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Variational mean-field study of a continuum model of crystalline tensionless surfaces
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We study analytically the equilibrium and near-equilibrium properties of a modetiafimensional surface
relaxing via linear surface diffusion and subject to a lattice potential. We employ the variational mean-field
formalism introduced by Saito for the study of the sine-Gordon model. In equilibrium, our variational theory
predicts a first-order roughening transition between a flat low-temperature phase and a rough high-temperature
phase with the properties of the linear molecular-beam epitaxy equation. Moreover, the study of a Gaussian
approximation to the Langevin dynamics of the system indicates that the surface shows hysteresis when
temperature is continuously tuned. Out of equilibrium, these approximate Langevin dynamics show that the
surface mobility can have different behaviors as a function of a driving flux. Some considerations are made
regarding different underlying lattices, and connections are drawn to related models or different approaches to
the same model we study.
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[. INTRODUCTION the most relevant relaxation mechanism taking place at the
interface can be modeled as minimization of surface curva-
During the last decade, there have been great theoretictilre, instead of minimization of surface area as in the dG
and experimental efforts to understand surface growth. Thigiodel. Instances of these phenomena are membifdi2és
is due to possible applications, e.g., to the production of thifwo-dimensional melting13], or growth by molecular-beam
films and, from the basic point of view, to the interesting €Pitaxy (MBE) [1] in which the main relaxation mechanism
examples growing surfaces provide of nonequilibrium statisis surface diffusion, which in the simplest approximation is
tical Systemi]_]7 in some cases with strong relation to rel- described effeCtiVer as surface curvature minimization. In a
evant equi"brium Systen’[g]_ A Very important examp|e is Close analogy W|th the dG mOde|, SeVeral authorS haVe Stud'
provided by the discrete GaussiaG) model, which de- ied the effect of the integer height value restriction in these
scribes the universal features of the equilibrium rougheningituations, but the understanding is not as complete as in the
transition of many surfacds]. This transition is driven by dG case. For instance, in some investigations of the two-
temperature fluctuations, the value of the critical temperaturdimensional melting problerfi.3] Nelson was led to formu-
being nowadays regarded as a standard property of, e.date the discrete Laplacian roughening mo(i#ir) model
metals[4]. The equilibrium roughening transition of the dG
model is in the Kosterlitz-Thouled&T) class, and thus the _k 2 .
model is related to other important models featuring a similar "t 2 Er [AROY  h(n)/a, eZ, @
transition, such as thE model or the Coulomb ga,3].
The dG model describes a surface minimizing surface areaherer is the lattice position on & XL dimensional sub-
(to linear approximatiop in which the surface height takes strate,a, is the vertical lattice constant, ardis the lattice
on integer values. Relaxing the latter condition leads to th@pproximation to the Laplacian operator. This paper indi-
sine-Gordor(sG) model for a real valued height field subject cated that Hamiltoniafil) should have two phase transitions,
to surface tension and to(kttice) potential favoring integer both of them in the KT universality class, which are related
values of the field. The sG model is amenable to approximateith the unbinding of disclinations and dislocations in the
analytic treatment$5,6], which have allowed to develop a melting problem. This two-step melting mechanism is
rather complete picture of the equilibrium roughening tran-known as the Kosterlitz-Thouless-Nelson-Halperin-Young
sition, and of the near-equilibrium properties as determinedheory for two-dimensional melting. Despite the analytical
by Langevin dynamic$7] or kinetic Monte Carlo simula- and numerical efforts spefit4], this picture has not been
tions [8]. However, several authors have recently raised thdully verified for model(1), some authors claiming a single
idea that the KT transition in the sG model might be replacedirst-order roughening transition occurs5-17. The situa-
by some kind of first-order discontinuity9,10] when the tion is not settled either for the actual physical problem—
strength of the potential is increased further away from thenamely, two-dimensional melting—the Hamiltonigl) was
renormalization-group(RG) perturbative regime, a result intended to mode[18], since both first-order and KT-type
whose existence had been speculated for a long[tihg In  transitions have been observed in experiments and numerical
this strong potential regime, the perturbative RG treatmentsimulations.
break down and mean-field-type methods have been used to On the other hand, in Ref19] the following Hamiltonian
study the transition. was proposed to study the effects of the crystalline structure
There exist some interface phenomena contexts in whicin tensionless surfaces

