time scales (24).

Because these time series are nonstationary,
we partitioned each complete time series into
smaller time segments so that we could approx-
imate stationary behavior within each time seg-
ment. We accomplished this by splitting the time
series into segments lasting 364 days (52 weeks),
unless fewer than 10 events fell within that time
period, in which case consecutive segments were
merged until this criterion was met.

Assuming that the correspondence patterns
within each time segment are stationary, we can
then model the behavior within each time seg-
ment with standard techniques. As a first approx-
imation, one might naively expect that letters are
sent at a constant rate r and that the time at which
every letter is sent is independent of all others.
Such a process is referred to as a homogeneous
Poisson process, which gives rise to an exponen-
tial t distribution p (t) = re−rt. Whereas the tail of
the t distribution within these time segments is ap-
proximately exponential, the best-estimate predic-
tions of a homogeneous Poisson process do not
produce the correct decay rate (Fig. 1C). This sug-
gests that only a few changes to the homogeneous
Poisson process are needed to reproduce the ob-
served t distribution. We hypothesize that, as for

e-mail correspondence, two additional ingredients
must also be considered for modeling letter cor-
respondence (14).

First, circadian and weekly cycles of activity
may influence when individuals communicate.
Previously, we accounted for these cycles of
activity in e-mail communication with a non-
homogeneous Poisson process whose rate r(t)
changes periodically on daily and weekly time
scales. For letter correspondence, however, the
resolution of the data does not permit us to
identify activity patterns within a day, and day-to-
day changes in activity provide no additional
insight (SOM text S3).We therefore approximate
the nonhomogeneous Poisson process r(t) by a
homogeneous Poisson process with constant rate
ri during time segment i; that is, we model the
rate of activity r(t) throughout each individual's
life by a piecewise constant function of time.

Second, individuals are much more likely to
continue writing letters once they have written one
letter, in order to use their time more effectively.
We account for this behavior by hypothesizing
that, once an individual finishes writing a letter,
there is a probability xi that they will write an-
other letter. This process repeats itself until this
cascade of additional letters concludes with prob-
ability 1 − xi, at which point the individual’s
behavior is again governed by a homogeneous
Poisson process with rate ri (25). We refer to the
resulting model as a cascading Poisson process.

To compare the predictions of the cascading
Poisson process (26) to the empirical data, we

Fig. 1. Nonstationarity
of Albert Einstein’s letter
correspondence activity.
We selected Einstein as
an example, but nonsta-
tionarities are present for
all 16 writers, performers,
politicians, and scientists
studied here. (A) Average
of t over 100 consecutive
t’s. During the beginning
of Einstein’s life (blue-
shaded region), 〈t〉100 is
significantly larger than
during the end of his life
(orange-shaded region).
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(B) Logarithmically binned probability density of the nonzero t’s. If we separately consider the t
distribution during each portion of Einstein’s life, it is clear that the complete t distribution
(black line) is actually a mixture of behaviors. To emphasize the origins of the heavy-tailed
distribution, the probability densities of each portion of Einstein’s life are normalized so that
their integrals are equal to the fraction of nonzero t’s during that time period. d, days. (C)
Comparison of the empirical t distribution during a particular time segment with the simulated
predictions of the best-estimate homogeneous Poisson process that is interval-censored in the
same manner as the data. It is visually apparent that a homogeneous Poisson process is not
consistent with the empirical data, which is confirmed by Monte Carlo hypothesis testing (SOM
text S3).
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• Bursty human dynamics: inter-event time between activities is heavy-tailed 
distributed

well approximated by Poisson processes1–3. In contrast, there
is increasing evidence that the timing of many human
activities, ranging from communication to entertainment and
work patterns, follow non-Poisson statistics, characterized by
bursts of rapidly occurring events separated by long periods of
inactivity4–8. Here I show that the bursty nature of human
behaviour is a consequence of a decision-based queuing
process9,10: when individuals execute tasks based on some per-
ceived priority, the timing of the tasks will be heavy tailed, with
most tasks being rapidly executed, whereas a few experience very
long waiting times. In contrast, random or priority blind
execution is well approximated by uniform inter-event statistics.
These finding have important implications, ranging from
resource management to service allocation, in both communi-
cations and retail.
Humans participate on a daily basis in a large number of distinct

activities, ranging from electronic communication (such as sending
e-mails or making telephone calls) to browsing the Internet,
initiating financial transactions, or engaging in entertainment and
sports. Given the number of factors that determine the timing of
each action, ranging from work and sleep patterns to resource
availability, it seems impossible to seek regularities in human
dynamics, apart from the obvious daily and seasonal periodicities.
Therefore, in contrast with the accurate predictive tools common in

physical sciences, forecasting human and social patterns remains a
difficult and often elusive goal.

Current models of human activity are based on Poisson pro-
cesses, and assume that in a dt time interval an individual (agent)
engages in a specific action with probability qdt, where q is the
overall frequency of themonitored activity. This model predicts that
the time interval between two consecutive actions by the same
individual, called the waiting or inter-event time, follows an
exponential distribution (Fig. 1a–c)1. Poisson processes are widely
used to quantify the consequences of human actions, such as
modelling traffic flow patterns or accident frequencies1, and are
commercially used in call centre staffing2, inventory control3, or to
estimate the number of congestion-caused blocked calls in calls in
mobile communication4. Yet, an increasing number of recent
measurements indicate that the timing of many human actions
systematically deviates from the Poisson prediction, the waiting or
inter-event times being better approximated by a heavy tailed or
Pareto distribution (Fig. 1d–f). The differences between Poisson
and heavy-tailed behaviour are striking: a Poisson distribution
decreases exponentially, forcing the consecutive events to follow
each other at relatively regular time intervals and forbidding very
long waiting times. In contrast, the slowly decaying, heavy-tailed
processes allow for very long periods of inactivity that separate
bursts of intensive activity (Fig. 1).

Figure 1 The difference between the activity patterns predicted by a Poisson process and
the heavy-tailed distributions observed in human dynamics. a, Succession of events
predicted by a Poisson process, which assumes that in any moment an event takes place

with probability q. The horizontal axis denotes time, each vertical line corresponding to an

individual event. Note that the inter-event times are comparable to each other, long

delays being virtually absent. b, The absence of long delays is visible on the plot showing
the delay times t for 1,000 consecutive events, the size of each vertical line

corresponding to the gaps seen in a. c, The probability of finding exactly n events within a
fixed time interval is P(n; q) ¼ e 2qt(qt )n/n!, which predicts that for a Poisson process the

inter-event time distribution follows P(t) ¼ qe 2qt, shown on a log-linear plot in c for the

events displayed in a, b. d, The succession of events for a heavy-tailed distribution.
e, The waiting time t of 1,000 consecutive events, where the mean event time was
chosen to coincide with the mean event time of the Poisson process shown in a–c. Note
the large spikes in the plot, corresponding to very long delay times. b and e have the same
vertical scale, allowing the comparison of the regularity of a Poisson process with the

intermittent nature of the heavy-tailed process. f, Delay time distribution P(t) . t22 for

the heavy-tailed process shown in d, e, appearing as a straight line with slope22 on a

log–log plot. The signal shown in d–f was generated using g ¼ 1 in the stochastic

priority list model discussed in the Supplementary Information.

letters to nature

NATURE |VOL 435 | 12 MAY 2005 | www.nature.com/nature208
© 2005 Nature Publishing Group 
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• Bursty contacts: inter-event times on ties are also heavy-tailed distributed

4

tribution around 20 seconds is found. This peak is due
to event correlations between links. The power law indi-
cates the non-Poissonian, bursty character of the events.
Both the characteristics vanish for the time-shuffled null
model BCW, and the inter-event time is well described
by an exponential function (see inset of Fig. 4), i.e., the
process is Poissonian.

FIG. 4: (color online) Scaled inter-event time distributions for
the MCN data. Edges were binned (log bins with base 1.3)
according to their weights and for every second bin the inter-
event time distribution of the events occurring in the corre-
sponding edge is shown. Each inter-event time distribution
is scaled by the average inter-event time of the corresponding
bin τ∗. The inset shows scaled inter-event time distributions
for the empirical network (red circles) and for the time shuffled
network (blue squares). An exponential density distribution
with average value of 1 is shown as a light (yellow) line.

The effect of burstiness on the spreading speed can be
easily demonstrated with the following single-link calcu-
lation. Let us denote the average time for the infection to
spread through a link (the residual waiting time) by ⟨τR⟩,
and assume that one of the nodes gets infected at a uni-
formly chosen random time. Similarly to Iribarren et al.
[12] and Vazquez et al., [11] we calculate ⟨τR⟩ for a given
inter-event time distribution P (τ). For simplicity, we
consider how the burstiness introduced by a continuous
power-law distribution of inter-event times P (τ) ∼ τ−α

affects the average infection times when compared to a
Poisson process. If we fix the average inter-event time
(and thus the number of events for a long observation
period), the ratio of average infection times becomes

r = ⟨τR,powerlaw⟩ / ⟨τR,poisson⟩ = (α−2)2

2(α−1)(α−3) for α > 3.

Now r is decreasing with α, r < 1 when α > 2+
√
2 ≈ 3.4,

and r goes to infinity at α = 3. This indicates that the
burstiness characterized by power law distributions with
slow decay has a decelerating effect on spreading with
respect to the Poison process with the same mean. How-
ever, if the decay is fast enough, i.e., the second moment
of the power law distribution is smaller than that of the
Poisson distribution, we see acceleration. This mean field

type of reasoning has its limitations, nevertheless, it illus-
trates the mechanisms of slowing down because of bursts:
the residual waiting time increases as the chance for long
waiting times after getting infected increases with a fat
tailed waiting time distribution.
In conclusion, the spreading phenomena in small-world

communication networks are slow mainly for two reasons.
First, the community structure and its correlation with
link weights have already a considerable effect. Second,
the inhomogeneous and bursty activity patterns on the
links result in an additional slowing down. Thus it is
misleading to emphasize only one of these reasons. But
as shown here, by using proper null models the contribu-
tions of different factors can be distinguished. Somewhat
surprisingly, the daily pattern and event correlations be-
tween links seem to play only a minor role in overall
spreading speed.
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• Bursty contacts: impact on the waiting/response time 
• When should I wait next call from a friend?  
• When is the next bus coming? 

• Given            , calculate 
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• Is that all? Nope: bursts are correlated in 
time 

• To find correlation, detect  
sequence of events with  

• If activity is a renewal process, the  
probability that we find n of such events in 
a row is 

• P(E) decays exponentially 
• However, in real data it decays like a 

power-law

Results
Correlated events. A sequence of discrete temporal events can be
interpreted as a time-dependent point process, X(t), where X(ti) 5 1
at each time step ti when an event takes place, otherwise X(ti) 5 0. To
detect bursty clusters in this binary event sequence we have to
identify those events we consider correlated. The smallest temporal
scale at which correlations can emerge in the dynamics is between
consecutive events. If only X(t) is known, we can assume two
consecutive actions at ti and ti 1 1 to be related if they follow each
other within a short time interval, ti 1 12ti # Dt30,38. For events with
the duration di this condition is slightly modified: ti 1 12(ti 1 di) #
Dt.

This definition allows us to detect bursty periods, defined as a
sequence of events where each event follows the previous one within
a time intervalDt. By counting the number of events, E, that belong to
the same bursty period, we can calculate their distribution P(E) in a
signal. For a sequence of independent events, P(E) is uniquely deter-
mined by the inter-event time distribution P(tie) as follows:

P E~nð Þ~
ðDt

0
P tieð Þdtie

" #n{1

1{

ðDt

0
P tieð Þdtie

" #
ð1Þ

for n . 0. Here the integral
Ð Dt

0 P tieð Þdtie defines the probability to
draw an inter-event time P(tie) # Dt randomly from an arbitrary
distribution P(tie). The first term of (1) gives the probability that we
do it independently n21 consecutive times, while the second term
assigns that the nth drawing gives a P(tie) . Dt therefore the evolving
train size becomes exactly E 5 n. If the measured time window is
finite (which is always the case here), the integral

Ð Dt
0 P tieð Þdtie~a

where a , 1 and the asymptotic behaviour appears like P(E 5 n) ,
a(n21) in a general exponential form (for related numerical results see
SI). Consequently for any finite independent event sequence the P(E)
distribution decays exponentially even if the inter-event time distri-
bution is fat-tailed. Deviations from this exponential behavior indi-
cate correlations in the timing of the consecutive events.

Bursty sequences in human communication. To check the scaling
behavior of P(E) in real systems we focused on outgoing events of
individuals in three selected datasets: (a) A mobile-call dataset from a
European operator; (b) Text message records from the same dataset;
(c) Email communication sequences26 (for detailed data description
see Methods). For each of these event sequences the distribution of
inter-event times measured between outgoing events are shown in
Fig. 2 (left bottom panels) and the estimated power-law exponent
values are summarized in Table 1. To explore the scaling behavior of
the autocorrelation function, we took the averages over 1,000

randomly selected users with maximum time lag of t 5 106. In
Fig. 2.a and b (right bottom panels) for mobile communication
sequences strong temporal correlation can be observed (for
exponents see Table 1). The power-law behavior in A(t) appears
after a short period denoting the reaction time through the
corresponding channel and lasts up to 12 hours, capturing the
natural rhythm of human activities. For emails in Fig. 2.c (right
bottom panels) long term correlation are detected up to 8 hours,
which reflects a typical office hour rhythm (note that the dataset
includes internal email communication of a university staff).

The broad shape of P(tie) and A(t) functions confirm that human
communication dynamics is inhomogeneous and displays non-
trivial correlations up to finite time scales. However, after destroying
event-event correlations by shuffling inter-event times in the
sequences (see Methods) the autocorrelation functions still show
slow power-law like decay (empty symbols on bottom right panels),
indicating spurious unexpected dependencies. This clearly demon-
strates the disability of A(t) to characterize correlations for hetero-
geneous signals (for further results see SI). However, a more effective
measure of such correlations is provided by P(E). Calculating this
distribution for various Dt windows, we find that the P(E) shows the
following scale invariant behavior

P Eð Þ*E{b ð2Þ

for each of the event sequences as depicted in the main panels of
Fig. 2. Consequently P(E) captures strong temporal correlations in
the empirical sequences and it is remarkably different from P(E)
calculated for independent events, which, as predicted by (1), show
exponential decay (empty symbols on the main panels).

Exponential behavior of P(E) was also expected from results pub-
lished in the literature assuming human communication behavior to
be uncorrelated29,30,39. However, the observed scaling behavior of
P(E) offers direct evidence of correlations in human dynamics, which
can be responsible for the heterogeneous temporal behavior. These
correlations induce long bursty trains in the event sequence rather
than short bursts of independent events.

We have found that the scaling of the P(E) distribution is quite
robust against changes in Dt for an extended regime of time-window
sizes (Fig. 2). In addition, the measurements performed on the
mobile-call sequences indicate that the P(E) distribution remains
fat-tailed also when it is calculated for users grouped by their activity.
Moreover, the observed scaling behavior of the characteristic func-
tions remains similar if we remove daily fluctuations (for results see
SI). These analyses together show that the detected correlated beha-
vior is not an artifact of the averaging method nor can be attributed to
variations in activity levels or circadian fluctuations.

Figure 1 | Activity of single entities with color-coded inter-event times. (a): Sequence of earthquakes with magnitude larger than two at a single location
(South of Chishima Island, 8th–9th October 1994) (b): Firing sequence of a single neuron (from rat’s hippocampal) (c): Outgoing mobile phone call
sequence of an individual. Shorter the time between the consecutive events darker the color.
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Bursty periods in natural phenomena. As discussed above, tem-
poral inhomogeneities are present in the dynamics of several natural
phenomena, e.g. in recurrent seismic activities at the same loca-
tion19,20,21 (for details see Methods and SI). The broad distribution
of inter-earthquake times in Fig. 3.a (right top panel) demonstrates
the temporal inhomogeneities. The characterizing exponent value c
5 0.7 is in qualitative agreement with the results in the literature23 as
c 5 221/p where p is the Omori decay exponent22,23. At the same
time the long tail of the autocorrelation function (right bottom panel)
assigning long-range temporal correlations. Counting the number of
earthquakes belonging to the same bursty period with Dt 5
2…32 hours window sizes, we obtain a broad P(E) distribution
(see Fig. 3.a main panel), as observed earlier in communication
sequences, but with a different exponent value b 5 2.5 (see in
Table 1). This exponent value meets with known seismic
properties as it can be derived as b 5 b/a 1 1, where a denotes the
productivity law exponent40, while b is coming from the well known
Gutenberg-Richter law41. Note that the presence of long bursty trains
in earthquake sequences were already assigned to long temporal
correlations by measurements using conditional probabilities42,43.

Another example of naturally occurring bursty behavior is pro-
vided by the firing patterns of single neurons (see Methods). The

recorded neural spike sequences display correlated and strongly
inhomogeneous temporal bursty behavior, as shown in Fig. 3.b.
The distributions of the length of neural spike trains are found to
be fat-tailed and indicate the presence of correlations between con-
secutive bursty spikes of the same neuron.

Memory process. In each studied system (communication of
individuals, earthquakes at given location, or neurons) quali-
tatively similar behaviour was detected as the single entities
performed low frequency random events or they passed through
longer correlated bursty cascades. While these phenomena are
very different in nature, there could be some element of simi-
larities in their mechanisms. We think that this common feature
is a threshold mechanism.

From this point of view the case of human communication data
seems problematic. In fact generally no accumulation of stress is
needed for an individual to make a phone call. However, according
to the Decision Field Theory of psychology44, each decision (includ-
ing initiation of communication) is a threshold phenomenon, as the
stimulus of an action has to reach a given level for to be chosen from
the enormously large number of possible actions.

As for earthquakes and neuron firings it is well known that they
are threshold phenomena. For earthquakes the bursty periods at a
given location are related to the relaxation of accumulated stress after
reaching a threshold7–9. In case of neurons, the firings take place in
bursty spike trains when the neuron receives excitatory input and its
membrane potential exceeds a given potential threshold45. The spikes
fired in a single train are correlated since they are the result of the
same excitation and their firing frequency is coding the amplitude of
the incoming stimuli46.

