The Königsberg bridges
The old town of Königsberg has seven bridges. The famous mathematician Euler asked himself: "can you take a wall through the town, visiting each part of the town $(A, B, C$ and $D)$, and crossing each bridge only once?

A

Let's simplify the problem
Each dot is a zone in the city. Connect the zones/dots using lines as the bridges Now Euler's question is: can you draw each line only once without lifting your pencil?
O^{A}

Paths on shapes
Draw these shapes without lifting your pencil and without retracing any line

A

B

C

D

Shape	A	B	C	D
Success?				

Arriving and leaving the dots.
While drawing the shapes, how many times can you arrive and leave the dot using each line only once?

A

B

C

D
D

Shape	A	B	C	D
Number of lines	4	3		
How many times you crossed the dot?	2			
Any line left?	No!			

Do you see a pattern? Which ones can be only at the beginning or the end of our path?

Pattern:

- Odd number of lines: those dots can only be the beginning or the end of our path.
- Even number of lines: those dots can only be in the middle of our path.

So, lef's try again

A

B

C

D

Shape	A	B	C	D
Number of dots with even number of lines	4			
Number of dots with odd number of lines	0			
Success?	Yes!			

What about the Krönisgberg problem? How many dots with even number of lines? Odd number? Can Euler walle the bridges as he proposed?