1063-651X/2001/6(8)/0361049)/$15.00 63 036104-1 ©2001 The American Physical Society



ESTEBAN MORO AND RODOLFO CUERNO PHYSICAL REVIEW B3 036104

K properly and might eventually modify the phase diagram.
H=5 > {[Ah()12+V[1-cos 2rh(r)/a, T}, Nevertheless, based on the success of Saito’s mean-field
' treatment for the sG model, we expect the results of our
analysis to be relevant to mod€?), in particular for high
h(r) e R. (2)  dimensions, where fluctuations are suppressed.
The present paper is organized as follows. In Sec. Il we
Numerical Langevin simulations 9,20 showed an equilib- study the equilibrium Hamiltoniaf®) for a two-dimensional
rium roughening transition, similar to that in the sG model.substrate, within the variational scheme of Réfl; we de-
For temperatures below a critical vallig, the lattice poten- rive expressions for the roughening temperature and correla-
tial is relevant, imposing a finite value for the correlationtion length below the transition. The precise value of the
length &, and thus the surface is flat. Namely, the roughnes#ransition temperature within this approach is determined in
w2=(1/L?),[h(r) —h]? [whereh= (1/L2)(Z,h(r))] is fi- the process of elucidating the character of the transition. S.ec-
nite andL independent. For temperatures higher fhiat the tion Il is devoted _to _the approxmate study_of the Langevin
lattice potential becomes irrelevant asidiiverges, the sur- dynamics of(2) within a Gaussian approximation for the
face being rough. This means that the roughness divergégobablllty dlstrlbutlon of the height fl_eld. A dlscusspn of
with the system size, in the same way as occurs if we takthe results _obtamed a_md our conclu5|or_15 are found in Sec.
V=0 in Eq. (2), for which case the Langevin dynamics is Iy. Appendix A contains the formal derlvat|on_ of the con-
that of the so-called linear MBE equatigh]. In studies of tinuum model(2) from Eq. (1). Some computational details
epitaxial growth systems by Langevin dynamics, the ternPn the solunon_of self—con_S|stent equations rglevant_to Sec. Il
proportional tox in Eq. (2) generates the relevant surface €@ be found in Appendix B, while Appendix C discusses
diffusion effect(within a linear approximation in the surface NOW the results are modified when considering the model on
slopes, whereas theV, term models in the simplest way a triangular latticdas opposed to t_he square_lattlce_stud|e_d in
effects due to a crystalline structure. Larger numerical simuthe rest of the papgrand Appendix D contains a discussion
lations of Eqs.(1) and (2) are nevertheless needgl] in on results for substrate dimensions different from two.
order to settle the question about the character of the equi-
Iib(ium phase transition. On the other ha_nd, .Lange_vin sjmu— Il. VARIATIONAL MEAN-FIELD METHOD:
lations were extended to .out—of-equn!bnum situations EQUILIBRIUM PROBLEM
[19,20Q, finding that the mobility(to be defined belowbe-
haves in various different ways, depending on the model Following Saito[5], our main assumption is that the most
parameters. relevant features of modé€2) can be described by a simpler,
The above results make it even more natural to expect thaolvable Hamiltonian:
both Hamiltoniang1) and (2) are related with each other in
a similar way as the dG and sG models are. In fact, the T
Hamiltonian (2)_ can indeed be c_ierlv_edsee Appendix A H0=§ > s Ygh(g)h(—q), 3
from Eq. (1) using certain approximatiod22], although the q
derivation we present is not unique. Other authors have pro-
posed different approximatiorighrough a mapping to & Vec- \yhareh(q) are the Fourier components of the height field
tor Coulomb gapto reproduce the integer height restriction
[23], yielding continuum approximations of E(l) different
from Eq.(2). In this paper we restrict ourselves to the study h(Q) = 1 S eidih
of the properties of E¢2), in the hope that they will reflect (a)= L : e ;. 4)
some of the properties of the dLr modé&). Specifically, our
aim is to study analytically the Lr modél) using the con-
tinuum approximation(2) and a variational mean-field Here we consider periodic boundary conditions. Thays,
method proposed by Saito two decades Hgjofor the sG ~ =27ny/L with n,=—(L—-1)/2,... /2 and a similar rela-
model. Despite its simplicity, this method anticipated thetion holds forq,. Equation(3) defines a Gaussian Hamil-
value of the transition temperature and the infinite-ordefonian in which the values of(q) areL? free parameters.
character of the transition occurring in the sG model, whichWe will fix them by minimization of the variational free
were later confirmed by renormalization-group calculationsenergyF,= Fo+(H —Ho)o, Which is known to be an upper
and by numerical simulationf24]. Since then, this varia- bound of the exact free energyof model(2) by the Bogo-
tional mean-field theory has been used in other interfaciubov thermodynamic inequality?]
problems, like the preroughening transitip@5], surface
growth over disordered substratE®6]|, etc., showing that _ _
despite its simplicity this approach can indeed explain the F<F=Fot(H=Ho)o, ©
topological properties of the corresponding phase diagram
and, in some cases, provide accurate predictions for monehere 7 is the free energy of modé, and(- - - ), stands
specific properties like the values of the transition temperafor the average with respect to the Boltzmann faetofo’T.
ture and of the critical exponents. One might argue that in Using the Hamiltoniang2) and (3) we obtain for the
this mean-field-type treatment, fluctuations are not handledght-hand side of Eq(5):
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equilibrium, h=0]. By minimizing F, with respect to the
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FIG. 1. Variational mean free-energy differenté, as a func-