The correlations taking place between consecutive bursty events
can be interpreted as a memory process, allowing us to calculate the
probability that the entity will perform one more event within a Dt
time frame after it executed n events previously in the actual cascade.
This probability can be written as:

Figure 2 | The characteristic functions of human communication event sequences. The P(E) distributions with various Dt time-window sizes (main
panels), P(tie) distributions (left bottom panels) and average autocorrelation functions (right bottom panels) calculated for different communication
datasets. (a) Mobile-call dataset: the scale-invariant behavior was characterized by power-law functions with exponent values a^0:5, b^4:1 and c^0:7
(b) Almost the same exponents were estimated for short message sequences taking values a^0:6, b^3:9 and c^0:7. (c) Email event sequence with
estimated exponents a^0:75, b^2:5 and c^1:0. A gap in the tail of A(t) on figure (c) appears due to logarithmic binning and slightly negative
correlation values. Empty symbols assign the corresponding calculation results on independent sequences. Lanes labeled with s, m, h and d are denoting
seconds, minutes, hours and days respectively.

Table 1 | Characteristic exponents of the (a) autocorrelation func-
tion, (b) bursty number, (c) inter-event time distribution functions
and n memory functions calculated in different datasets (see SI)
and for the model study

a b c n

Mobile-call sequence 0.5 4.1 0.7 3.0
Short message sequence 0.6 3.9 0.7 2.8
Email sequence 0.75 2.5 1.0 1.3
Earthquake sequence (Japan) 0.3 2.5 0.7 1.6
Neuron firing sequence 1.0 2.3 1.1 1.3
Model 0.7 3.0 1.3 2.0
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events and in particular, the possible heavy-tail proper-
ties of P (�tij) are directly inherited by P (⇤ij). Fig. 2
shows our (rescaled) results for P (�tij) and P (⇤ij). For
comparison, we also show the results obtained when i)
the time-stamps of the ⇥ ⇤ i events are randomly se-
lected from the complete CDR, thus destroying any possi-
ble temporal correlation with i ⇤ j and e�ectively mim-
icking Eq. (1) and ii) when the whole CDR time-stamps
are shu⌅ed thus destroying both tie temporal patterns
and correlation between ties. Both shu⌅ings preserve the
tie intensity wij [18], i.e. the number of calls and their
duration and also the circadian rhythms of human com-
munication [15]. The result for P (�tij) shows that small
and large inter-event times are more probable for the real
series than for the shu⌅ed ones, where the pdf is almost
exponential as in a Poissonian process, apart from a small
deviation due to the circadian rhythms. This bursty pat-
tern of activity has been found in numerous examples
of human behavior [6] and seems to be universal in the
way a single individual schedules tasks. Here we see that
it also happens at the level of two individuals interac-
tion confirming recent results in mobile [15] and online
communities [7] dynamics. The pdf for ⇤ij is also heavy-
tailed but displays a larger number of short ⇤ij compared
to the shu⌅ed one. The abundance of short ⇤ij suggests
that receiving an information (⇥ ⇤ i) triggers commu-
nication with other people (i ⇤ j), a manifestation of
group conversations [11–13]. While the fat-tail of P (⇤ij)
is accurately described by Eq. (1), i.e. large transmission
intervals ⇤ij are mostly due to large inter-event commu-
nication times in the i ⇤ j tie, the behavior of P (⇤ij) is
not only due to the bursty patterns of �tij , but also to the
temporal correlation between the i ⇤ j and the ⇥ ⇤ i
events. In fact, if the correlation between the i ⇤ j and
the ⇥ ⇤ i series is destroyed, the probability of short-
time intervals decreases and approaches the Poissonian
case (Fig. 2). In summary, relay times depend on two
main properties of human communication that compete
to one another. While the bursty nature of human ac-
tivity yields to large transmission times hindering any
possible infection, group conversations translate into an
unexpected abundance of short relay times, favoring the
probability of propagation.

To investigate the e�ect of these two conflicting prop-
erties of human communication on information spread-
ing, we simulate the epidemic Susceptible-Infectious-
Recovered (SIR) model in our social network considering
the real time sequence of communication events [15, 23]
and compare them to the shu⌅ed data. We start the
model by infecting a node at a random instant and con-
sidering all other nodes as susceptible. In each call an
infected node can infect a susceptible node with prob-
ability ⇥. Due to the synchronous nature of the phone
communication, this happens regardless of who initiates
the call. However, since the same results are obtained
by considering directionality in the calls, for computa-
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t

t
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FIG. 1. (color online) Schematic view of communications
events around individual i: each horizontal segment indicates
an event between i ! j (top) and ⇤ ! i (bottom). At each
t↵ in the ⇤ ! i time series, ⇥ij is the time elapsed to the next
i ! j event, which is di�erent from the inter-event time �tij
in the i ! j time series. The red shaded area represents the
recover time window Ti after t↵.
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FIG. 2. (color online) Distribution of the relay time inter-
vals ⇥ij (main) and of the inter-event times �tij (inset) in the
i ! j tie rescaled by �tij . The black circles correspond to
the real data, while the red squares is the overall-shu⇥ed re-
sult. Blue diamonds correspond to the case in which only the
⇤ ! i sequence is randomized. Only ties with wij � 10 are
considered. In both graphs the dashed line correspond to the
e�x function.

tional reasons we consider the latter case. Nodes remain
infected during a time Ti until they decay into the re-
covered state. For the sake of simplicity we simulate the
simplest model in which the recovering time Ti is deter-
ministic and homogeneous Ti = T and set T = 2 days,
although di�erent and/or stochastic Ti can be studied
within the same model. The spreading dynamics gener-
ates a viral cascade that grows until there are no more
nodes in the infected state. We repeat the spreading pro-
cess for 3 � 104 randomly chosen seeds. Note that our
model includes the SI model simulations in [15] where
⇥ = 1 and T = T0, with T0 being the total duration of
the dataset.
By looking at the size of the largest cascade smax (over

all realizations) at each value of ⇥, we first ensure the
existence of a percolation transition [4] (see Fig. 3), con-
firmed by a change in the behavior of smax from small
to large cascades at a given value of ⇥ (tipping point).
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ing, we simulate the epidemic Susceptible-Infectious-
Recovered (SIR) model in our social network considering
the real time sequence of communication events [15, 23]
and compare them to the shu⌅ed data. We start the
model by infecting a node at a random instant and con-
sidering all other nodes as susceptible. In each call an
infected node can infect a susceptible node with prob-
ability ⇥. Due to the synchronous nature of the phone
communication, this happens regardless of who initiates
the call. However, since the same results are obtained
by considering directionality in the calls, for computa-
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FIG. 2. (color online) Distribution of the relay time inter-
vals ⇥ij (main) and of the inter-event times �tij (inset) in the
i ! j tie rescaled by �tij . The black circles correspond to
the real data, while the red squares is the overall-shu⇥ed re-
sult. Blue diamonds correspond to the case in which only the
⇤ ! i sequence is randomized. Only ties with wij � 10 are
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e�x function.

tional reasons we consider the latter case. Nodes remain
infected during a time Ti until they decay into the re-
covered state. For the sake of simplicity we simulate the
simplest model in which the recovering time Ti is deter-
ministic and homogeneous Ti = T and set T = 2 days,
although di�erent and/or stochastic Ti can be studied
within the same model. The spreading dynamics gener-
ates a viral cascade that grows until there are no more
nodes in the infected state. We repeat the spreading pro-
cess for 3 � 104 randomly chosen seeds. Note that our
model includes the SI model simulations in [15] where
⇥ = 1 and T = T0, with T0 being the total duration of
the dataset.
By looking at the size of the largest cascade smax (over

all realizations) at each value of ⇥, we first ensure the
existence of a percolation transition [4] (see Fig. 3), con-
firmed by a change in the behavior of smax from small
to large cascades at a given value of ⇥ (tipping point).
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Miritello, G., Moro, E. & Lara, R., 2011. Dynamical 
strength of social ties in information spreading. 
Physical Review E, 83(4), p.045102.
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• Tie formation: predictors

than individuals who are separated by only
one intermediary (dij 0 2). Figure 1A (cir-
cles), however, demonstrates that when two
individuals share at least one class, they are
on average 3 times more likely to interact if
they also share an acquaintance (dij 0 2), and
about 140 times more likely if they do not
(dij 9 2). In addition, Fig. 1B shows that the
empirical probability of tie formation in-
creases with the number of mutual acquaint-
ances both for pairs with (circles) and without
(triangles) shared classes, becoming indepen-
dent of shared affiliations for large numbers
of mutual acquaintances (six and more). Figure
1C displays equivalent information for shared

classes, indicating that while the effect of a
single shared class is roughly interchange-
able with a single mutual acquaintance, the
presence of additional acquaintances has a
greater effect than additional foci in our
data set. These findings imply that even a
minimally accurate, generative network mod-
el would need to account separately for (i)
triadic closure, (ii) focal closure, and (iii) the
compounding effect of both biases together.

Our data can also shed light on theoretical
notions of tie strength (13) and attribute-
based homophily (6, 26). We found (Fig. 2)
that the likelihood of triadic closure increases
if the average tie strength between two

strangers and their mutual acquaintances is
high, which supports commonly accepted
theory (6, 13). By contrast, homophily with
respect to individual attributes appears to play
a weaker role than might be expected. Of the
attributes we considered in this and other
models (27)—status (undergraduate, graduate
student, faculty, or staff), gender, age, and
time in the community—none has a signifi-
cant effect on triadic closure. The significant
predictors are tie strength, number of mutual
acquaintances, shared classes, the interac-
tion of shared classes and acquaintances, and
status obstruction, which we define as the ef-
fect on triadic closure of a mediating indi-
vidual who has a different status than either
of the potential acquaintances. For example,
two students connected through a professor
are less likely to form a direct tie than two
students connected through another student,
ceteris paribus. We suspect, however, that
status obstruction may be an indicator of un-
observed focal closure beyond class attend-
ance. Thus, although homophily has often
been observed with respect to individual
attributes in cross-sectional data (6, 26), these
effects may be mostly indirect, operating
through the structural constraint of shared foci
(10), such as selection of courses or extra-
curricular activities.

Our results also have implications for the
utility of cross-sectional network analysis,
which relies on the assumption that the
network properties of interest are in equilibri-
um (4). Figure 3 shows that different network
measures exhibit varying levels of stability
over time and with respect to the smoothing
window t. Average vertex degree bkÀ, frac-
tional size of the largest component S, and
mean shortest path length L all exhibit
seasonal changes and produce different mea-
surements for different choices of t, where bkÀ
is especially sensitive to t. The clustering
coefficient C (28), however, stays virtually
constant as bkÀ changes, suggesting, perhaps
surprisingly, that averages of local network
properties are more stable than global proper-
ties such as L or S. Nevertheless, these results
suggest that as long as the smoothing window
t is chosen appropriately and care is taken to
avoid collecting data in the vicinity of exog-
enous changes (e.g., end of semester), average
network measures remain stable over time and
thus can be recovered with reasonable fidelity
from network snapshots.

The relative stability of average network
properties, however, does not imply equiva-
lent stability of individual network properties,
for which the empirical picture is more com-
plicated. On the one hand, we find that
distributions of individual-level properties
are stable, with the same caveats that apply
to averages. For example (Fig. 4, A to C), the
shape of the degree distribution p(k) is
relatively constant across the duration of our

Fig. 1. Cyclic and fo-
cal closure. (A) Average
daily empirical proba-
bility pnew of a new tie
between two individ-
uals as a function of
their network distance
dij. Circles, pairs that
share one or more inter-
action foci (attend one
or more classes togeth-
er); triangles, pairs that
do not share classes.
(B) pnew as a function
of the number of mu-
tual acquaintances. Cir-
cles, pairs with one or
more shared foci; tri-
angles, pairs without
shared foci. (C) pnew as
a function of the number of shared interaction foci. Circles, pairs with one or more mutual
acquaintances; triangles, pairs without mutual acquaintances. Lines are shown as a guide for the
eye; standard errors are smaller than symbol size.

Fig. 2. Results of mul-
tivariate survival analy-
sis of triadic closure for
a sample of 1190 pairs
of graduate and under-
graduate students. Shown
are the hazard ratios
and 95% confidence in-
tervals from Cox re-
gression of time to tie
formation between two
individuals since their
transition to distance
dij 0 2. Hazard ratio g
means that the proba-
bility of closure changes
by a factor of g with a unit change in the covariate or relative to the reference category. We treat a
covariance as significant if the corresponding 95% confidence interval does not contain g 0 1 (no
effect). Predictors, sorted by effect magnitude: strong indirect (1 if indirect connection strength is
above sample median, 0 otherwise), classes (number of shared classes), acquaintances (number of
mutual network neighbors less 1), same age (1 if absolute difference in age is less than 1 year, 0
otherwise), same year (1 if absolute difference in number of years at the university is less than 1, 0
otherwise), gender [effects of male-male (MM) and female-female (FF) pair, respectively, relative to
a female-male (FM) pair], acquaint*classes (interaction effect between acquaintances and classes),
and obstruction (1 if no mutual acquaintance has the same status as either member of the pair, 0
otherwise) (25).
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otherwise), gender [effects of male-male (MM) and female-female (FF) pair, respectively, relative to
a female-male (FM) pair], acquaint*classes (interaction effect between acquaintances and classes),
and obstruction (1 if no mutual acquaintance has the same status as either member of the pair, 0
otherwise) (25).
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FIG. 5. Relative average performance of various predictors versus random predictions. The value shown is the average ratio over the five datasets of the given
predictor’s performance versus the random predictor’s performance. The error bars indicate the minimum and maximum of this ratio over the five datasets. The
parameters for the starred predictors are as follows: (a) for weighted Katz, ! 0.005; (b) for Katz clustering, 1 ! 0.001, ! 0.15, 2 ! 0.1; (c) for low-rank
inner product, rank ! 256; (d) for rooted Pagerank, ! 0.15; (e) for unseen bigrams, unweighted common neighbors with ! 8; and (f) for SimRank, ! 0.8.gda
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Similarities Among the Predictors and the Datasets

Not surprisingly, there is significant overlap in the predic-
tions made by the various methods. In Figure 8, we show the
number of common predictions made by 10 of the most
successful measures on the cond-mat graph. We see that
Katz, low-rank inner product, and Adamic/Adar are quite
similar in their predictions, as are (to a somewhat lesser
extent) rooted PageRank, SimRank, and Jaccard. Hitting
time is remarkably unlike any of the other nine in its predic-
tions, despite its reasonable performance. The number of
common correct predictions shows qualitatively similar be-
havior (see Figure 9). It would be interesting to understand
the generality of these overlap phenomena, especially be-
cause certain of the large overlaps do not seem to follow
obviously from the definitions of the measures.

It is harder to quantify the differences among the datasets,
but their relationship is a very interesting issue as well. One
perspective is provided by the methods based on low-rank
approximation: On four of the datasets, their performance
tends to be best at an intermediate rank while on gr-qc they
perform best at rank 1 (see Figure 10, e.g., for a plot of the
change in the performance of the low-rank matrix-entry

predictor as the rank of the approximation varies). This fact
suggests a sense in which the collaborations in gr-qc have
a much “simpler” structure than those in the other four. One
also observes the apparent importance of node degree in
the hep-ph collaborations: The preferential-attachment
predictor—which considers only the number (and not the
identity) of a scientist’s coauthors—does uncharacteristically
well on this dataset, outperforming the basic graph-distance
predictor. Finally, it would be interesting to make precise a
sense in which astro-ph is a “difficult” dataset, given the
low performance of all methods relative to random and
the fact that none beats simple ranking by common neigh-
bors. We will explore this issue further when we consider
collaboration data drawn from other fields.

Because almost all of our experiments were carried out
on social networks formed via the collaborations of physi-
cists, it is difficult to draw broad conclusions about link
prediction in social networks in general. The culture of
physicists and of physics collaboration (e.g., see the work of
Katz & Martin, 1997) plays a role in the quality of our
results. The considerations discussed earlier suggest that
there are some important differences even within physics
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Evaluating a Link Predictor

Each link predictor p that we consider outputs a ranked list
Lp of pairs in A ! A " Eold; these are predicted new collabora-
tions, in decreasing order of confidence. For our evaluation, we
focus on the set Core, so we define (Core !
Core) and . Our performance measure for Predictor p
is then determined as follows: From the ranked list Lp, we take
the first n pairs that are in Core ! Core, and determine the size
of the intersection of this set of pairs with the set  .

Methods for Link Prediction

In this section, we survey an array of methods for link pre-
diction. All the methods assign a connection weight score(x, y)
to pairs of nodes x, y , based on the input graph Gcollab, and
then produce a ranked list in decreasing order of score(x, y).
Thus, they can be viewed as computing a measure of proxim-
ity or “similarity” between nodes x and y, relative to the
network topology. In general, the methods are adapted from
techniques used in graph theory and in social-network analy-
sis; in a number of cases, these techniques were not designed
to measure node-to-node similarity and hence need to be
modified for this purpose. Figure 2 summarizes most of these
measures; we discuss them in more detail later. Note that

98

Enew
!

n J |Enew
! |

xEnew
! J Enew

some of these measures are designed only for connected
graphs; because each graph Gcollab that we consider has a giant
component—a single component containing most of the
nodes—it is natural to restrict the predictions for these mea-
sures to this component.

Perhaps the most basic approach is to rank pairs x, y by
the length of their shortest path in Gcollab. Such a measure
follows the notion that collaboration networks are “small
worlds,” in which individuals are related through short
chains (Newman, 2001b) (In keeping with the notion that
we rank pairs in decreasing order of score(x, y), we define
score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to one
are joined by an edge in Gcollab, and hence they belong to
the training edge set Eold. For all of our graphs Gcollab, there
are well more than n pairs at shortest-path distance two, so
our shortest-path predictor simply selects a random subset of
these distance-two pairs.

Methods Based on Node Neighborhoods

For a node x, let #(x) denote the set of neighbors of x in
Gcollab. A number of approaches are based on the idea that two
nodes x and y are more likely to form a link in the future if
their sets of neighbors #(x) and #(y) have large overlap; this

98

FIG. 2. Values for score(x, y) under various predictors; each predicts pairs x, y in descending order of
score(x, y). The set #(x) consists of the neighbors of the node x in Gcollab.
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Fig. 2. Persistence across a cellular phone network (a) Distribution of persistence for all links (b) Fraction of surviving ties as a function of time.
The inset shows the same plot in a double logarithmic scale. The continuous line is t�1/4.

Fig. 3. Network structure and the persistence of ties (a) A fragment of the network extracted by considering up to the second neighbour of a
randomly chosen node (indicated by a black arrow). (b) Distribution of persistence divided into nine degree categories. (c) Number of persistent
links defined as those with a persistence of, from top to bottom: 5/10, 6/10, 7/10, 8/10, 9/10 and 10/10. (d) Distribution of persistence divided
into nine clustering categories. (e) Distribution of persistence divided into five different reciprocity segments.

correlations between persistence, perseverance and the topological attributes of the mobile call network. In particular,
we find that these temporal attributes correlate with topological variables such as the number of connection or degree
ki , the average reciprocity of a node r (fraction of ties containing both incoming and outgoing calls) and the clustering
coefficient of a node Ci defined as

Ci = 2�
ki (ki � 1)

, (3)

where � is the number of triads in which the node is involved. Fig. 3(b) shows a histogram of persistence split into
nine different degree categories revealing that persistent links represent a large fraction of the connections for low
degree nodes while transient links are more common for large degree nodes. The number of persistent ties however,
grows as a function of degree, meaning that although on average the persistence of high degree nodes is lower, in
absolute terms their core is larger.

�����(�����"

• Tie decay: predictors 

• Links with large embeddedness and reciprocity are more likely to persist

C.A. Hidalgo, C. Rodriguez-Sickert / Physica A 387 (2008) 3017–3024 3021

Table 1
Persistence of ties and link attributes

Pearson’s correlation �C �k �r R TO Persistence

�C 1 0.023 0.15 0.11 0.23 0.15
�k 1 0.02 �0.13 �0.19 �0.16
�r 1 �0.68 �0.073 0.033
R 1 0.2964 0.5886
TO 1 0.3537

Regression coefficients 0.09 0.002 0.15 0.35 0.56
Partial correlations 0.0027 0.0032 0.007 0.26 0.034

Fig. 3(d) shows the distribution of persistence divided by clustering coefficient categories, indicating that highly
clustered nodes tend to have relatively large cores. In the core periphery context, this means that persevering nodes
are located in dense parts of the social network (Fig. 3(a) I) while those in sparser parts tend to have nonpersistent
ties acting as bridges which interruptedly connect different parts of the network (Fig. 3(a) II). Finally, we split the
distribution of persistence by reciprocity (Fig. 3(e)) and observe that nodes with more reciprocated ties tend to be
more persistent.

5.2. Multivariate analysis

In the previous section we presented a bivariate analysis in which we analysed the effect of three single structural
variables and found that persistence depends monotonically on all of them (degree, clustering coefficient and
reciprocity). The observed correlations, however, might well be redundant. To check if this is the case we perform a
multivariate analysis to quantify the effect of each of these variables on the persistence of ties. Because of the large
number of observations considered (⇠2 million nodes, ⇠8 million ties) the confidence intervals of the regressions do
not spread far from the predicted values. Hence we concentrate our discussion on the relative magnitude of the effects
rather than on their significance.

On a social network, it is a well-known fact that agents tend to connect to others of similar degree significantly
more than random [21,22]. It is not known, however, whether links connecting same degree agents tend to be more
stable than those connecting different degree agents. To study this effect we performed a regression in which we study
the persistence of a link as function of the difference in degree of the nodes that link connects. Furthermore, we also
include in the regression the difference in clustering and average reciprocity of nodes connected by a particular link.
In addition to this, we consider two link attributes: the reciprocity of links R, was there ever a panel in which caller
and callee reciprocally called each other? and the topological overlap associated with that link which is defined as

T .O.(i, j) =
s

O2
i j

ki k j
, (4)

where Oi j is the number of neighbours that agents i and j have in common and ki and k j are their respective
degrees.

Together these five variables explain 40% of the variance in persistence (Table 1 R2 = 0.397). The contribution of
each one of them can be isolated by considering the partial regression coefficients [23], which are a way to quantify
how much of the variance is explained by each one of the covariates used in a regression. This technique shows that
assortative mixing is not associated with the persistence of ties. Whereas the reciprocity of the links (0 nonreciprocal,
1 reciprocal) explains 26% of persistence followed by topological overlap which explains 3.4% of the variance in
persistence.

In the previous section we showed that high degree agents had on average less persistent ties than low degree
agents. We also saw that highly clustered agents tended to have a larger number of persistent connections and that
reciprocal ties tend to be more persistent in average. Again, we explore the redundancy of such statements using
linear regression and split the contribution to perseverance from each of these variables by calculating their partial
correlations (Table 2). Together, these variables explain almost 50% of the variance in perseverance (R2 = 0.49).
Their contributions however are quite uneven. When we look at the partial correlation coefficients extracted from our

( )R.S. BurtrSocial Networks 22 2000 1–28 11

Fig. 1. Decay functions.

variation. The hazard rate for a relationship is the probability that it will be gone next
year. Hazard rates for the colleague relations are given in Table 3, predicted by logit
equations in Table 4, and graphed in Fig. 1B. Test statistics in Table 4 are adjusted

Ždown for autocorrelation between relations cited by the same respondent e.g., Kish and
.Frankel, 1974 .

Decay is high on average. Three in four of the 22,709 colleague relations at risk of
decay in Table 3 are gone next year.
Model I, in the first column of Table 4, shows that tie and node age are both

statistically significant factors in the liability of newness. As expected for tie age, the
hazard of decay is lower for older relationships. Hazard rates are lower in Table 3 for

Ž .older relationships e.g., 0.753 vs. 0.529 , there is a statistically significant y 6.7 z-score
Žtest statistic in Model I for tie age T in Table 4 P-0.001, and log T yields no stronger

.effect, y 6.3 z-score , and there is a negative slope to the predicted hazard rates in Fig.
1B. A colleague relationship that survives for a decade is almost sure to survive into the

Ž .future the predicted hazard rate is near zero .

Burt, R., 2000. Decay functions. 
Social Networks, 22(1), pp.1–28.

Hidalgo, C. & Rodriguez-Sickert, C., 2008. The 
dynamics of a mobile phone network. 
Physica A, 387(12), pp.3017–3024.



@estebanmoro 

�����(�����"

• Two paradoxes 
• Ties bridging distant parts of the network (the ones important for information 

diffusion, achievement) are not only the least likely to be created, but also the 
most likely to decay R.S. Burt / Social Networks 24 (2002) 333–363 335

Fig. 1. (A–C) Social capital and bridges across structural holes.

often cited as an early exemplar in this research). For example, the sociogram in Fig. 2
shows three groups (A, B and C), and the density table at the bottom of the figure shows the
generic pattern of in-group relations stronger than relations between groups in that diagonal
elements of the table are higher than off-diagonals (each cell of a density table is the average
of relations between individuals in the row and individuals in the column). The result is
that people are not simultaneously aware of opportunities in all groups. Even if information
is of high quality, and eventually reaches everyone, the fact that diffusion occurs over an
interval of time means that individuals informed early or more broadly have an advantage.

2.2. Bridges across structural holes

Participation in, and control of, information diffusion underlies the social capital of struc-
tural holes (Burt, 1992, 2000b, 2002). The argument describes social capital as a function
of brokerage opportunities, and draws on network concepts that emerged in sociology dur-
ing the 1970s; most notably Granovetter (1973) on the strength of weak ties, Freeman
(1977, 1979) on betweenness centrality, Cook and Emerson (1978) on the benefits of
having exclusive exchange partners, and Burt (1980) on the autonomy created by complex
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• Two paradoxes 
• Tie formation tends to close triangles. But ties embedded in triangles are less 

likely to decay. Thus, network should become more clustered

data set except during natural spells of re-
duced activity, such as winter break (Fig. 4C).
On the other hand, as Fig. 4D illustrates, in-
dividual ranks change substantially over the
duration of the data set. Analogous results
(27) apply to the concept of Bweak ties[ (13):
The distribution of tie strength in the net-
work is stable over time, and bridges are, on
average, weaker than embedded ties Econsist-
ent with (13) .̂ However, they do not retain
their bridging function, or even remain weak,
indefinitely.

Our results suggest that conclusions
relating differences in outcome measures
such as status or performance to differences
in individual network position (14) should be
treated with caution. Bridges, for example,
may indeed facilitate diffusion of informa-
tion across entire communities (13). How-
ever, their unstable nature suggests that they
are not Bowned[ by particular individuals
indefinitely; thus, whatever advantages they

confer are also temporary. Furthermore, it is
unclear to what extent individuals are ca-
pable of strategically manipulating their po-
sitions in a large network, even if that is
their intention (14). Rather, it appears that
individual-level decisions tend to Baverage out,[
yielding regularities that are simple functions
of physical and social proximity. Sharing focal
activities (10) and peers (26), for example,
greatly increases the likelihood of individuals
becoming connected, especially when these
conditions apply simultaneously.

It may be the case, of course, that the in-
dividuals in our population—mostly students
and faculty—do not strategically manipulate
their networks because they do not need to, not
because it is impossible. Thus, our conclusions
regarding the relation between local and global
network dynamics may be specific to the
particular environment that we have studied.
Comparative studies of corporate or military
networks could help illuminate which features

of network evolution are generic and which are
specific to the cultural, organizational, and
institutional context in question. We note that
the methods we introduced here are generic and
may be applied easily to a variety of other set-
tings. We conclude by emphasizing that under-
standing tie formation and related processes in
social networks requires longitudinal data on
both social interactions and shared affiliations
(4, 6, 10). With the appropriate data sets, theo-
retical conjectures can be tested directly, and
conclusions previously based on cross-sectional
data can be validated or qualified appropriately.
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Fig. 3. Network-level
properties over time, for
three choices of smooth-
ing window t 0 30 days
(dashes), 60 days (solid
lines), and 90 days
(dots). (A) Mean vertex
degree bkÀ. (B) Fraction-
al size of the largest
component S. (C) Mean
shortest path length in
the largest component
L. (D) Clustering coeffi-
cient C.

Fig. 4. Stability of de-
gree distribution and in-
dividual degree ranks. (A)
Degree distribution in
the instantaneous net-
work at day 61, logarith-
mically binned. (B) Same
at day 270. (C) The
Kolmogorov-Smirnov
statistic D comparing de-
gree distribution in the
instantaneous network at
day 61 and in subse-
quent daily approxima-
tions. (D) Dissimilarity
coefficient for degree
ranks z 0 1 – rS

2, where
rS is the Spearman rank
correlation between indi-
vidual degrees at day 61 and in subsequent approximations. z varies between 0 and 1 and
measures the proportion of variance in degree ranks that cannot be predicted from the ranks in
the initial network.
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• How are ties formed and destroyed? 
Is there any strategy? 

• Cognitive limitations, time limitations 
• Dunbar number: there is a limit to 

the number of people with whom 
one can maintain stable social 
relationships.  

• Time/attention is limited: how do 
we manage relationships if our 
time is limited?
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• How are ties formed and destroyed? 
• Disentangling tie burstiness and formation/decay

G. Miritello, R. Lara, M. Cebrián & E. Moro 2
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i $ j

(a)
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Links tipo (a): 15%
Links tipo (b): 19%
Links tipo (c): 24%
Links tipo (d): 42%

 Links tipo (e) : 3.5%

t
(e)

(d)

�tij

Figure S2: (Color online) Schematic view of the different situations of tie formation/decay and the
interplay between the tie communication patterns and tie formation/decay for a given observation
time window of length T (shadowed area). Each lines refers to a different tie while each vertical
segment indicates a communication event between i � j and �tij is the interevent time in the i � j
time series.

for the link. As was shown in [3, ?] the pdf for inter event times depends mostly on the average
inter-event time �tij, i.e. P(�tij) = P(�tij/�tij) where P(x) is a universal function. Thus, we could
rewrite the previous expression as

P(�ij|�tij) =
1

�ij

��ij

0

P(�tij/�tij)d�tij (2)

However, links are very heterogeneous in the sense that they have very different �tij. Or equiv-
alently, they very different weights wij = T/�tij weight. Suppose that �(�tij) is the distribution
of average inter-event times across links and that each node chooses her links activities from that
distribution of �tij. Then the probability to observe one of her links at time � is given by:

P(�) =

�
d�tij�(�tij)P(�|�tij) (3)

Thus, the growing function of the observed connectivity as a function of time is given by the ccf of
P(�).

ki(t) = ki(�)

� t

0

P(�)d� (4)

where ki(�) is the total connectivity of node i. Note that since P(x) and �(�tij) are heavy tailed,
then P(�) is heavy tailed too and thus the ki(t) can show an apparent non-trivial time dependence
even if all links are open during the observation time.

Let’s do an example: assume that the distribution of inter-event times is given by the exponen-
tial pdf P(�t|�t) = e��t/�t/�t and also that the pdf for the average inter-event time is an exponen-

Activity localization in online social networks

⌦

7 months6 months 6 months

Figure S1: (Color online) Schematic view of the time intervals considered in our database and the
different situations of tie formation/decay and the interplay between the tie communication pat-
terns and tie formation/decay for a given observation time window ⌦ of length T = 7 months
(shadowed area). Each lines refers to a different tie while each vertical segment indicates a com-
munication event between i $ j and �tij is the interevent time in the i $ j time series.

after ⌦. This later filter prevents spurious effects in the analysis of tie dynamics just because
individuals subscribe/unsubscribe just before/after ⌦; for example, we could have observed an
apparent rapid growth of their social network at the beginning of the observation window or a
fast dissolution at its end [2]. This results in the removal of about the 17% of nodes and the 37% of
reciprocated links within ⌦.

2 Entanglement between bursty activity and tie dynamics

As stressed in the main text, one of the most challenging problems in the study of the dynamics of
tie creation and removal is to identify whether a tie is actually a new/old connection. Although
in most social networks there are specific events for the formation of new “friends” (or followers)
or the corresponding unfriending events, due to the cheap cost of maintaing those connections
most of those ties are abandoned and thus activity between individuals is the only way to asses
the existence or not of that relationship.

However, human activity is bursty, meaning that there are large periods of inactivity followed
by bursts of activity []. This means that within a particular tie i $ j the time between consecutive
communication events �tij is heavy-tailed distributed. In our database we find that this is indeed
the case and in line with [3, ?] we find that there is a universal law for the distribution of inter-

Activity localization in online social networks

Miritello, G. et al., 2013. Limited communication 
capacity unveils strategies for human 
interaction. Scientific Reports, 3.
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Figure S2: (Color online) Schematic view of the different situations of tie formation/decay and the
interplay between the tie communication patterns and tie formation/decay for a given observation
time window of length T (shadowed area). Each lines refers to a different tie while each vertical
segment indicates a communication event between i � j and �tij is the interevent time in the i � j
time series.

for the link. As was shown in [3, ?] the pdf for inter event times depends mostly on the average
inter-event time �tij, i.e. P(�tij) = P(�tij/�tij) where P(x) is a universal function. Thus, we could
rewrite the previous expression as

P(�ij|�tij) =
1

�ij

��ij

0

P(�tij/�tij)d�tij (2)

However, links are very heterogeneous in the sense that they have very different �tij. Or equiv-
alently, they very different weights wij = T/�tij weight. Suppose that �(�tij) is the distribution
of average inter-event times across links and that each node chooses her links activities from that
distribution of �tij. Then the probability to observe one of her links at time � is given by:

P(�) =

�
d�tij�(�tij)P(�|�tij) (3)

Thus, the growing function of the observed connectivity as a function of time is given by the ccf of
P(�).

ki(t) = ki(�)

�t

0

P(�)d� (4)

where ki(�) is the total connectivity of node i. Note that since P(x) and �(�tij) are heavy tailed,
then P(�) is heavy tailed too and thus the ki(t) can show an apparent non-trivial time dependence
even if all links are open during the observation time.

Let’s do an example: assume that the distribution of inter-event times is given by the exponen-
tial pdf P(�t|�t) = e��t/�t/�t and also that the pdf for the average inter-event time is an exponen-

Activity localization in online social networks
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Figure 1. (Color online) Schematic view of the time intervals considered in our

database and the di↵erent situations of tie formation/decay and the interplay between

the tie communication patterns and tie formation/decay for a given observation time

window ⌦ of length T = 7 months (shadowed area). Each lines refers to a di↵erent

tie while each vertical segment indicates a communication event between i $ j and

�tij is the interevent time in the i $ j time series.

Empirical analysis
To study the formation and decay of communication ties, we
study the Call Detail Records (CDRs) recorded from a unique
mobile phone operator over a period of 19 months. The data
consists of the anonymized voice calls of about 20 million users
within 700 million communication ties. After filtering out all
the incoming or outgoing calls that involve other operators,
we only consider users that are active across the whole time
period and retain only ties which are reciprocated [14]. We
refer to SI for further details about the processing and the
sampling of the data.

Detection of tie creation/removal. In most studies of commu-
nication networks a tie is assumed to be present if it shows
any kind of activity in the observation window [14]. However,
since communication is bursty [17], large inter-event times
between interactions are likely and thus they might be unob-
served or mistaken as tie decay or formation, specially if the
observation window is short (see Fig.). For example, in our
database we find that the average time between tie communi-
cation events is h�tiji = 14 days (with � = 18 days) and thus
we might get spurious e↵ects if the observation window is of
the order of months, as repeated interactions may fall outside
the observation window [19].

To overcome this we propose a di↵erent method to asses
whether a tie has been formed/decayed in the observation
window ⌦. The method is based on the observation of tie
activity in a time window before/after ⌦: if tie activity is ob-
served in the 6 months before ⌦ then it is considered an old
tie [cases (a) and (d) in Fig. ]; on the other hand, if activity
is observed in the 6 months after ⌦ we will assume that the
tie persists [cases (b) and (d) in Fig. ]. In any other case, we
will consider that the tie is formed and/or decay in ⌦ [cases
(a), (b) and (c) in Fig. ]. Of course, it is possible that even if
there is no communication before/after the observation win-
dow, the tie is still active after/before our database. This
would require that the tie has an inter-event time �tij big-
ger than 7 months, i.e. case (e) in Figure . However, in our
database, only 3.5% of the links have such a long inter-event
time which validates the accuracy of our definition of tie de-
cay/formation. See Suppl. Material for detailed information
on our discrimination method.