tion of the (inverse of th¢ correlation length for different tempera-
tures. The values of; and &, are only displayed for th& <Tg
case. The physical value of the correlation lengghys is given by
the global minimum ofA %, . For temperature3 > Tg the global

minimum is always reached &t '=0. The parameters used are
Vo=a, =«k=1. Units are arbitrary.

where y=64Voa® kT 27 2. As shown in Appendix B,
there are different solutions of E(L2) depending ony (and
therefore on temperatuteThus,é 1=0 is always a solution
of Eq. (12, and is the unique solution forT>T.
=16V5%«*%a, /ew. However, forT<T there appear two

where { is a constant given by the self-consistent relationgiher finite solutions @E§1_1<§2_1 of Eq. (12). In order to

[notew? depends org through Eqs(7) and(9)]

472V, 272
kE I=—— Oexp( ——2W2>.
ai al

(10

Equations(9) and (10) are the solution to the equilibrium

problem. We observe that the variatiof@aussiahapproxi-
mation of Hamiltonian(2) has a structure fact@(q) similar

to that of the linear MBE equation. The only effect of the

potential is to introduce a correlation lengéhgiven self-

consistently by Eqs(10) and (9). Among all mathematical

solutions of Eq(10), the best approximation to modgl) is

check which of the three roots providés,sin this tempera-
ture range, we compute the free-energy difference

AR 1
T\li(zg) Em[fv@)—fv((lzo)] (13
5_2 ﬁe*Tﬂ'zé—Z/(‘lKai) + O( 574) ) (14)

~16 T

We plotAF, (&) in Fig. 1 for different values of.
For T<Tc, as can be seen in the figuraFA,(&) has

given by that value of that minimizes the variational free ndeed a local maximum &t * and a local minimum a, *,

energyFy,, which we denote by¥,,s. Note all roots of Eq.

while for T>T both disappear. As derived in Appendix B,

(10) can be easily shown to be stationary points of the funcsg, temperatures aboves= (e'%/2)T-=0.82T., the varia-

tion Fy(§).