Dynamical social strategy.The procedure described above al-
lows us to determine the tie formation and decay events for
each individual along the observation period of 7 months (see
Fig. 2). With those events, we build her instantaneous so-
cial capacity i(t), defined as the number of open ties at any
given instant t. In principle i(t) is very di↵erent from ki(t),
the aggregated number of revealed links up to time t, which
is usually what is taken as a proxy for social connectivity
[19]. But if we aggregate the number of added (removed)
ties up to time t, denoted by n↵,i(t) [n!,i(t)], we get that
ki(T ) = i(0) + n↵,i(T ). Thus ki(T ) is a combination of
the social capacity and tie formation activity in the observa-
tion period. In our database we find a large heterogeneity
in n↵,i(T ) and n!,i(T ) [see Fig. 3a]: while on average peo-
ple create/destroy about 8 (reciprocated) ties in a period of 7
months, 20% of users in our database add/remove more than
15 ties in that period. This is a relatively large number for a
mobile-phone communication, where much more e↵ort is re-
quired to establish and maintain a tie if compared to online
communication networks such as Twitter or Facebook, which
are often used to collect as many friends and followers as pos-
sible. Note that on average n↵,i(T ) and n!,i(T ) almost equals
ki(T )/2, (see Fig. 3a) for the observation period, which sug-
gests that a large fraction of the revealed aggregated social
connectivity ki(T ) is given by newly formed or removed con-
nections. Thus, ki(T ) usually overestimates the instantaneous
human social capacity of maintaining social ties.

The imbalance between the number of added/removed
ties measures how social capacity changes. At the end of
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Figure 2. From communication activity to tie dynamics:

Panel (A) shows the communication events of a given individual in our database with

all her neighbors in the observation window. For each tie id, a vertical line represents

a call with the corresponding neighbor. Grey horizontal rectangles are drawn from

the first to the last observed communication event in each tie, considering also events

before and after the observation window. Panel (B) shows vertical up/down arrows

for each tie formation/decay events detected within the observation window. Using

those events, panel (C) shows the aggregated number of open ties as a function of

time i(0)+n↵,i(t) and the aggregated number of closed ties n!,i. Dashed line

is the apparent growth in the social connectivity ki(t) obtained by the cumulative

number of observed activity in ties up to some time, while red line is the number of

open connections at a given instant i(t) .

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Figure 3.10: (Rescaled) Distribution of the time gap between edge creation (a) and edge removal
(b). Each curve refers to a group of nodes with a different activity rate ↵i, where groups have
been obtained according to the quartiles of ↵i for the whole population. The dashed line in both
panels correspond to an exponential distribution with the same mean.

We then calculate the aggregated number of events n̂i,↵ and n̂i,! and fit them to linear
models to obtain the simulated ↵̂i and !̂i for those cases in which n̂i,↵ � 5 and n̂i,! �
5. As shown in Fig. 3.9 (c) the empirical values of ni,↵ observed in our data can be well
explained by the simulations, suggesting that our model works well at the particular
scale considered. In addition, we also find a good agreement between the measured
values of ↵i and !i and the simulations (Fig. 3.9 (d)), despite of the small amount of
outliers that cannot be explained by our model.

3.3.2 Dynamics of tie creation/removal

We have seen that the growth of the number of added and removed connections can
be described by a linear process having rates ↵i and !i, respectively. However, as
panel (b) of Fig. 3.8 suggests, it is important to note that the distribution of the time
gap between creation and removing of ties is not an homogeneous Poissonian process.
To characterize the temporal evolution of ties we analyze the distribution of the inter-
event times elapsed between consecutive additions or deletions. We denote these time
differences respectively �tk,k+1 and �tk,k�1 since they increase and decrease the social
connectivity k of one unit. Our results in Fig. 3.10 indicate a heterogenous pattern of
activity and, despite the exponential cut-off, small inter-event times are significantly
more probable than an exponential distribution. This is in line with previous research
that has shown that the nature of link creation process in online social networks is broad
and follows a power-law distribution (Gaito et al. 2012; Kikas et al. 2012; Leskovec,
J. and Backstrom, L. et al. 2008). In these studies the bursty behavior of tie creation
is usually associated to an acceleration (or exploration) phase in which tie formation
rapidly increases. Since the trains of bursts are more likely to appear right after the

2

• For each type of paid service (e.g. PSTN calls),
date when the user first and last used this service
(whenever applicable).

• Time series indicating the number of days in each
month when the user connected to the Skype net-
work

• For each type of free service (e.g. Skype-to-Skype
audio calls, video calls, chat, etc.), time series indi-
cating the number of days in each month when the
user used this service.

• Time stamped events of link addition and deletion
of each users.

In the Skype network, when a user adds a friend to
his/her contact list, the friend may confirm the contact
invitation or not. Also, at any point in time a user may
delete a “friend” from their contact list.[32] Thus, the
network evolves by means of the following events: contact
addition, contact confirmation and contact deletion. In
our study to take into account only trusted social links we
retained only confirmed edges, meaning edges where both
parties accepted the connection. Failure to do so would
lead to mixing undesired with desired connections.

For the present study we employed two subsets of the
above dataset. The first dataset (DS1) includes every
active user as of the end of 2010, all confirmed edges
between these users, and the date of confirmation of each
edge. In this context, we define an active user as one who
connected to the Skype network at least in two di↵erent
months during the first year after their registration date.
In order to consider users with realistic number of friends
we selected only those with degree between 2 and 1000.
Users with more connections are suspected to be bots
or are business accounts and their behavior di↵ers from
the majority who use Skype for personal communication.
This filtering led to a set of more than 150 million users.

The second dataset (DS2) includes the set of edge ad-
dition events and edge confirmation events for the period
of 2009�2011 as well as edge deletion events recorded for
a year-long period in 2010�2011. Each of these events is
time-stamped with a date. Only events related to users
with degree between 2 and 1000 were kept. Unlike DS1,
non-active users were retained in DS2.

EGOCENTRIC NETWORK EVOLUTION

In this section we look at the evolution of egocentric
networks to gain deeper understanding about the govern-
ing microscopic rules of contact list evolution.

Bursty edge dynamics

To characterize the temporal evolution of contact lists,
we first examine the sequences of edge addition and dele-
tion of each individual and we calculate the distributions
of inter-event times

⌧a = t
a
i+1 � t

a
i , ⌧d = t

d
i+1 � t

d
i , ⌧ad = t

d
e � t

a
e

(1)
elapsed between consecutive additions at t

a
i and t

a
i+1 or

deletions at tdi and t
d
i+1 of the same user or between the

addition and deletion of an edge e. If this distribution
follows a power-law as

P (⌧) ⇠ ⌧
�� (2)

it indicates strong temporal heterogeneities and bursti-
ness, or otherwise if it decays exponentially it reflects
regular dynamical features. Bursty temporal evolution of
human dynamics was confirmed in various systems rang-
ing from library loans to human communication [7, 14]
or recently for the evolution of social networks [6].
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FIG. 1: Inter-event time distributions of (a) edge addition
(blue squares) and deletion (red circles) events of users and
(b) addition and deletion of links (green triangles) in DS2.
The straight lines indicate power-law functions with exponent
(a) � = 0.85 and (b) � = 0.82. For a formal definition of the
⌧a, ⌧d, and ⌧ad see Eq.1.

Calculating P (⌧) for DS2 we observe heterogeneously
distributed inter-event times in Fig.1.a both in case of
edge additions and edge deletions. The distributions are
showing rather similar scaling with a section fitting on
a power-law with exponent � ' 0.85 and an exponential
cuto↵ due to the finite time window. This is an interest-
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Figure 3.10: (Rescaled) Distribution of the time gap between edge creation (a) and edge removal
(b). Each curve refers to a group of nodes with a different activity rate ↵i, where groups have
been obtained according to the quartiles of ↵i for the whole population. The dashed line in both
panels correspond to an exponential distribution with the same mean.

We then calculate the aggregated number of events n̂i,↵ and n̂i,! and fit them to linear
models to obtain the simulated ↵̂i and !̂i for those cases in which n̂i,↵ � 5 and n̂i,! �
5. As shown in Fig. 3.9 (c) the empirical values of ni,↵ observed in our data can be well
explained by the simulations, suggesting that our model works well at the particular
scale considered. In addition, we also find a good agreement between the measured
values of ↵i and !i and the simulations (Fig. 3.9 (d)), despite of the small amount of
outliers that cannot be explained by our model.

3.3.2 Dynamics of tie creation/removal

We have seen that the growth of the number of added and removed connections can
be described by a linear process having rates ↵i and !i, respectively. However, as
panel (b) of Fig. 3.8 suggests, it is important to note that the distribution of the time
gap between creation and removing of ties is not an homogeneous Poissonian process.
To characterize the temporal evolution of ties we analyze the distribution of the inter-
event times elapsed between consecutive additions or deletions. We denote these time
differences respectively �tk,k+1 and �tk,k�1 since they increase and decrease the social
connectivity k of one unit. Our results in Fig. 3.10 indicate a heterogenous pattern of
activity and, despite the exponential cut-off, small inter-event times are significantly
more probable than an exponential distribution. This is in line with previous research
that has shown that the nature of link creation process in online social networks is broad
and follows a power-law distribution (Gaito et al. 2012; Kikas et al. 2012; Leskovec,
J. and Backstrom, L. et al. 2008). In these studies the bursty behavior of tie creation
is usually associated to an acceleration (or exploration) phase in which tie formation
rapidly increases. Since the trains of bursts are more likely to appear right after the

Kikas, R., Dumas, M. & Karsai, M., 2012. Bursty egocentric 
network evolution in Skype. arXiv.org, physics.soc-ph.

Miritello, G., Temporal Patterns of Communication 
in Social Networks, Springer 2013
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Figure S2: (Color online) Schematic view of the different situations of tie formation/decay and the
interplay between the tie communication patterns and tie formation/decay for a given observation
time window of length T (shadowed area). Each lines refers to a different tie while each vertical
segment indicates a communication event between i � j and �tij is the interevent time in the i � j
time series.

for the link. As was shown in [3, ?] the pdf for inter event times depends mostly on the average
inter-event time �tij, i.e. P(�tij) = P(�tij/�tij) where P(x) is a universal function. Thus, we could
rewrite the previous expression as

P(�ij|�tij) =
1

�ij

��ij

0

P(�tij/�tij)d�tij (2)

However, links are very heterogeneous in the sense that they have very different �tij. Or equiv-
alently, they very different weights wij = T/�tij weight. Suppose that �(�tij) is the distribution
of average inter-event times across links and that each node chooses her links activities from that
distribution of �tij. Then the probability to observe one of her links at time � is given by:

P(�) =

�
d�tij�(�tij)P(�|�tij) (3)

Thus, the growing function of the observed connectivity as a function of time is given by the ccf of
P(�).

ki(t) = ki(�)

�t

0

P(�)d� (4)

where ki(�) is the total connectivity of node i. Note that since P(x) and �(�tij) are heavy tailed,
then P(�) is heavy tailed too and thus the ki(t) can show an apparent non-trivial time dependence
even if all links are open during the observation time.

Let’s do an example: assume that the distribution of inter-event times is given by the exponen-
tial pdf P(�t|�t) = e��t/�t/�t and also that the pdf for the average inter-event time is an exponen-
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Figure 1. (Color online) Schematic view of the time intervals considered in our

database and the di↵erent situations of tie formation/decay and the interplay between

the tie communication patterns and tie formation/decay for a given observation time

window ⌦ of length T = 7 months (shadowed area). Each lines refers to a di↵erent

tie while each vertical segment indicates a communication event between i $ j and

�tij is the interevent time in the i $ j time series.

Empirical analysis
To study the formation and decay of communication ties, we
study the Call Detail Records (CDRs) recorded from a unique
mobile phone operator over a period of 19 months. The data
consists of the anonymized voice calls of about 20 million users
within 700 million communication ties. After filtering out all
the incoming or outgoing calls that involve other operators,
we only consider users that are active across the whole time
period and retain only ties which are reciprocated [14]. We
refer to SI for further details about the processing and the
sampling of the data.

Detection of tie creation/removal. In most studies of commu-
nication networks a tie is assumed to be present if it shows
any kind of activity in the observation window [14]. However,
since communication is bursty [17], large inter-event times
between interactions are likely and thus they might be unob-
served or mistaken as tie decay or formation, specially if the
observation window is short (see Fig.). For example, in our
database we find that the average time between tie communi-
cation events is h�tiji = 14 days (with � = 18 days) and thus
we might get spurious e↵ects if the observation window is of
the order of months, as repeated interactions may fall outside
the observation window [19].

To overcome this we propose a di↵erent method to asses
whether a tie has been formed/decayed in the observation
window ⌦. The method is based on the observation of tie
activity in a time window before/after ⌦: if tie activity is ob-
served in the 6 months before ⌦ then it is considered an old
tie [cases (a) and (d) in Fig. ]; on the other hand, if activity
is observed in the 6 months after ⌦ we will assume that the
tie persists [cases (b) and (d) in Fig. ]. In any other case, we
will consider that the tie is formed and/or decay in ⌦ [cases
(a), (b) and (c) in Fig. ]. Of course, it is possible that even if
there is no communication before/after the observation win-
dow, the tie is still active after/before our database. This
would require that the tie has an inter-event time �tij big-
ger than 7 months, i.e. case (e) in Figure . However, in our
database, only 3.5% of the links have such a long inter-event
time which validates the accuracy of our definition of tie de-
cay/formation. See Suppl. Material for detailed information
on our discrimination method.

Dynamical social strategy.The procedure described above al-
lows us to determine the tie formation and decay events for
each individual along the observation period of 7 months (see
Fig. 2). With those events, we build her instantaneous so-
cial capacity i(t), defined as the number of open ties at any
given instant t. In principle i(t) is very di↵erent from ki(t),
the aggregated number of revealed links up to time t, which
is usually what is taken as a proxy for social connectivity
[19]. But if we aggregate the number of added (removed)
ties up to time t, denoted by n↵,i(t) [n!,i(t)], we get that
ki(T ) = i(0) + n↵,i(T ). Thus ki(T ) is a combination of
the social capacity and tie formation activity in the observa-
tion period. In our database we find a large heterogeneity
in n↵,i(T ) and n!,i(T ) [see Fig. 3a]: while on average peo-
ple create/destroy about 8 (reciprocated) ties in a period of 7
months, 20% of users in our database add/remove more than
15 ties in that period. This is a relatively large number for a
mobile-phone communication, where much more e↵ort is re-
quired to establish and maintain a tie if compared to online
communication networks such as Twitter or Facebook, which
are often used to collect as many friends and followers as pos-
sible. Note that on average n↵,i(T ) and n!,i(T ) almost equals
ki(T )/2, (see Fig. 3a) for the observation period, which sug-
gests that a large fraction of the revealed aggregated social
connectivity ki(T ) is given by newly formed or removed con-
nections. Thus, ki(T ) usually overestimates the instantaneous
human social capacity of maintaining social ties.

The imbalance between the number of added/removed
ties measures how social capacity changes. At the end of
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Figure 2. From communication activity to tie dynamics:

Panel (A) shows the communication events of a given individual in our database with

all her neighbors in the observation window. For each tie id, a vertical line represents

a call with the corresponding neighbor. Grey horizontal rectangles are drawn from

the first to the last observed communication event in each tie, considering also events

before and after the observation window. Panel (B) shows vertical up/down arrows

for each tie formation/decay events detected within the observation window. Using

those events, panel (C) shows the aggregated number of open ties as a function of

time i(0)+n↵,i(t) and the aggregated number of closed ties n!,i. Dashed line

is the apparent growth in the social connectivity ki(t) obtained by the cumulative

number of observed activity in ties up to some time, while red line is the number of

open connections at a given instant i(t) .

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Figure 3. Characterization of social dynamical strategies (A) Probability distribution function (pdf) of the aggregated social connectivity ki, number

of created ties n↵,i and number of deleted ties n!,i at t = T , compared with the pdf for the average social capacity i over the observation window. (b) We observe a

positive correlation between the number of created n↵,i and removed n!,i connections with a linear correlation coe�cient of 0.87. The results form the PCA analysis indicate

that the 93% of the variation can be explained by the first component with a standard deviation of 1.81 in the (0.70, 0.71) direction. This result is shown in the box plot,

where the bottom and the top of the boxes correspond to the 25th and the 75th quantiles respectively, while the band near the middle is the 50th percentile (median) of

the distribution. The down and top of the whiskers represent the 5th and 95th percentiles. The line y = x lies between the 9th and the 91st percentiles, thus capturing the

90% of the distribution in correspondence of each box. The blue solid lines refer to the 5th and 95th percentiles of random generated n↵ and n! from a Poisson distribution

with n↵ taken as the expected number of events in a given time interval of length T. (c) Density plot of ↵i as a function of !i. We observe.. (In order for the regression to

be significant, the arrivals and removals time sequences must contain a su�cient number of points, that we set equal to 5. This corresponds to keep all those nodes who form

at least 5 connections and at the same time remove 5 connections between the first and the last day of the observation period T (n↵ � 5 and n! � 5). For these nodes

we find that the linear model apply with a high statistical significance (p-value  0.05).

the observation period the change in the social capacity is
i(T ) � i(0) = n↵,i(T ) � ni,!(T ). Interestingly, we find
that for most users in our database we get n↵,i(T ) ' n!,i(T )
(Fig.3b). This means that there is some sort of conservation
principle in social attention, where the number of destroyed
ties equals the number of formed ties in the observation win-
dow such that the total number of open relationships in a
given time window T remains almost constant. This conser-
vation of social capacity not only happens at this particular
time scale T but also instantaneously: as seen in Fig.3 we find
that for 80% of the users tie formation/destruction happens
linearly in time so that ni,↵(t) ' ↵it and ni,! ' !it where
↵i and !i are the rates of tie formation/decay and ↵i ' !i.
These two facts have a remarkable consequence: despite ties
are added/decayed continually, the social capacity for each in-
dividual remains almost constant throughout the observation
period i(t) ' i, signaling that people tend to balance the
formation/removal of edges in such a way that the number
of open connections remains stable over time (or that varies
slower in time than tie evolution). This finding is the root
of many observations in the literature (see for example [4, ?])
that the distribution of connectivity in social networks seems
to be stable in time but the neighbors of a given node change
from one time window to the other. In fact, we find that
the average social persistence pi, i.e. the fraction of neigh-
bors that remain at the end of the 7 months observation time
window is around 75%, meaning that users renew their social
circle slowly, in line with studies in o↵-line social networks.
This value is much larger than what is expected in a random
model where every tie has the same probability to disappear:
simulations using the real tie formation/destruction sequence
of events but where ties are randomly chosen yield to pi = 50%
[Cebrian: are details available in the Suppl. Matheorial]. This
result indicates that the way in which people add and remove
social connections from their social circle is not random; in-
stead, some existing ties are more probable to be destroyed
than others.