In order to proceed analytically, we need to take the con

tinuum limit of the integrals appearing in EJ$) and(7). In
this limit, we make the replacemeht‘zzq—>(27r)‘zqu,
and we can approximate(q) =q*, hence using Eq9) we
get

TE T

W= ! qu T =
(2m)? klo(q)+&4] 8k

+O(£79).
1y

drmd

Keeping the dominant term in the above equatiorpowers
of &), and definingx=2«Y2a, T"Y?7"1¢7 1, Eq. (10) be-
comes

a_ 12

X =ye , (12

tional free-energy difference has its global minimum at
'gghlyszo. However, for lower temperaturds<Tg, the finite
correlation lengtr¢, features a lower value of the variational
free energy than the infinite correlation length solution,
hence £,nys= €, in this temperature range. Summarizing,
within the variational approximation a roughening transition
takes place at a temperature

8
TR:

a, kY32, (15)

71_el/2

Above Tg the correlation length is infinite and the surface is
rough, with the same properties as the linear MBE model,
i.e., S(q)~q* andw?~L2. Below Tk the surface is flat with
a finite correlation length equal #. When we approach the
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' ' ' ' our model, but also the dynamics of the system fluctuations
. around the equilibrium statéor F=0). Our approximation
[5] to the study of Eq.2) will be to assume a Gaussian
time-dependent probability distribution for the height field.
Thus, we only have to calculate the first two moments of the
probability distribution, namely, the mean heigf27] h
=(h;(t)) and the second momenth(q,t)h(—q,t))
=35(q,t). Using Egs.(2) and(17) (see a detailed account in
Ref.[25]) we find

F, /L

dh E 27Vq | . [27h; 18
dt a, SN 5 A (18)
FIG. 2. Variational free energg, as a function of temperature ds(g,t)
for model (2) using the exact expressidl) (solid line) and our dt’ =—-2T9q,t) Sgl(q)—Sfl(q,t)
continuum approximatiofdashed ling In both casesF, develops
a cusp afT=Tg due to the jump in the physical value éf The )
inset shows the values @%; (lower curve$ and T as functions of n 4wV, 2mh; (19
V, within our continuum approximatiofdashed linesand using 2T ¢ a, )
the exact discrete expressiotsolid lines. In both casesTr=T¢ +
~V(1)/2. The parameters used agig=«=1 and the units are arbi- SF.
trary. =—4TYq,t) qut)’ (20

roughening temperature from below, the correlation length h ithi G . L
doesnot diverge but, rather, tends to a constant valsee where, within our Gaussian approximation,

Appendix B given by 27h
w

27h
2\ 112 <sin T )>=e2ﬂ2wz(t)’afsin
3 4kaf N
f(TeTR)=(—2> (16)
RT
. . . . . . co 2mh — g 2mwWV/al o 2mh (22)
implying the roughening transition &ty is of first order. a, a,
Specifically, a cusp develops in the free enefgyas a func-
tion of temperature at =Ty, as depicted in Fig. 2. with Wz(t) being the time-dependent surface roughness. In

Although the results in this section have been obtainedll cases, we will study the set of coupled differential equa-
using a certain continuum approximation, we have numeritions (18) and (19) subject to the initial conditiorh;(t=0)
cally verified all our conclusions using the exact discrete=0 for all substrate positionis
sums in Eqs(6) and(7). The exact variational results for the
correlation length and the values dfc and T for L A. Equilibrium
=1024 are compared in Fig. 2 to the approximate analytical S . B . .
expressions obtained in this section. We see that a first-order In equilibrium, i.e., forF=0, the solution OT Eq(18) is
transition indeed takes place, although the valueS;oand =0 [note Eq.(21)] and the solution of E¢(19) is the same
T are modified. However, we still observe the nonlinear2S that of Eqs(8) and(10) obtained in the previous section.
dependence 6Tk on V,, see inset of Fig. 2. The interest of Eq(19) is that it allows us to study dynami-
cally how the system chooses the physical value of the cor-
relation length, and corroborate the results obtained in the
previous section from the point of view of Langevin dynam-
ics. Thus, we will integrate numerically the complete set of