Thus, each user social dynamics can be characterized in
terms of his social capacity i and his social activity n↵,i in
a time window (or rate ↵i). These two quantities give in-
formation about two related although not equivalent features
of social communication. While the social capacity is a mea-
sure of the number of relations that a user manages instan-

taneously in time, the social activity is instead related to the
number of relations a user establishes and at what rate. How-
ever, as shown in Fig. 4, we observe for most of the individ-
uals n↵,i ' � i with � = 0.75, meaning that the number
of created connections tends to be proportional to the social
capacity. This correlation resembles the preferential attach-
ment process by which tie formation is more probable with
more connected individuals. Note however that we find that
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Figure 4. Heterogeneity of dynamical social strategies: A

and B shows di↵erent snapshots of the neighborhood of two di↵erent individuals (in

red) at 4 equally spaced times in the observation time window t = 52, 105, 158,
and 211 days. Each black (grey) line corresponds to an open (closed) tie at that

particular instant. C Log-density plot of the social activity n↵,i as a function of the

social capacity i for each individual in our database. Solid line corresponds to the

line n↵,i = 0.75i obtained through PCA. Dashed curves are the iso-connectivity

lines ki = i + n↵,i for ki = 10, 20, 50. D shows the average value for the

persistence pi and clustering coe�cient ci for three groups of equal connectivity

(dashed lines in panel C) but for di↵erent quantiles of �i. Specifically, �i < 0.43
(black), 0.43 < �i < 0.88 (gray) and �i > 0.88 (white).
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• How are ties formed and destroyed? Linear tie formation/decay
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• How are ties formed and destroyed? 
• Social capacity and activity are not 

independent 

• For a given      we have 

• Social explorers (A) 

• Balanced (-) 

• Social keepers (B)
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• How are ties formed and destroyed?

n↵,i = 23,i = 4
Social explorer

n↵,i = 3,i = 24
Social keeper
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2.3Geographical dynamics

50km
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• Does geography play a role in the dynamics of human communication? 
• Known results: 

• City properties scale super-linearly  
with population 

• Including #links within the city!! 
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The Origins of Scaling in Cities
Luís M. A. Bettencourt

Despite the increasing importance of cities in human societies, our ability to understand them
scientifically and manage them in practice has remained limited. The greatest difficulties to
any scientific approach to cities have resulted from their many interdependent facets, as social,
economic, infrastructural, and spatial complex systems that exist in similar but changing forms
over a huge range of scales. Here, I show how all cities may evolve according to a small set
of basic principles that operate locally. A theoretical framework was developed to predict the
average social, spatial, and infrastructural properties of cities as a set of scaling relations that
apply to all urban systems. Confirmation of these predictions was observed for thousands of
cities worldwide, from many urban systems at different levels of development. Measures of urban
efficiency, capturing the balance between socioeconomic outputs and infrastructural costs,
were shown to be independent of city size and might be a useful means to evaluate urban
planning strategies.

Cities exist, in recognizable but changing
forms, over an enormous range of scales
(1), from small towns with just a few

people to the gigantic metropolis of Tokyo, with
more than 35 million inhabitants. Many parallels
have been suggested between cities and other
complex systems, from river networks (2) and
biological organisms (3–6) to insect colonies
(1, 7) and ecosystems (8). The central flaw of all
these arguments is their emphasis on analogies of

form rather than function, which limit their ability
to help us understand and plan cities.

Recently, our increasing ability to collect and
share data on many aspects of urban life has
begun to supply us with better clues to the prop-
erties of cities, in terms of general statistical pat-
terns of land use, urban infrastructure, and rates
of socioeconomic activity (6, 9–13). These em-
pirical observations have been summarized across
several disciplines, from geography to econom-
ics, in terms of how different urban quantities
(such as the area of roads or wages paid) depend
on city size, usually measured by its popula-
tion, N.

The evidence from many empirical studies
over the past 40 years points to there being no
special size to cities, so that most urban prop-
erties, Y, vary continuously with population size
and are well described mathematically on aver-
age by power-law scaling relations of the form
Y ¼ Y0N b; where Y0 and b are constants in N.
The surprise, perhaps, is that cities of different
sizes do have very different properties. Specif-
ically, one generally observes that rates of so-
cial quantities (such as wages or new inventions)
increase per capita with city size (11, 12) (super-
linear scaling,b ¼ 1þ d > 1; with d ≃ 0:15),
whereas the volume occupied by urban infra-
structure per capita (roads, cables, etc.) decreases
(sublinear scaling, b ¼ 1 − d < 1) (Fig. 1). Thus,
these data summarize familiar expectations that
larger cities are not only more expensive and
congested, but also more exciting and creative
when compared to small towns.

These empirical results also suggest that, de-
spite their apparent complexity, cities may actually
be quite simple: Their average global properties
may be set by just a few key parameters (12, 13).
However, the origin of these observed scaling
relations and an explanation for the interdepen-
dences between spatial, infrastructural, and social
facets of the city have remained a mystery.

Here, I develop a unified and quantitative
framework to understand, at a theoretical level,
how cities operate and how these interdepen-
dencies arise. Consider first the simplest model
of a city with circumscribing land area A and

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM
87501, USA.

E-mail: bettencourt@santafe.edu

Fig. 1. Scaling of urban infrastructure and socioeconomic output. (A)
Total lane miles (volume) of roads in U.S. metropolitan areas (MSAs) in 2006
(blue dots). Data for 415 urban areas were obtained from the Office of Highway
Policy Information from the Federal Highway Administration (14). Lines show
the best fit to a scaling relation Y(N) = Y0Nb(red), with b = 0:849 T 0:038
[95% confidence interval (CI), R2 = 0.65]; the theoretical prediction, b = 5/6
(yellow); and linear scaling b = 1 (black). (B) Gross metropolitan product of
MSAs in 2006 (green dots). Data obtained for 363 MSAs from U.S. Bureau of
Economic Analysis (14). Lines describe best fit (red) to data, b = 1.126 T 0.023
(95% CI, R2 = 0.96); the theoretical prediction, b = 7/6 (yellow); and pro-
portional scaling, b = 1 (black). The two best-fit parameters in each scaling

relation were estimated by means of ordinary least-squares minimization to the
linear relation between logarithmically transformed variables (14). The inset
shows the estimate of G for 313 U.S. MSAs and the conservation law d ln G

d ln N = 0
(R2 = 0:003). G is measured as the product of gross domestic product and
road volume, both per capita. As predicted by the theory, observed values of G
for different cities cluster around its most likely value (mode, yellow line),
which gives an estimate of the optimum G#, and are bounded by the max-
imum Gmax ≃ 8G#(green line); see also Fig. 2B. Several metropolitan areas,
such as Bridgeport, Connecticut (green circle); Riverside, California (yellow circle);
or Brownsville, Texas (red circle), are outliers, suggesting that they are suboptimal
in terms of their transportation efficiency or amount of social mixing.

21 JUNE 2013 VOL 340 SCIENCE www.sciencemag.org1438
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Bettencourt, L.M.A., 2013. The Origins of Scaling 
in Cities. Science, 340(6139), pp.1438–1441.
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• Dynamics also scale super-linearly with the size of the city 
• Bigger cities have more dynamical networks
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• Tie Dynamics also depend on the distance between 
people: 
• At small distances ties are very stable 
• At large distances ties are very unstable 
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G. Miritello, R. Lara, M. Cebrián & E. Moro 2

G. Miritello, R. Lara, M. Cebrián & E. Moro 3

0 T

i $ j

(a)

(c)

(b)

Links tipo (a): 15%
Links tipo (b): 19%
Links tipo (c): 24%
Links tipo (d): 42%

 Links tipo (e) : 3.5%

t
(e)

(d)

�tij

Figure S2: (Color online) Schematic view of the different situations of tie formation/decay and the
interplay between the tie communication patterns and tie formation/decay for a given observation
time window of length T (shadowed area). Each lines refers to a different tie while each vertical
segment indicates a communication event between i � j and �tij is the interevent time in the i � j
time series.

for the link. As was shown in [3, ?] the pdf for inter event times depends mostly on the average
inter-event time �tij, i.e. P(�tij) = P(�tij/�tij) where P(x) is a universal function. Thus, we could
rewrite the previous expression as

P(�ij|�tij) =
1

�ij

��ij

0

P(�tij/�tij)d�tij (2)

However, links are very heterogeneous in the sense that they have very different �tij. Or equiv-
alently, they very different weights wij = T/�tij weight. Suppose that �(�tij) is the distribution
of average inter-event times across links and that each node chooses her links activities from that
distribution of �tij. Then the probability to observe one of her links at time � is given by:

P(�) =

�
d�tij�(�tij)P(�|�tij) (3)

Thus, the growing function of the observed connectivity as a function of time is given by the ccf of
P(�).

ki(t) = ki(�)

� t

0

P(�)d� (4)

where ki(�) is the total connectivity of node i. Note that since P(x) and �(�tij) are heavy tailed,
then P(�) is heavy tailed too and thus the ki(t) can show an apparent non-trivial time dependence
even if all links are open during the observation time.

Let’s do an example: assume that the distribution of inter-event times is given by the exponen-
tial pdf P(�t|�t) = e��t/�t/�t and also that the pdf for the average inter-event time is an exponen-

Activity localization in online social networks

⌦

7 months6 months 6 months

Figure S1: (Color online) Schematic view of the time intervals considered in our database and the
different situations of tie formation/decay and the interplay between the tie communication pat-
terns and tie formation/decay for a given observation time window ⌦ of length T = 7 months
(shadowed area). Each lines refers to a different tie while each vertical segment indicates a com-
munication event between i $ j and �tij is the interevent time in the i $ j time series.

after ⌦. This later filter prevents spurious effects in the analysis of tie dynamics just because
individuals subscribe/unsubscribe just before/after ⌦; for example, we could have observed an
apparent rapid growth of their social network at the beginning of the observation window or a
fast dissolution at its end [2]. This results in the removal of about the 17% of nodes and the 37% of
reciprocated links within ⌦.

2 Entanglement between bursty activity and tie dynamics

As stressed in the main text, one of the most challenging problems in the study of the dynamics of
tie creation and removal is to identify whether a tie is actually a new/old connection. Although
in most social networks there are specific events for the formation of new “friends” (or followers)
or the corresponding unfriending events, due to the cheap cost of maintaing those connections
most of those ties are abandoned and thus activity between individuals is the only way to asses
the existence or not of that relationship.

However, human activity is bursty, meaning that there are large periods of inactivity followed
by bursts of activity []. This means that within a particular tie i $ j the time between consecutive
communication events �tij is heavy-tailed distributed. In our database we find that this is indeed
the case and in line with [3, ?] we find that there is a universal law for the distribution of inter-

Activity localization in online social networks

There is a geographical 
scale for dynamics 
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• Wrap-up 
• Individual activity is heterogeneous and 

persistent 
• Different parts of the day are used for 

different social tasks 
• Activity within a single tie is bursty 

• P(dt) is a heavy tailed 
• Bursts are correlated 

• Activity across adjacent ties is correlated 
• Two adjacent ties 

• Group conversations 
• Impact on the waiting time (spreading) 
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• Triadic closure, reciprocity are predictors for the 
formation of a link 
• Embeddedness, reciprocity are predictors for the 

persistence of a link 
• Tie formation/decay is bursty 
• Tie formation/decay strategy: 

• Heterogeneous 
• Linear in time 
• Social explorers / social keepers 

• Geography: 
• Larger cities are more dynamical 
• At larger distances links are more unstable



3 Impact on diffusion processes
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Christakis & Fowler ’10
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• Reach 
• How many people are infected from a initial  

spreader? 
• Time 

• How long does it take to infect them? 
• Early detection of an outbreak, possible? 

• Optimization 
• How do we choose a given a number N of initial spreaders, so that reach is 

maximize in a given time? What is the optimal N for a given cost? 
• How do we choose a given number of immune people so that reach of the 

disease is minimized? (resiliance of networks) 
• How do we choose sensors to detect propagation?
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Information spreading as cascades

http://www.facebookstories.com/stories/2200/data-visualization-photo-sharing-explosions
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• SI / SIR / SIS models (Kermack & McKendrick ’27) 

• S: suceptible (non infected) 

• I: Infected 

• R: resiliant 

• S + I + R = N 

• R0: basic reproductive number

�
IS R

�

dS

dt
= ��IS

dI

dt
= �IS � �I

dR

dt
= �I

dI

dt
= �(R0S/N � 1)I

R0 = N
�

�

R0 > N/S(0) ) dI/dt > 0
R0 < N/S(0) ) dI/dt < 0
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T̃ ij

P. Grassberger, On the critical behavior of the general 
epidemic process and dynamical percolation, Math. 
Biosci., 63 (1983), pp. 157–172. 

Newman, M., 2002. Spread of epidemic 
disease on networks. Physical Review E, 
66(1), p.16128.
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• Real data 

• Time Shuffled data  
 
 
 
 
 
 

⌦

⌦

P(dt) heavy tailed 
Correlated bursts 
Correlated tie activity 
Temporal motifs 
Tie dynamics

P(dt) exponential 
Uncorrelated bursts 
Uncorrelated tie activity 
No temporal motifs 
No tie dynamics
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• Spreading (SIR) on contact networks 
• Hypothesis: 

• In every contact there is a 
probability     to infect 

• Nodes only remain infected for a 
time “                   “ 

• Transmissibility: probability that i 
infects j after being infected at 

2

events and in particular, the possible heavy-tail proper-
ties of P (�tij) are directly inherited by P (⇤ij). Fig. 2
shows our (rescaled) results for P (�tij) and P (⇤ij). For
comparison, we also show the results obtained when i)
the time-stamps of the ⇥ ⇤ i events are randomly se-
lected from the complete CDR, thus destroying any possi-
ble temporal correlation with i ⇤ j and e�ectively mim-
icking Eq. (1) and ii) when the whole CDR time-stamps
are shu⌅ed thus destroying both tie temporal patterns
and correlation between ties. Both shu⌅ings preserve the
tie intensity wij [18], i.e. the number of calls and their
duration and also the circadian rhythms of human com-
munication [15]. The result for P (�tij) shows that small
and large inter-event times are more probable for the real
series than for the shu⌅ed ones, where the pdf is almost
exponential as in a Poissonian process, apart from a small
deviation due to the circadian rhythms. This bursty pat-
tern of activity has been found in numerous examples
of human behavior [6] and seems to be universal in the
way a single individual schedules tasks. Here we see that
it also happens at the level of two individuals interac-
tion confirming recent results in mobile [15] and online
communities [7] dynamics. The pdf for ⇤ij is also heavy-
tailed but displays a larger number of short ⇤ij compared
to the shu⌅ed one. The abundance of short ⇤ij suggests
that receiving an information (⇥ ⇤ i) triggers commu-
nication with other people (i ⇤ j), a manifestation of
group conversations [11–13]. While the fat-tail of P (⇤ij)
is accurately described by Eq. (1), i.e. large transmission
intervals ⇤ij are mostly due to large inter-event commu-
nication times in the i ⇤ j tie, the behavior of P (⇤ij) is
not only due to the bursty patterns of �tij , but also to the
temporal correlation between the i ⇤ j and the ⇥ ⇤ i
events. In fact, if the correlation between the i ⇤ j and
the ⇥ ⇤ i series is destroyed, the probability of short-
time intervals decreases and approaches the Poissonian
case (Fig. 2). In summary, relay times depend on two
main properties of human communication that compete
to one another. While the bursty nature of human ac-
tivity yields to large transmission times hindering any
possible infection, group conversations translate into an
unexpected abundance of short relay times, favoring the
probability of propagation.