In this section, we study the near-equilibrium dynamics ofL? discrete equationél8) and(19) and perform the follow-
model (2) by means of the generalized Langevin growthing experiment: starting from a flat surface afe-0, we
equation increase temperature by a certdagmall) amount and wait

until the system reaches equilibrium. Then, we increase tem-
ahi(t) perature by the same amount and repeat the equilibration
Ja F- shi(t) +i(b), (17) process. When the temperature is high enolgh, once the
system is in the rough pha@see decrease temperature by the
where 7#;(t) is a white noise with correlations same amount and repeat the process of equilibration Tntil
(mi(t)m;(t'))=2T6; j6(t—t") andF is the flux of incoming =0 is reached back closing a temperature cycle.
particles in the surface growth picture, or a chemical- We observe that the equilibrium first-order transition
potential difference in a generic context. This equation defound in the previous section indeed induces hysteresis in the
scribes not only the nonequilibrium statistical dynamics ofsystem correlation lengtfsee Fig. 3 when the system is

IIl. DYNAMICS WITHIN THE GAUSSIAN
APPROXIMATION
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FIG. 3. (Inverse of the¢ physical correlation length as a function . ) )
of temperature, as determined from E¢E9) and (9). The arrows FIG. 4. Surface mobility as a function dffor different values

indicate the heating and cooling experiment explained in the textf the driving fluxF. The values of the mobility are obtained from
Parameters used a§=a, = x=1 andL=1024 and the units are Eq. (25) using Egs.(9) and (10) with the parameter valueg,= «
arbitrary. =a, =1 and the units are arbitrary.

heated starting fronT=0, in the sense that the roughening Which is simple to integrate analyticallgxact expressions
transition takes place at theghertemperaturdc andnotat  for the solution can be found in Refg5] and[25]). This

Tr. The reason is that, for all up to T¢, the system stays €duation has two different solutions depending on the values
in the local &/, minimum at &,, even though forTgk<T  of F. If F<F., thenh tends to a constant value and the
<Tc the free energy already has its global minimum atsurface does not grow. If we define the surface mobijlitss

& 1=0, since there is an energy barrier for the system to

jump across the local maximum iaAZ,. Once the local 1/dn
minimum at¢, disappeardi.e., for T=T.), the surface is w= _<_} (25)
rough and exhibits an infinite correlation length. Conversely, F\dt

when the system is cooled down startinglat T, the sys-

tem remains in the rough phase unfi=0 is reached be- where the overline stands for average over a time larger than

causeé =0 is always a free-energy minimum. w1, then forF>F_, one obtains from the exact solution of
Eq. (24) a nonzero value fop:

B. Nonequilibrium

1/2
In this section we allowF#0 in Egs.(18) and (19), in 1 F2 6
which case the former no longer has the trivial solutibn ( w =

=0). Rather, when the fluk is small(quasiequilibrium con-
dition) we expect the system to feature a structure facto
S(q,t) of the same form as in equilibrium, all nonequilib-
rium effects reflecting in théossibly nontrivial behavior of
the average height. Actually, numerical simulati¢t9,20]

of the full nonlinear mode(2) seem to confirm this expec-
tation. For this reason we neglect the feedback effect of th

evolution ofﬁ(t) on the structure factoB(q,t) and take

In Fig. 4 we plot the surface mobility as a function Df
Using the equilibrium solution fo€ described in Sec. II,
for temperatures above roughening>Tg), we have that
£omye=0, which implies F;=0 and u=1. Thus, above
oughening the surface shows linear growth with a maximum
%unit) mobility. In the flat phase {<Tg) the mobility is
equal to zerdi.e., the surface does not mgvier a small flux
KT F<F.(T). For larger values of the flukF>F.(T)], the
;' (23) mobility depends nonlinearly o for all temperatures up to
k[w(q)+ & 4] Tr and actually the surface moves featuring an oscillatory
roughness reminiscent of reflection high-energy electron dif-
where¢ is given by the physical equilibrium solution of Sec. fraction oscillations in MBE systems, see Rdfs9,28. Due
[I. Within this approximation, to the jump of the correlation length @t=Tg, the mobility
also has a jump at this temperature value. These three behav-
> 9 2 iors of the surface mobility as a function of temperature and
exp{—27“w*/ai} driving flux agree with those obtaindd 9,20 for the full
model(2), except for the discrete jump @f atT=Tg. They
have been summarized in th€,fF) phase diagram shown in
Fig. 5, whose form differs from that computed numerically
— in Ref.[19] only in the mentioned jump of the mobility at
—F—F,sin— (24  T=Tg. A more detailed discussion on the relevance of Fig.
a 5 to, e.g., MBE systems can be found in Réf9].

S(q,t)=

27TVO
Fe(T)=

becomes a constant and E@8) can be written as
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3n | ‘ ' ' ' ] tinuum roughening transition as in the discrete Gaussian and
sine-Gordon models, although with strong size dependence
flat, oscillatory in the dLr case for sizes up to moderate, but not large. The
other (analytica) improvement is to perform a dynamic RG
2n rough ] analysis of Eq(2) along the lines of that in Ref6] for the
ke, sG model. This study is particularly important bearing in
mind that the lattice potential is expected to contribute a
Tt ] surface tension, absent in E@), which should then domi-
flat, non-moving nate the scaling behavior as compared with surface diffusion
T; [1]. This phenomenon is clearly beyond our mean-field ap-
‘ . , , proach, which neglects parameter renormalization, and will
0.0 0.5 1.0 15 20 25 be the subject of a forthcoming publicatif8id]. In any case,
T the study presented in this paper does indeed predict a phase
diagram in two dimensions, including the numerical value of
FIG. 5. Phase diagram as a function of temperaluaad driv-  the roughening transition temperature, that compares well
ing flux F for model(2) within the variational approximation. The \vith numerical simulation§20,21] of the complete model
solid Iim_e separating the flat, nonmoving and the flat, oscillatory(z) and reflects the qualitative features of, e.g., the growth
phases is the locus =F(T). The parameters used a%=a.  gynamics of some MBE systems. Moreover we expect the
=«=1 and the units are arbitrary. results presented here to be even more accurate in dimen-
sions higher than two.

0

IV. DISCUSSION AND CONCLUSIONS
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previous sections predict a first-order phase transition and

the associated hysteresis phenomenon. In particular, within a APPENDIX A: DERIVATION OF THE CONTINUUM
Gaussian approximation, Langevin dynamics predicts that a APPROXIMATION TO THE LAPLACIAN

rough surface can preserve its infinite correlation length ROUGHENING MODEL

when cooled down across the roughening temperature. . . .
Moreover, we have found that these results apply both on the Herg we follow Ref[22] in order to derive a.gontlnuum
square and on the triangular latticesge Appendix € Hys- approximation to the dLr modél). The dLr partition func-
teresis behavior and a first-order transition have been retlon Is given by

ported in Refs[15] and[16] for models related with the dLr

model(1) on the square lattice, and for the dLr model onthe z = > exp[ _x > [Ah(r)]z], h(r)/a, eZ,
triangular lattice[17]. However, as mentioned in the Intro- {h(r)} 2T =%

duction, other authors seem to obtain two KT transitions for (A1)

the dLr model, both on the squdr29] and on the triangular ) i )

[30] lattices. Note that our Langevin dynamics results withinwhere the sum extends over all possible configurations of
the Gaussian approximation yield a discrete jump in the surf(r). The integer height condition can be implemented by
face mobility x at T=Tg, which isnotfound in simulations ~ Using delta functions in the integrals, thus giving

of the full nonlinear mode(2). This might indicate that the

first-order character of the transition is in our case an artifact -

of the variational approximation. Moreover, this approxima- ZdLr:f Dh(r)L(r)Z_w oLh(r)—n(r)]

tion (see Appendix D also predicts a phase transition for

model(2) in d=1, which is also obtained for the sG model. K 2

This result points out the limitations of this approximate Xexp{ o7 2 [Ah(DT?}, (A2)

scheme for situations in which fluctuations are very relevant

for the system behavior, as in thle=1 case. Since mod€?)  \hereDh(r)=I1, dh(r). Inserting the following representa-
features strong fluctuationgs does, e.g., the linear MBE {jon for the sum of delta functions in E¢A2),
equation[1]), it is desirable to go beyond our present mean-

field approach to this model. We can take two steps in this o B
direction. One(numerical is to perform extended simula- 2 S(h—n)= lim — exp{ —B?sir’wh}, (A3)
tions of both the dLr model and mod&) [or, equivalently, n=-o B\ T