To investigate the e�ect of these two conflicting prop-
erties of human communication on information spread-
ing, we simulate the epidemic Susceptible-Infectious-
Recovered (SIR) model in our social network considering
the real time sequence of communication events [15, 23]
and compare them to the shu⌅ed data. We start the
model by infecting a node at a random instant and con-
sidering all other nodes as susceptible. In each call an
infected node can infect a susceptible node with prob-
ability ⇥. Due to the synchronous nature of the phone
communication, this happens regardless of who initiates
the call. However, since the same results are obtained
by considering directionality in the calls, for computa-
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FIG. 1. (color online) Schematic view of communications
events around individual i: each horizontal segment indicates
an event between i ! j (top) and ⇤ ! i (bottom). At each
t↵ in the ⇤ ! i time series, ⇥ij is the time elapsed to the next
i ! j event, which is di�erent from the inter-event time �tij
in the i ! j time series. The red shaded area represents the
recover time window Ti after t↵.
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FIG. 2. (color online) Distribution of the relay time inter-
vals ⇥ij (main) and of the inter-event times �tij (inset) in the
i ! j tie rescaled by �tij . The black circles correspond to
the real data, while the red squares is the overall-shu⇥ed re-
sult. Blue diamonds correspond to the case in which only the
⇤ ! i sequence is randomized. Only ties with wij � 10 are
considered. In both graphs the dashed line correspond to the
e�x function.

tional reasons we consider the latter case. Nodes remain
infected during a time Ti until they decay into the re-
covered state. For the sake of simplicity we simulate the
simplest model in which the recovering time Ti is deter-
ministic and homogeneous Ti = T and set T = 2 days,
although di�erent and/or stochastic Ti can be studied
within the same model. The spreading dynamics gener-
ates a viral cascade that grows until there are no more
nodes in the infected state. We repeat the spreading pro-
cess for 3 � 104 randomly chosen seeds. Note that our
model includes the SI model simulations in [15] where
⇥ = 1 and T = T0, with T0 being the total duration of
the dataset.
By looking at the size of the largest cascade smax (over

all realizations) at each value of ⇥, we first ensure the
existence of a percolation transition [4] (see Fig. 3), con-
firmed by a change in the behavior of smax from small
to large cascades at a given value of ⇥ (tipping point).
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events and in particular, the possible heavy-tail proper-
ties of P (�tij) are directly inherited by P (⇤ij). Fig. 2
shows our (rescaled) results for P (�tij) and P (⇤ij). For
comparison, we also show the results obtained when i)
the time-stamps of the ⇥ ⇤ i events are randomly se-
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and large inter-event times are more probable for the real
series than for the shu⌅ed ones, where the pdf is almost
exponential as in a Poissonian process, apart from a small
deviation due to the circadian rhythms. This bursty pat-
tern of activity has been found in numerous examples
of human behavior [6] and seems to be universal in the
way a single individual schedules tasks. Here we see that
it also happens at the level of two individuals interac-
tion confirming recent results in mobile [15] and online
communities [7] dynamics. The pdf for ⇤ij is also heavy-
tailed but displays a larger number of short ⇤ij compared
to the shu⌅ed one. The abundance of short ⇤ij suggests
that receiving an information (⇥ ⇤ i) triggers commu-
nication with other people (i ⇤ j), a manifestation of
group conversations [11–13]. While the fat-tail of P (⇤ij)
is accurately described by Eq. (1), i.e. large transmission
intervals ⇤ij are mostly due to large inter-event commu-
nication times in the i ⇤ j tie, the behavior of P (⇤ij) is
not only due to the bursty patterns of �tij , but also to the
temporal correlation between the i ⇤ j and the ⇥ ⇤ i
events. In fact, if the correlation between the i ⇤ j and
the ⇥ ⇤ i series is destroyed, the probability of short-
time intervals decreases and approaches the Poissonian
case (Fig. 2). In summary, relay times depend on two
main properties of human communication that compete
to one another. While the bursty nature of human ac-
tivity yields to large transmission times hindering any
possible infection, group conversations translate into an
unexpected abundance of short relay times, favoring the
probability of propagation.

To investigate the e�ect of these two conflicting prop-
erties of human communication on information spread-
ing, we simulate the epidemic Susceptible-Infectious-
Recovered (SIR) model in our social network considering
the real time sequence of communication events [15, 23]
and compare them to the shu⌅ed data. We start the
model by infecting a node at a random instant and con-
sidering all other nodes as susceptible. In each call an
infected node can infect a susceptible node with prob-
ability ⇥. Due to the synchronous nature of the phone
communication, this happens regardless of who initiates
the call. However, since the same results are obtained
by considering directionality in the calls, for computa-
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events around individual i: each horizontal segment indicates
an event between i ! j (top) and ⇤ ! i (bottom). At each
t↵ in the ⇤ ! i time series, ⇥ij is the time elapsed to the next
i ! j event, which is di�erent from the inter-event time �tij
in the i ! j time series. The red shaded area represents the
recover time window Ti after t↵.
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the real data, while the red squares is the overall-shu⇥ed re-
sult. Blue diamonds correspond to the case in which only the
⇤ ! i sequence is randomized. Only ties with wij � 10 are
considered. In both graphs the dashed line correspond to the
e�x function.

tional reasons we consider the latter case. Nodes remain
infected during a time Ti until they decay into the re-
covered state. For the sake of simplicity we simulate the
simplest model in which the recovering time Ti is deter-
ministic and homogeneous Ti = T and set T = 2 days,
although di�erent and/or stochastic Ti can be studied
within the same model. The spreading dynamics gener-
ates a viral cascade that grows until there are no more
nodes in the infected state. We repeat the spreading pro-
cess for 3 � 104 randomly chosen seeds. Note that our
model includes the SI model simulations in [15] where
⇥ = 1 and T = T0, with T0 being the total duration of
the dataset.
By looking at the size of the largest cascade smax (over

all realizations) at each value of ⇥, we first ensure the
existence of a percolation transition [4] (see Fig. 3), con-
firmed by a change in the behavior of smax from small
to large cascades at a given value of ⇥ (tipping point).

T

t↵

i

j

wij

⇤

3

0

50

100

150

0 20 40 60 80 100
0

1

2

3

4

0.05 0.1 0.15 0.2

1!105

2!105

a

c

t (in days)

�s
(t
)⇥

b

a

b

s
m

a
x

�

FIG. 3. (color online) Average size dynamics for a large (a)
and a small (b) value of � (left) and maximum size (right)
of the infection outbreaks (over 104 realizations) for the real
data (black lines) and shu�ed data (red lines) for T = 2
days. The dashed line shows the critical point estimation
of the percolation transition given by R1[�, T ] = 1 with R1

calculated using Eq. (6).

The same behavior is observed for the shu⇧ed-time data
where the transition seems to happen almost at the same
value of �, although an accurate analysis of the percola-
tion point if beyond of the scope of this letter. On the
contrary, there is a significant di�erence in the behavior
of the asymptotic average size s1 between the real and
the shu⇧ed-time data for di�erent regimes of �: when �
is small, s1 is bigger for the real data than for the shuf-
fled one, while the opposite behavior is observed for large
�. This di�erence, that can be very large for moderate
values of �, shows the impact of the real time dynamics
of communication in the reach of information in soci-
ety. Specifically, if information propagates easily (large
�), the average reach in social networks is narrower than
the one expected when a Poissonian dynamics is consid-
ered. In this sense, temporal patterns make social net-
works bigger than expected at large scales. However, in
most real situations � is very small [14] and in this case
the observed behavior is the opposite: despite the low
propagation, information cascades are larger in real data
than in the Poisson case, which suggests that information
spreading is more e⌅cient at small (local) scales.

To understand this behavior, we follow the approach
of [17] mapping the dynamical SIR model to a static
edge percolation model where each tie is described by
the transmissibility Tij , that represents the probability
that the information is transmitted from i to j and is a
function of � and T . If user i becomes infected at time
t� and the number of communication events i ⇤ j in the
interval [t�, t� + T ] is nij(t�), then the transmissibility
in that interval is (see Fig.1) Tij = 1 � (1 � �)nij(t↵).
User i may become infected at any ⇥ ⇤ i communication
event. Assuming these events independent and equally
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FIG. 4. Ratio of the number of events (a) and probability
of no events (b) as a function of the recovery time T for the
real (black circles) and shu�ed � ⇥ i (red squares) data with
respect to the overall-shu�ed data. Right panel (c) shows the
ratio of the average size of the outbreaks (black circles) and
of R1 calculated using Eq. 6 (dashed blue line).

probable, we can average Tij over all the t� events to get

Tij [�, T ] = ⌃1� (1� �)nij(t↵)⌥�. (2)

If the number of ⇥ ⇤ i events is large enough we could
use a probabilistic description of Eq.(2) in terms of the
probability P (nij = n;T ) that the number of communi-
cation events between i and j in a given time interval T
is n. Thus

Tij [�, T ] =
1�

n=0

P (nij = n;T )[1� (1� �)n], (3)

which in principle can be non symmetric (Tij ⌅= Tji).
This quantity represents the real probability of infection
from i to j and defines the dynamical strength of the tie.
Note that Tij depends on the series of communication
events between i and j, but also on the time series of
calls received by i. In [17] Newman studied the case in
which both time series are given by independent Poisson
processes in the whole observation interval [0, T0]. Thus,
P (nij = n;T ) is the Poisson distribution with rate ⇥ij =
wijT/T0, where wij is total number of calls from i to j
in [0, T0], thus

T̃ij [�, T ] = 1� e�⇥⇤ = 1� e�⇥wijT/T0 , (4)

which shows the one-to-one relationship between the in-
tensity wij and the transmissibility Tij in the Poissonian
case: the more intense the communication is, the larger
the probability of infection. However, as we have seen in
Fig. 2, the real i ⇤ j and ⇥ ⇤ i series are far from being
independent and Poissonian and in order to investigate
the e�ect of real patterns of communication on the trans-
missibility we approximate Eq. (2). For small values of �

nij(t�) = number of             events in  
the time interval

i ! j
[t↵, t↵ + T ]
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FIG. 3. (color online) Average size dynamics for a large (a)
and a small (b) value of � (left) and maximum size (right)
of the infection outbreaks (over 104 realizations) for the real
data (black lines) and shu�ed data (red lines) for T = 2
days. The dashed line shows the critical point estimation
of the percolation transition given by R1[�, T ] = 1 with R1

calculated using Eq. (6).

The same behavior is observed for the shu⇧ed-time data
where the transition seems to happen almost at the same
value of �, although an accurate analysis of the percola-
tion point if beyond of the scope of this letter. On the
contrary, there is a significant di�erence in the behavior
of the asymptotic average size s1 between the real and
the shu⇧ed-time data for di�erent regimes of �: when �
is small, s1 is bigger for the real data than for the shuf-
fled one, while the opposite behavior is observed for large
�. This di�erence, that can be very large for moderate
values of �, shows the impact of the real time dynamics
of communication in the reach of information in soci-
ety. Specifically, if information propagates easily (large
�), the average reach in social networks is narrower than
the one expected when a Poissonian dynamics is consid-
ered. In this sense, temporal patterns make social net-
works bigger than expected at large scales. However, in
most real situations � is very small [14] and in this case
the observed behavior is the opposite: despite the low
propagation, information cascades are larger in real data
than in the Poisson case, which suggests that information
spreading is more e⌅cient at small (local) scales.

To understand this behavior, we follow the approach
of [17] mapping the dynamical SIR model to a static
edge percolation model where each tie is described by
the transmissibility Tij , that represents the probability
that the information is transmitted from i to j and is a
function of � and T . If user i becomes infected at time
t� and the number of communication events i ⇤ j in the
interval [t�, t� + T ] is nij(t�), then the transmissibility
in that interval is (see Fig.1) Tij = 1 � (1 � �)nij(t↵).
User i may become infected at any ⇥ ⇤ i communication
event. Assuming these events independent and equally
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of no events (b) as a function of the recovery time T for the
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ratio of the average size of the outbreaks (black circles) and
of R1 calculated using Eq. 6 (dashed blue line).

probable, we can average Tij over all the t� events to get

Tij [�, T ] = ⌃1� (1� �)nij(t↵)⌥�. (2)

If the number of ⇥ ⇤ i events is large enough we could
use a probabilistic description of Eq.(2) in terms of the
probability P (nij = n;T ) that the number of communi-
cation events between i and j in a given time interval T
is n. Thus

Tij [�, T ] =
1�

n=0

P (nij = n;T )[1� (1� �)n], (3)

which in principle can be non symmetric (Tij ⌅= Tji).
This quantity represents the real probability of infection
from i to j and defines the dynamical strength of the tie.
Note that Tij depends on the series of communication
events between i and j, but also on the time series of
calls received by i. In [17] Newman studied the case in
which both time series are given by independent Poisson
processes in the whole observation interval [0, T0]. Thus,
P (nij = n;T ) is the Poisson distribution with rate ⇥ij =
wijT/T0, where wij is total number of calls from i to j
in [0, T0], thus

T̃ij [�, T ] = 1� e�⇥⇤ = 1� e�⇥wijT/T0 , (4)

which shows the one-to-one relationship between the in-
tensity wij and the transmissibility Tij in the Poissonian
case: the more intense the communication is, the larger
the probability of infection. However, as we have seen in
Fig. 2, the real i ⇤ j and ⇥ ⇤ i series are far from being
independent and Poissonian and in order to investigate
the e�ect of real patterns of communication on the trans-
missibility we approximate Eq. (2). For small values of �
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FIG. 3. (color online) Average size dynamics for a large (a)
and a small (b) value of � (left) and maximum size (right)
of the infection outbreaks (over 104 realizations) for the real
data (black lines) and shu�ed data (red lines) for T = 2
days. The dashed line shows the critical point estimation
of the percolation transition given by R1[�, T ] = 1 with R1

calculated using Eq. (6).

The same behavior is observed for the shu⇧ed-time data
where the transition seems to happen almost at the same
value of �, although an accurate analysis of the percola-
tion point if beyond of the scope of this letter. On the
contrary, there is a significant di�erence in the behavior
of the asymptotic average size s1 between the real and
the shu⇧ed-time data for di�erent regimes of �: when �
is small, s1 is bigger for the real data than for the shuf-
fled one, while the opposite behavior is observed for large
�. This di�erence, that can be very large for moderate
values of �, shows the impact of the real time dynamics
of communication in the reach of information in soci-
ety. Specifically, if information propagates easily (large
�), the average reach in social networks is narrower than
the one expected when a Poissonian dynamics is consid-
ered. In this sense, temporal patterns make social net-
works bigger than expected at large scales. However, in
most real situations � is very small [14] and in this case
the observed behavior is the opposite: despite the low
propagation, information cascades are larger in real data
than in the Poisson case, which suggests that information
spreading is more e⌅cient at small (local) scales.

To understand this behavior, we follow the approach
of [17] mapping the dynamical SIR model to a static
edge percolation model where each tie is described by
the transmissibility Tij , that represents the probability
that the information is transmitted from i to j and is a
function of � and T . If user i becomes infected at time
t� and the number of communication events i ⇤ j in the
interval [t�, t� + T ] is nij(t�), then the transmissibility
in that interval is (see Fig.1) Tij = 1 � (1 � �)nij(t↵).
User i may become infected at any ⇥ ⇤ i communication
event. Assuming these events independent and equally
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of no events (b) as a function of the recovery time T for the
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respect to the overall-shu�ed data. Right panel (c) shows the
ratio of the average size of the outbreaks (black circles) and
of R1 calculated using Eq. 6 (dashed blue line).

probable, we can average Tij over all the t� events to get

Tij [�, T ] = ⌃1� (1� �)nij(t↵)⌥�. (2)

If the number of ⇥ ⇤ i events is large enough we could
use a probabilistic description of Eq.(2) in terms of the
probability P (nij = n;T ) that the number of communi-
cation events between i and j in a given time interval T
is n. Thus

Tij [�, T ] =
1�

n=0

P (nij = n;T )[1� (1� �)n], (3)

which in principle can be non symmetric (Tij ⌅= Tji).
This quantity represents the real probability of infection
from i to j and defines the dynamical strength of the tie.
Note that Tij depends on the series of communication
events between i and j, but also on the time series of
calls received by i. In [17] Newman studied the case in
which both time series are given by independent Poisson
processes in the whole observation interval [0, T0]. Thus,
P (nij = n;T ) is the Poisson distribution with rate ⇥ij =
wijT/T0, where wij is total number of calls from i to j
in [0, T0], thus

T̃ij [�, T ] = 1� e�⇥⇤ = 1� e�⇥wijT/T0 , (4)

which shows the one-to-one relationship between the in-
tensity wij and the transmissibility Tij in the Poissonian
case: the more intense the communication is, the larger
the probability of infection. However, as we have seen in
Fig. 2, the real i ⇤ j and ⇥ ⇤ i series are far from being
independent and Poissonian and in order to investigate
the e�ect of real patterns of communication on the trans-
missibility we approximate Eq. (2). For small values of �

Probability of having n interactions between 
i and j in a time interval of length T
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FIG. 3. (color online) Average size dynamics for a large (a)
and a small (b) value of � (left) and maximum size (right)
of the infection outbreaks (over 104 realizations) for the real
data (black lines) and shu�ed data (red lines) for T = 2
days. The dashed line shows the critical point estimation
of the percolation transition given by R1[�, T ] = 1 with R1

calculated using Eq. (6).

The same behavior is observed for the shu⇧ed-time data
where the transition seems to happen almost at the same
value of �, although an accurate analysis of the percola-
tion point if beyond of the scope of this letter. On the
contrary, there is a significant di�erence in the behavior
of the asymptotic average size s1 between the real and
the shu⇧ed-time data for di�erent regimes of �: when �
is small, s1 is bigger for the real data than for the shuf-
fled one, while the opposite behavior is observed for large
�. This di�erence, that can be very large for moderate
values of �, shows the impact of the real time dynamics
of communication in the reach of information in soci-
ety. Specifically, if information propagates easily (large
�), the average reach in social networks is narrower than
the one expected when a Poissonian dynamics is consid-
ered. In this sense, temporal patterns make social net-
works bigger than expected at large scales. However, in
most real situations � is very small [14] and in this case
the observed behavior is the opposite: despite the low
propagation, information cascades are larger in real data
than in the Poisson case, which suggests that information
spreading is more e⌅cient at small (local) scales.

To understand this behavior, we follow the approach
of [17] mapping the dynamical SIR model to a static
edge percolation model where each tie is described by
the transmissibility Tij , that represents the probability
that the information is transmitted from i to j and is a
function of � and T . If user i becomes infected at time
t� and the number of communication events i ⇤ j in the
interval [t�, t� + T ] is nij(t�), then the transmissibility
in that interval is (see Fig.1) Tij = 1 � (1 � �)nij(t↵).
User i may become infected at any ⇥ ⇤ i communication
event. Assuming these events independent and equally
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FIG. 4. Ratio of the number of events (a) and probability
of no events (b) as a function of the recovery time T for the
real (black circles) and shu�ed � ⇥ i (red squares) data with
respect to the overall-shu�ed data. Right panel (c) shows the
ratio of the average size of the outbreaks (black circles) and
of R1 calculated using Eq. 6 (dashed blue line).

probable, we can average Tij over all the t� events to get

Tij [�, T ] = ⌃1� (1� �)nij(t↵)⌥�. (2)

If the number of ⇥ ⇤ i events is large enough we could
use a probabilistic description of Eq.(2) in terms of the
probability P (nij = n;T ) that the number of communi-
cation events between i and j in a given time interval T
is n. Thus

Tij [�, T ] =
1�

n=0

P (nij = n;T )[1� (1� �)n], (3)

which in principle can be non symmetric (Tij ⌅= Tji).
This quantity represents the real probability of infection
from i to j and defines the dynamical strength of the tie.
Note that Tij depends on the series of communication
events between i and j, but also on the time series of
calls received by i. In [17] Newman studied the case in
which both time series are given by independent Poisson
processes in the whole observation interval [0, T0]. Thus,
P (nij = n;T ) is the Poisson distribution with rate ⇥ij =
wijT/T0, where wij is total number of calls from i to j
in [0, T0], thus

T̃ij [�, T ] = 1� e�⇥⇤ = 1� e�⇥wijT/T0 , (4)

which shows the one-to-one relationship between the in-
tensity wij and the transmissibility Tij in the Poissonian
case: the more intense the communication is, the larger
the probability of infection. However, as we have seen in
Fig. 2, the real i ⇤ j and ⇥ ⇤ i series are far from being
independent and Poissonian and in order to investigate
the e�ect of real patterns of communication on the trans-
missibility we approximate Eq. (2). For small values of �

� ⌧ 1 ) 1� (1� �)n ' �n

Tij � �⇥nij⇤t↵
� ' 1 ) 1� (1� �)n ' 1 for n > 0

Tij ⇥ 1� P 0
ij

P 0
ij = P (nij = 0;T ) =

Z 1

T
P (�ij)d�ij
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FIG. 3. (color online) Average size dynamics for a large (a)
and a small (b) value of � (left) and maximum size (right)
of the infection outbreaks (over 104 realizations) for the real
data (black lines) and shu�ed data (red lines) for T = 2
days. The dashed line shows the critical point estimation
of the percolation transition given by R1[�, T ] = 1 with R1

calculated using Eq. (6).

The same behavior is observed for the shu⇧ed-time data
where the transition seems to happen almost at the same
value of �, although an accurate analysis of the percola-
tion point if beyond of the scope of this letter. On the
contrary, there is a significant di�erence in the behavior
of the asymptotic average size s1 between the real and
the shu⇧ed-time data for di�erent regimes of �: when �
is small, s1 is bigger for the real data than for the shuf-
fled one, while the opposite behavior is observed for large
�. This di�erence, that can be very large for moderate
values of �, shows the impact of the real time dynamics
of communication in the reach of information in soci-
ety. Specifically, if information propagates easily (large
�), the average reach in social networks is narrower than
the one expected when a Poissonian dynamics is consid-
ered. In this sense, temporal patterns make social net-
works bigger than expected at large scales. However, in
most real situations � is very small [14] and in this case
the observed behavior is the opposite: despite the low
propagation, information cascades are larger in real data
than in the Poisson case, which suggests that information
spreading is more e⌅cient at small (local) scales.

To understand this behavior, we follow the approach
of [17] mapping the dynamical SIR model to a static
edge percolation model where each tie is described by
the transmissibility Tij , that represents the probability
that the information is transmitted from i to j and is a
function of � and T . If user i becomes infected at time
t� and the number of communication events i ⇤ j in the
interval [t�, t� + T ] is nij(t�), then the transmissibility
in that interval is (see Fig.1) Tij = 1 � (1 � �)nij(t↵).
User i may become infected at any ⇥ ⇤ i communication
event. Assuming these events independent and equally
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FIG. 4. Ratio of the number of events (a) and probability
of no events (b) as a function of the recovery time T for the
real (black circles) and shu�ed � ⇥ i (red squares) data with
respect to the overall-shu�ed data. Right panel (c) shows the
ratio of the average size of the outbreaks (black circles) and
of R1 calculated using Eq. 6 (dashed blue line).

probable, we can average Tij over all the t� events to get

Tij [�, T ] = ⌃1� (1� �)nij(t↵)⌥�. (2)

If the number of ⇥ ⇤ i events is large enough we could
use a probabilistic description of Eq.(2) in terms of the
probability P (nij = n;T ) that the number of communi-
cation events between i and j in a given time interval T
is n. Thus

Tij [�, T ] =
1�

n=0

P (nij = n;T )[1� (1� �)n], (3)

which in principle can be non symmetric (Tij ⌅= Tji).
This quantity represents the real probability of infection
from i to j and defines the dynamical strength of the tie.
Note that Tij depends on the series of communication
events between i and j, but also on the time series of
calls received by i. In [17] Newman studied the case in
which both time series are given by independent Poisson
processes in the whole observation interval [0, T0]. Thus,
P (nij = n;T ) is the Poisson distribution with rate ⇥ij =
wijT/T0, where wij is total number of calls from i to j
in [0, T0], thus

T̃ij [�, T ] = 1� e�⇥⇤ = 1� e�⇥wijT/T0 , (4)

which shows the one-to-one relationship between the in-
tensity wij and the transmissibility Tij in the Poissonian
case: the more intense the communication is, the larger
the probability of infection. However, as we have seen in
Fig. 2, the real i ⇤ j and ⇥ ⇤ i series are far from being
independent and Poissonian and in order to investigate
the e�ect of real patterns of communication on the trans-
missibility we approximate Eq. (2). For small values of �

2

events and in particular, the possible heavy-tail proper-
ties of P (�tij) are directly inherited by P (⇤ij). Fig. 2
shows our (rescaled) results for P (�tij) and P (⇤ij). For
comparison, we also show the results obtained when i)
the time-stamps of the ⇥ ⇤ i events are randomly se-
lected from the complete CDR, thus destroying any possi-
ble temporal correlation with i ⇤ j and e�ectively mim-
icking Eq. (1) and ii) when the whole CDR time-stamps
are shu⌅ed thus destroying both tie temporal patterns
and correlation between ties. Both shu⌅ings preserve the
tie intensity wij [18], i.e. the number of calls and their
duration and also the circadian rhythms of human com-
munication [15]. The result for P (�tij) shows that small
and large inter-event times are more probable for the real
series than for the shu⌅ed ones, where the pdf is almost
exponential as in a Poissonian process, apart from a small
deviation due to the circadian rhythms. This bursty pat-
tern of activity has been found in numerous examples
of human behavior [6] and seems to be universal in the
way a single individual schedules tasks. Here we see that
it also happens at the level of two individuals interac-
tion confirming recent results in mobile [15] and online
communities [7] dynamics. The pdf for ⇤ij is also heavy-
tailed but displays a larger number of short ⇤ij compared
to the shu⌅ed one. The abundance of short ⇤ij suggests
that receiving an information (⇥ ⇤ i) triggers commu-
nication with other people (i ⇤ j), a manifestation of
group conversations [11–13]. While the fat-tail of P (⇤ij)
is accurately described by Eq. (1), i.e. large transmission
intervals ⇤ij are mostly due to large inter-event commu-
nication times in the i ⇤ j tie, the behavior of P (⇤ij) is
not only due to the bursty patterns of �tij , but also to the
temporal correlation between the i ⇤ j and the ⇥ ⇤ i
events. In fact, if the correlation between the i ⇤ j and
the ⇥ ⇤ i series is destroyed, the probability of short-
time intervals decreases and approaches the Poissonian
case (Fig. 2). In summary, relay times depend on two
main properties of human communication that compete
to one another. While the bursty nature of human ac-
tivity yields to large transmission times hindering any
possible infection, group conversations translate into an
unexpected abundance of short relay times, favoring the
probability of propagation.

To investigate the e�ect of these two conflicting prop-
erties of human communication on information spread-
ing, we simulate the epidemic Susceptible-Infectious-
Recovered (SIR) model in our social network considering
the real time sequence of communication events [15, 23]
and compare them to the shu⌅ed data. We start the
model by infecting a node at a random instant and con-
sidering all other nodes as susceptible. In each call an
infected node can infect a susceptible node with prob-
ability ⇥. Due to the synchronous nature of the phone
communication, this happens regardless of who initiates
the call. However, since the same results are obtained
by considering directionality in the calls, for computa-

i � j

� ⇥ i

t�
t

t

�ij �tij

FIG. 1. (color online) Schematic view of communications
events around individual i: each horizontal segment indicates
an event between i ! j (top) and ⇤ ! i (bottom). At each
t↵ in the ⇤ ! i time series, ⇥ij is the time elapsed to the next
i ! j event, which is di�erent from the inter-event time �tij
in the i ! j time series. The red shaded area represents the
recover time window Ti after t↵.
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FIG. 2. (color online) Distribution of the relay time inter-
vals ⇥ij (main) and of the inter-event times �tij (inset) in the
i ! j tie rescaled by �tij . The black circles correspond to
the real data, while the red squares is the overall-shu⇥ed re-
sult. Blue diamonds correspond to the case in which only the
⇤ ! i sequence is randomized. Only ties with wij � 10 are
considered. In both graphs the dashed line correspond to the
e�x function.

tional reasons we consider the latter case. Nodes remain
infected during a time Ti until they decay into the re-
covered state. For the sake of simplicity we simulate the
simplest model in which the recovering time Ti is deter-
ministic and homogeneous Ti = T and set T = 2 days,
although di�erent and/or stochastic Ti can be studied
within the same model. The spreading dynamics gener-
ates a viral cascade that grows until there are no more
nodes in the infected state. We repeat the spreading pro-
cess for 3 � 104 randomly chosen seeds. Note that our
model includes the SI model simulations in [15] where
⇥ = 1 and T = T0, with T0 being the total duration of
the dataset.
By looking at the size of the largest cascade smax (over

all realizations) at each value of ⇥, we first ensure the
existence of a percolation transition [4] (see Fig. 3), con-
firmed by a change in the behavior of smax from small
to large cascades at a given value of ⇥ (tipping point).

Tij ⇥ 1� P 0
ij

Long waiting times (bursts) 
make transmissibility smaller

Tij ⇥ 1� P 0
ij

Tij � T̃ij

� ' 1 ) 1� (1� �)n ' 1 for n > 0
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FIG. 3. (color online) Average size dynamics for a large (a)
and a small (b) value of � (left) and maximum size (right)
of the infection outbreaks (over 104 realizations) for the real
data (black lines) and shu�ed data (red lines) for T = 2
days. The dashed line shows the critical point estimation
of the percolation transition given by R1[�, T ] = 1 with R1

calculated using Eq. (6).

The same behavior is observed for the shu⇧ed-time data
where the transition seems to happen almost at the same
value of �, although an accurate analysis of the percola-
tion point if beyond of the scope of this letter. On the
contrary, there is a significant di�erence in the behavior
of the asymptotic average size s1 between the real and
the shu⇧ed-time data for di�erent regimes of �: when �
is small, s1 is bigger for the real data than for the shuf-
fled one, while the opposite behavior is observed for large
�. This di�erence, that can be very large for moderate
values of �, shows the impact of the real time dynamics
of communication in the reach of information in soci-
ety. Specifically, if information propagates easily (large
�), the average reach in social networks is narrower than
the one expected when a Poissonian dynamics is consid-
ered. In this sense, temporal patterns make social net-
works bigger than expected at large scales. However, in
most real situations � is very small [14] and in this case
the observed behavior is the opposite: despite the low
propagation, information cascades are larger in real data
than in the Poisson case, which suggests that information
spreading is more e⌅cient at small (local) scales.

To understand this behavior, we follow the approach
of [17] mapping the dynamical SIR model to a static
edge percolation model where each tie is described by
the transmissibility Tij , that represents the probability
that the information is transmitted from i to j and is a
function of � and T . If user i becomes infected at time
t� and the number of communication events i ⇤ j in the
interval [t�, t� + T ] is nij(t�), then the transmissibility
in that interval is (see Fig.1) Tij = 1 � (1 � �)nij(t↵).
User i may become infected at any ⇥ ⇤ i communication
event. Assuming these events independent and equally
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FIG. 4. Ratio of the number of events (a) and probability
of no events (b) as a function of the recovery time T for the
real (black circles) and shu�ed � ⇥ i (red squares) data with
respect to the overall-shu�ed data. Right panel (c) shows the
ratio of the average size of the outbreaks (black circles) and
of R1 calculated using Eq. 6 (dashed blue line).

probable, we can average Tij over all the t� events to get

Tij [�, T ] = ⌃1� (1� �)nij(t↵)⌥�. (2)

If the number of ⇥ ⇤ i events is large enough we could
use a probabilistic description of Eq.(2) in terms of the
probability P (nij = n;T ) that the number of communi-
cation events between i and j in a given time interval T
is n. Thus

Tij [�, T ] =
1�

n=0

P (nij = n;T )[1� (1� �)n], (3)

which in principle can be non symmetric (Tij ⌅= Tji).
This quantity represents the real probability of infection
from i to j and defines the dynamical strength of the tie.
Note that Tij depends on the series of communication
events between i and j, but also on the time series of
calls received by i. In [17] Newman studied the case in
which both time series are given by independent Poisson
processes in the whole observation interval [0, T0]. Thus,
P (nij = n;T ) is the Poisson distribution with rate ⇥ij =
wijT/T0, where wij is total number of calls from i to j
in [0, T0], thus

T̃ij [�, T ] = 1� e�⇥⇤ = 1� e�⇥wijT/T0 , (4)

which shows the one-to-one relationship between the in-
tensity wij and the transmissibility Tij in the Poissonian
case: the more intense the communication is, the larger
the probability of infection. However, as we have seen in
Fig. 2, the real i ⇤ j and ⇥ ⇤ i series are far from being
independent and Poissonian and in order to investigate
the e�ect of real patterns of communication on the trans-
missibility we approximate Eq. (2). For small values of �

4

we have 1� (1��)n ⇧ �n, while when � ⇧ 1 we get that
1� (1��)n ⇧ 1 for n > 0. Thus, the transmissibility for
the two regimes is given by:

Tij [�, T ] =
�

�⌥nij�t� when � ⇤ 1
1� P 0

ij when � ⇧ 1
(5)

where P 0
ij = P (nij = 0;T ). Specifically, P 0

ij can be
estimated directly from Eq. (1) for each link P 0

ij =⇤�
T P (⇥ij)d⇥ij , since it measures the probability to find a
relay time bigger than T . Fig. 4 shows the comparison of
nij and P 0

ij (averaged over all links) for di�erent values
of T for the real and shu⌅ed data (denoted by tilde). On
one side, due to the correlation between the ⇥ ⌅ i and
i ⌅ j time series, the number of events in a tie following
an incoming call is always larger for the real data than
for the shu⌅ed one. This is the reason why, for small �,
the average transmissibility (and thus the size of the epi-
demic cascades) is always higher in real communication
patterns [12]. On the contrary, the bursty nature of the
i ⌅ j communication makes the tail for the real P (⇥ij)
heavier than the exponential distribution found in the
shu⌅ed data. Thus if T is large enough, P 0

ij is larger in
the real than in the shu⌅ed data and this is why we ob-
serve smaller cascades in that region. Note however that
this does not apply for very small values of T (T . 1
days), where the causality between ⇥ ⌅ i and the i ⌅ j
time series can make P0 even smaller in the real case.

To give a more quantitative analysis of the observed
behavior we investigate the percolation process in a so-
cial network in which links have transmissibility Tij . The
important quantity is the secondary reproductive num-
ber R1, that is the average number of secondary infec-
tions produced by an infectious individual. R1 gives in-
formation about percolation transition in the SIR process
(which happens at R1 = 1 [17]), but also about the speed
of di�usion (which is proportional to R1 [20]) and of the
size of the cascades (which is a growing function of R1

[17]). Assuming that the Tij are given and that the so-
cial network is random in any other respect, R1 can be
approximated as

R1[�, T ] =
⌥(
⇥

j Tij)2�i � ⌥
⇥

j T 2
ij�i

⌥
⇥

j Tij�i
. (6)

Note that in the homogeneous case in which Tij = T
we recover the common result in random networks R1 =
T (⌥k2i �/⌥ki� � 1) [17]. Figs. 3 and 4 show the accuracy
of the approximations used to get Eq.(6) to predict the
tipping point in the SIR process and the change in the
average size of the cascades in the two regimes. This sug-
gests that the dynamical strength of the ties Tij , defined
in Eq. (2), can be e�ectively used to model real strength
of human interactions in social networks.

In conclusion we have seen that both the bursty nature
of human communications and the existence of group

conversations are the two main dynamical ingredients to
understand the spreading of information in social net-
works. These two e�ects compete in the spreading, fa-
voring and hindering information reach when compared
with the homogeneous case. Our results indicate the ne-
cessity to incorporate temporal patterns of communica-
tion in the description and modeling of human interac-
tion. Actually, we have proven an e�ective way to map
the dynamics of human interactions onto a static repre-
sentation of the social network through the concept of
dynamical strength of ties. We believe its success in ex-
plaining information di�usion would encourage the use of
this dynamical strength in other areas of network research
which is based on information spreading like the deter-
mination of influence/centrality [21], community finding
[22], viral marketing [14, 23], etc.
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Figure 4. (Color Online) Normalized coverage C(t)/N as a
function of the rescaled time pt/N , for the SRep, SRan and
SStat extension of empirical data. The numerical evaluation
of Eq. (13) is shown as a dashed line, and each panel in the
figure corresponds to one of the empirical datasets considered.
The exploration of the empirical repeated data sets (SRep) is
slower than the other cases. Moreover, the SRan is in agree-
ment with the theoretical prediction, and the SStat case shows
a close (but systematically slower) behavior. This indicates
that the main slowing down factor in the SRep sequence is
represented by the irregular distribution of the interactions
in time, whose contribution is eliminated in the randomized
sequences.

in the original contact sequence, for the SStat extension
we obtain numerically di↵erent values of p, which we use
when rescaling time in the corresponding simulations.

The coverage corresponding to the SRan extension is
very well fitted by a numerical simulation of Eq. (15),
which predicts the coverage C(t)/N obtained in the cor-
respondent projected weighted network. Moreover, when
using the rescaled time pt, the SRan coverages for di↵er-
ent datasets collapse on top of each other for small times,
with a linear time dependence C(t)/N ⇠ t/N for t ⌧ N
as expected in static networks, showing a universal be-
havior (not shown).

The coverage obtained on the SStat extension is sys-
tematically smaller than in the SRan case, but follows
a similar evolution. On the other hand, the RW explo-
ration obtained with the SRep prescription is generally
slower than the other two, particularly for the 25c3 and
ht datasets. As discussed before, the original contact
sequence, as well as the SRep extension, are character-
ized by irregular distributions of the interactions in time,
showing periods with few interacting nodes and corre-
spondingly a small number n(t) of new started conver-
sations, followed by peaks with many interactions (see
Fig. 5). This feature slows down the RW exploration,
because the RW may remain trapped for long times on

0 500 1000 1500 2000
t

0

20

40

60

80

100

n(
t)

Figure 5. (Color Online) Number of new conversations n(t)
started per unit time in the SRep (black, full dots), SRan
(red, empty squares) and SStat (green, diamonds) extensions
of the school dataset.

isolated nodes. The SRan and the SStat extensions, on
the contrary, both destroy this kind of temporal struc-
ture, balancing the periods of low and high activity: the
SRan extension randomizes the time order of the contact
sequence, and the SStat extension evens the number of
interacting nodes, with n new conversations starting at
each time step.
The similarity between the random walk processes on

the SRan and SStat dynamical networks shows that the
random walk coverage is not very sensitive to the het-
erogenous durations of the conversations, as the main
di↵erence between these two cases is that P (�t) is nar-
row for SRan and broad for SStat. In these cases, the ob-
served behavior is instead well accounted for by Eq. (13),
taking into account only the weight distribution of the
projected network, i.e., the heterogeneity between aggre-
gated conversation durations. Therefore, the slower ex-
ploration properties of the SRep sequences can be mostly
attributed to the correlations between consecutive con-
versations of the single individuals, as given by the indi-
vidual gap distribution Pi(⌧), (see [13, 15, 22] for analo-
gous results in the context of epidemic spreading).
A remark is in order for the 25c3 conference. A close

inspection of Fig. 4 shows that the RW does not reach
the whole network in any of the extensions schemes, with
Cmax < 0.85, although the duration of the simulation
is quite long ptmax > 102N . The reason is that this
dataset contains a group of nodes (around 20% of the
total) with a very low strength si, meaning that there
are actors who are isolated for most of the time, and
whose interactions are reduced to one or two contacts in
the whole contact sequence. Given that each extension
we use preserves the P (w) distribution, the discovery of
these nodes is very di�cult. The consequence is that we
observe an extremely slow approach to the asymptotic

Starnini, M. et al., 2012. Random walks on 
temporal networks. Physical Review E, 
85, pp.056115–056115.

V. Eguiluz & EM, unpublished, 2011

Random Walks Voter Model
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•  Some data/models shows that burstiness accelerates contagion

Figure 1A, we see that an infection spreads much more slowly in
the RD network model, reaching fewer than 50% of the
individuals compared to more than 60% in the original network.
Thus, correlations in the order in which the contacts occur speed
up disease spread. More concretely, one such tendency is that
individuals tend to be intensely active over a period of time
followed by idle periods. When the time stamps are randomized
(RD model), this tendency disappears such that the presence of
individuals in the system is now, on average, longer and the
contacts less frequent. The average time, between an individual’s
first and last active period of, increases from 170.960.1 days in the
original network to 337.560.1 days after randomization. In
addition to correlations in the temporal order of contacts, the
topology of the sexual network can also influence epidemics [3,6–
9,18]. In Figure 1B, we compare the evolution of epidemics in the
empirical network with the RT network model. The evolution of
the fraction of infected individuals ÆV(t)æ seems to grow slowly, at
least during the initial 200 days; afterwards, the topologically

randomized network yields more rapid and pervasive outbreaks
(Figure 1B). The more rapid initial epidemic spread in the original
network results from the high clustering of contacts within cities.
Finally, considering both the temporal and topological information
randomized (RDT model), the curve (evolution of the epidemics,
Figure 1C) is in between those of Figure 1A and Figure 1B. The
fraction of infected vertices increases slowly during the initial 300
days, but not more slowly than in the RD scenario in Figure 1A.
Later it increases more rapidly and by the end of the sampling
period reaches about 70% of the individuals (a little less than in the
RT scenario in Figure 1B, but still, larger than in the original
network).

The limit of high transmission probability r= 1 does not reflect
actual STI contagion; more realistic values lie in the range
0.001#r#0.3 [27–28]. In Figure 2, we present ÆVærel = ÆVræ/
ÆVr= 1æ, the average number of infected vertices (for probabilities
r) relative to the number of infected vertices when the maximum
transmission probability is used (r= 1). The relative number of

Figure 1. Temporal and topological correlations effect on epidemics. In A–C, we plot the time evolution of the fraction of infected vertices
ÆVæ. The curves correspond to SI epidemics in the original network (full line) and in its randomized versions: panel A represents swapping time stamps
(RD); B shows rewiring of the edges and keeping the sellers’ time correlations (RT); and panel C depicts simultaneous randomization of time stamps
and edges (RDT).
doi:10.1371/journal.pcbi.1001109.g001

Figure 2. Evolution of the infection for low transmission probabilities in the SI model. The panel shows the evolution of ÆVærel, the
number of infected vertices for lower transmission probabilities (0.001#r#0.3) relative to the number of infected vertices when we use the
maximum transmission probability (r= 1). The ordinate is in log-scale.
doi:10.1371/journal.pcbi.1001109.g002

Simulated Epidemics in Real Sexual Contact Network

PLoS Computational Biology | www.ploscompbiol.org 4 March 2011 | Volume 7 | Issue 3 | e1001109
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Rocha, L., Liljeros, F. & Holme, P., 2011. 
Simulated epidemics in an empirical 
spatiotemporal network of 50,185 
sexual contacts. PLoS Computational 
Biology, 7(3), p.e1001109.

Takaguchi, T., Masuda, N. & Holme, P., 2012. 
Bursty communication patterns facilitate 
spreading in a threshold-based epidemic 
dynamics. PLoS ONE, 8(7), pp.e68629–
e68629.
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• Real data 

• Shuffled data (1)  

• Shuffled data (2) 
 
 
 
 
 

P(dt) heavy tailed 
Correlated bursts 
Correlated tie activity 
Temporal motifs 
Tie dynamics

P(dt) exponential 
Uncorrelated bursts 
Uncorrelated tie activity 
No temporal motifs 
No tie dynamics

⌦

⌦

⌦

P(dt) exponential 
Uncorrelated bursts 
Uncorrelated tie activity 
Temporal motifs ?  
Tie dynamics
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• Burstiness + conservation of ties 

• Half of the slowing effect comes from destroying tie dynamics in the shuffling 

5.5 Towards a dynamical model of human interactions 115

0 50 100 150 200 250
0

200

400

600

800

t (in days)

hs
(t

)i

real-time data
overall shuffled data
intra-tie shuffled data

Figure 5.7: Average fraction of infected nodes (over 104 realizations) as a function of time for
� = 0.2 and T=7 days obtained for real-time data (solid curve), shuffled-time data (dashed
curve) and shuffled tie creation/removal data (pointed curve). The effect of tie creation/removal
is to slow down the spreading dynamics.

investigate the effect of tie dynamics, we then simulate the SIR model on the three time
series by considering, once again, the simplest model in which the probability of in-
fection � is constant and the recovery time T deterministic and homogeneous. Fig. 5.7
displays the average cascade size dynamics for � = 0.2 and T = 7 days. This result
allows us to gain insight into the effect of each temporal feature of human communica-
tion. In fact, the difference between the real and the intra-tie shuffled data is due to the
bursty activity of ties, while the one between the Poisson-like and intra-tie shuffle is re-
lated to the tie formation/removal. As in the case of Fig. 5.4, for this value of � (above
the percolation point), information cascades are larger and the spreading faster for the
Poissonian series than in the real one, due to the bursty activity patterns. However,
when comparing the Poissonian case with the intra-tie shuffled one, we observe slower
and smaller cascades in this latter case, indicating that the way in which individuals
create and destroy relations has a slowing-down effect in the spreading dynamics.

5.5 Towards a dynamical model of human interactions

Our results indicate the necessity to incorporate temporal patterns of human activity in
the description and modeling of human interactions. As discussed in Chapter 2, the
static description of weighted networks implies a poissonization of human dynamics
where the weight wij of a tie (aggregated volume of communication) can be seen as
the rate of communication such that P (i ! j) dt = ⇢ij dt and ⇢ij = wij . This
approach neglects all those temporal patterns as the time correlations between events,

⌦

⌦

⌦

Miritello, G. (2013). Temporal Patterns 
of Communication in Social Networks. 
Springer.
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• Reminder: the fraction of unstable links is high at larger distance 
• We consider another shuffling: we only shuffle ties within geographical areas 

• We study propagation of information across geographical areas with the SI model 
• A geographical area is “infected” if at least a fraction of the nodes in the area is 

infected. 

-=!�����������B���������!�=�(

RandomReal Internal 
random
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• Information spreads geographical much slower than in the shuffled case 
• Most of the slowing down of information diffusion comes from inter-city links. 

Those links are the most unstable
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4 Applications to real world
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Information 

• Hoaxes prevail for years

Hello all Champagne lovers. 

Send this message to 10 people, with a copy to [EMAIL ADDRESS REMOVED] 
Veuve Clicquot France will contact you in order to deliver to you a case of 
champagne in three weeks. 

They are doing this to enlarge their database. It does work and you receive 6 
bottles in 15 days. 

Salut a tous les amoureux du champagne. 
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Viral marketing experiments

• Viral marketing campaigns IBM.COM 
•  2003-2005 IBM.COM 
•  30000 B2B clients 
•  11 european countries 
•  2 months of campaign

Direct Viral
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Back-of-the-envelope calculation

• Assuming  
• constant response time 
• and number of “infected” 

friends 
• What is i(t), the number 

of infected people at  
time t?  

1 + R0 + R2
0 + R3

0 + R4
0 + R5

0 + · · ·

R0

⌧

di

dt
=

R0 � 1

�
i i(t) = i(0)e�t
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Viral marketing experiments

• Viral marketing campaigns prevailed for weeks/months

Viral Marketing propagation analysis Page 7 of 8 Mar 12, 2006

α =
R0 − 1

E(τ)

P (k) ∼ k−α

C = P (△)/P (∧) ≃ 0.2

D ≃ lnN

s(t) =

∫
t

0

i(s)ds =
eαt − 1

α
∼ t

s(t) ∼ ln t

– Typeset by FoilTEX – 1

R0 ' 0.25

⌧ ' 1 day

s(t) =

Z t

0
i(s)ds
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Bellman-Harris process

• The process is characterised by the distribution of number of recommendations 
and response time
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• It is the well-known Bellman-Harris Process 

• where R0 is the secondary reproductive number and  
• The dynamics is determined by the tail of the distribution

i(t) = 1�G(t) +R0

Z t

0
dG(t) i(t� �)

i(t) = hI(t)i
iv CONTENTS

Theorem. (Athereya & Ney ’70s) If R0 < 1 and G is in the sub-
exponential class S , then

i(t) ⇥ 1�G(t)

1�R0
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• Prevalence

Since !!R ’ 1:5 days, Eq. (1) implies that most infections
(new informed individuals) should happen during the first
few days. However, we observe a significant fraction of
new infections even at the month time scale as shown in
Fig. 3. Moreover, the functional decay of new infected
individuals cannot be explained by an exponential decay as
(1) predicts. Thus, traditional epidemic models fail to
predict information speed and also the functional form of
its dynamics.

To explain our results, we model them with a branching
process that considers activity heterogeneity. Given the low
email redundancy, we consider only the growth of treelike
cascades. Nevertheless, this approximation captures the
main features of the spreading dynamics on social net-
works [2,22]. Each cascade starts from a seed that initiates
propagation with a random number of recommendations
whose average is !r. Touched individuals become secondary
spreaders with probability " and propagate the message
further. Information forwarding happens after time !, in-
dependent of r and distributed by Pð!Þ. This process is the
well known Bellman-Harris branching model [23] where
the average fraction (over all cascades) of active individu-
als at time t is given by

iðtÞ ¼ 1$GðtÞ þ R0

Z t

0
iðt$ !ÞPð!Þd!; (2)

where GðtÞ ¼ R
t
0 Pð!Þd! is the cumulative distribution

function (CDF) of Pð!Þ. Equation (2) is non-Markovian,
since the average number of new infections iðtÞ at time t
depends on the history of infections in the past 0< !< t.
Explicit solutions of (2) do not exist for general Pð!Þ and
R0, but if there is a solution # of the implicit equation

R0

Z 1

0
e$#!Pð!Þd! ¼ 1; (3)

then the asymptotic behavior of (2) is given by [23]

iðtÞ & Ce#t; C ¼ R0 $ 1

#R2
0

R1
0 !e$#!Pð!Þd! : (4)

Thus, although Eq. (2) is non-Markovian, it behaves
asymptotically as the solutions of the simple Markovian
model (1) with # given by the solution of (3). This ap-
proximation for general PðtÞ is exact in the case of the
exponential distribution of memoryless Poissonian statis-
tics: If Pð!Þ ¼ e$!= !!R= !!R, the solution of (3) is# ¼ #0 and
Eq. (2) can be written in differential form as Eq. (1).
However, for R0 < 1 (i.e., #< 0), Eq. (3) has a solution

for # only if PðtÞ decays fast enough, specifically, faster
than the exponential distribution in the limit t ! 1. Thus,
growth models like (1) or approximations like (4) are not
valid for a large family of distributions PðtÞ known as
subexponential distributions, i.e., those decaying slower
than exponential when t ! 1. This family includes im-
portant cases like the log-normal, power-law, or stretched
exponential distributions. In that case, the general asymp-
totic behavior of Eq. (2) is controlled instead by the tail of
the CDF distribution [24]

iðtÞ & 1

1$ R0
½1$GðtÞ(; (5)

which highlights the non-Markovian character of the solu-
tions of Eq. (2), since they depend on those individuals
whose response time is the longest. The distributions used
to model the large heterogeneity of human response times
(power-law [7] or log-normal [8]) are members of this class
of distributions, and Eq. (5) shows the profound impact of
large heterogeneity in response times: The very functional
form of the time dependence is changed, and the dynamics
of information does not depend on the mean value of the
response time but on the tail of the distribution, thus
drastically slowing down the propagation of information.
Figure 3 shows the striking agreement of the approxima-
tion (5) with the data obtained in our campaigns assuming
that Pð!Þ is given by the log-normal distribution in Fig. 2.
The slowing down of information diffusion due to the

subexponential nature of human response times can ex-
plain the prevalence of some rumors, viral campaigns,
chain letters, or computer viruses as suggested in
Ref. [16]. For example, if we assume Ns seeds are initially
infected and set the end of diffusion when the fraction of
infected individuals decays to iðtfÞ & 1=Ns, then the
Poissonian approximation (1) gives tf ’ #$1

0 lnNs, while

in the log-normal case [Eq. (2)] we get tf & e
ffiffiffiffiffiffiffiffiffiffi
b lnNs

p
, where

b is independent of R0. For large enoughNs, there is a huge
difference between both estimations. For example, if Ns ¼
104 individuals (a large but moderate value), tf ¼ 17 days
(with R0 ¼ 0:26) for Poissonian models while tf ’ 1 year
if Pð!Þ is log-normal.
Interestingly, the large heterogeneity found in human

response time has the opposite effect above the epidemic
threshold (R0 > 1) where Eq. (3) has a solution # much

0 10 20 30 40 50 60

t (days)

10−3

10−2

10−1

i(
t)

FIG. 3 (color online). Average fraction of new participants as a
function of the cascade start time in our campaigns (circles)
compared with the prediction of the Bellman-Harris model with
PðtÞ the log-normal distribution (black line) of Fig. 2 and with
PðtÞ exponential of the same mean (red). The dashed line is the
asymptotic approximation (5) of the Bellman-Harris model with
PðtÞ log-normal. Inset: Time evolution of the cascade average
size (circles) accurately predicted by the model for GðtÞ log-
normal. In red is the prediction for GðtÞ exponential.

PRL 103, 038702 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JULY 2009

038702-3

i(tf ) = 10�4

tf ' 17 days
tf ' 1 year

i(tf ) ' 10�3

tf ' 12 days

tf ' 2 months
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b)

t

– Typeset by FoilTEX – 5

⟨τ⟩ ∼ 1 week

⟨τ⟩ ∼ 2 hours

α ∼ 1/⟨τ⟩

a)

t

– Typeset by FoilTEX – 4

Homogeneous response time 
(exponential)

Heterogeneous response time 
(subexponential)

1. Iribarren, J. E. L., & Moro, E. (2009). Impact of human activity patterns on the dynamics of information diffusion, 
103(3), 038702–038702. http://doi.org/10.1103/PhysRevLett.103.038702 

2. Iribarren, J. L., & Moro, E. (2011). Branching dynamics of viral information spreading, 84(4), 46116. http://doi.org/
10.1103/PhysRevE.84.046116
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Hypothesis: our activity in 
social networks is correlated 
with our socio-economical 
status

Geo-localized tweets in Spain 

• From 29th Nov 2012 to 
30th June 2013 

• 19.6 million tweets 

• 0.57 million unique users
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• Our daily activity is impacted by our socio-economical situation 
• At the individual level

working Unemployed
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• Our daily activity is impacted by our socio-economical situation 
• At group/city level

Torrijos, 26% unempl.
Sobrarbe, 7% unempl.
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• Simple linear regression

Penetration

Entropy (social)

Activity (morning)

#misspellers

"unemployment"

0 10 20 30 40

*

% weight in the model

R2 = 0.64

Llorente, A., Garcia-Herranz, M., Cebrian, M., & Moro, E. (2015). Social media 
fingerprints of unemployment. PLoS ONE, 10(5), e0128692. http://doi.org/

10.1371/journal.pone.0128692
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Are we really wrong?

Model Error = Model[variables] - Official unemployment 
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Model predicts 
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• Reviews 
• Blondel, V. D., Decuyper, A., & Krings, G. (2015). A survey of results on mobile phone datasets 

analysis. EPJ Data Science, 4(1), 10. http://doi.org/10.1140/epjds/s13688-015-0046-0 
• MOBILE PHONE NETWORK DATA FOR DEVELOPMENT. (2013). UN Global Pulse 
• Saramaki, J., & Moro, E. (2015). From seconds to months: an overview of multi-scale dynamics 

of mobile telephone calls. The European Physical Journal B, 88(6). http://doi.org/10.1140/epjb/
e2015-60106-6 

• Naboulsi, D., Fiore, M., Ribot, S., & Stanica, R. (n.d.). Large-scale Mobile Traffic Analysis: a 
Survey. IEEE Communications Surveys & Tutorials, 1–1. http://doi.org/10.1109/COMST.
2015.2491361 

• Conferences 
• NetMob http://netmob.org 
• NetSci http://netsci2016.net 

• Libraries 
• http://bandicoot.mit.edu an open-source python toolbox to analyze mobile phone metadata  
• igraph http://igraph.org (python, R, C) 
• NetworkX https://networkx.github.io (python)
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