its equilibrium Langevin dynamic$l7)]. The results[21]
seem to indicate that iboth cases there is only one con- we obtain
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20 - y - obtained by requiring that the slopesyof x andy = f(x) be
equal atx=xg. With these two equations it is easy to obtain
Ls- Xs=2" Y2 and yc.=e?/4. Using the definition ofy, the tem-
perature for whictt " *=0 is the only solution of Eg(10) is
— then given by
E 104
-~ 16\/(%/2,(1/2al
Te=———7—. (B4)
0.5 em
Now, for T<T. we have to determine which of the three
0.00(’) e s S 20 solutions of Eg.(B1) provides the physical correlation

length. Sinceé 1=0 is the unique solution for high tem-

X peratures, we take as a reference valigé 1=0), and
FIG. 6. Graphical representation of E&2). The dashed line is NOt€ thatA F(&) = Fy(£) _]:V(‘f»__lzo) Is stationary at any
root of Eq.(10). Thus, we will consider, as the physical
solution for the correlation length, that root of Ed.0) for
which F, has an absolute minimum. Starting out with high
B temperatures, the conditioﬂn}‘v(lg)zo will signal the tem-

— i — _ K 2 erature atand below which £~ *=0 ceases to be the global
Zaur= im V7 f Dh(r)exp[ 2T Z {[Ah(r)] Eninimum of the variational free energy and thus thegsystem
physical correlation length. Using our previous notation, the
condition A F,(£)=0 reads

the y=x function, while the solid lines showy= y¥% ¥4 for
different values ofy.

B—o

+2Tstir127rh(r)}}. (A4)

2= ,yrefl/xz, (BS)
The sum in the exponent of EGA4) is the Hamiltonian2), ) ) s )
with the identification B2=V,/kgT. A completely analo- Wherey’=64«aiVo/(7°T). Using the same argument as

gous calculation relates the dG and sG mo@2H. above, it is easy to show that for < yz=e there are non-
zero solutions of Eq(B5). This means, using the definition
APPENDIX B: SOLUTION OF THE SELF-CONSISTENT ~ Of ¥, that there is a temperature given by
EQUATIONS o112
Tr=—%"T¢, (B6)

In this Appendix we calculate the self-consistent solution
of Egs.(9) and(10) for the equilibrium correlation length of
the variational approximatiofB8) to model(2). By defining  such that foiT <Tg the global minimum of the free energy is
x=2k%a, T~ ¥27"1¢1 and y=64V,a’«T 27 2, Egs. attained for a correlation length# 0, whereas folf =Tg the
(9) and (10) become, within the continuum approximation physical solution if,;hlygo.
made in Sec. I,

2

) APPENDIX C: TRIANGULAR LATTICE
xt=ye 1, (B . . -—
The Laplacian roughening model was initially proposed
It is obvious that Eq(B1) always has the solution=0, and by Nelson on the triangular lattickl3]. Thus, it is worth
that for some values of it may also have nonzero solutions. Studying how do the features of our mod2j change when
Our first aim is to determine the critical value pffor which ~ the substrate geometry is different from the square lattice
x=0 is the unique solution. To this end, we rewrite the equaconsidered in the text. Nevertheless, we expect that only

tion in the following way: nonuniversal quantities—such as the transition temperature
and the numerical value of correlation length—depend upon
x= 14 ~ 14 (B2) the lattice geometry. The Laplacian roughening model on the

triangular lattice is given by

Now the solutions are the intersections of the function
2 . . . K

= f(x) =y~ Y* with the straight liney=x. As we can Hir=% >, [E (hi—hits)
see in Fig. 6, fory> vy there are three solutions of E®2), 27 0
two solutions fory= vy, and only the trivial solutiorx=0
for y<vyc. The value ofy can be calculated using that for
v=vc the unique solutiorx=x,#0 verifies Eq.(B2) and
also the equation

2
(CY

with i + § being any of the six nearest neighbors of siteor
this case [25], w(q)=16{sir?(q,/2)+ sirf{(a+3ay)/4]
+sir{ (o V3ay)/41}%,  where gq=(n,/L)b,+(n,/L)by,
with b,=27[e,—(1/V3)e,] andb,=(47/+/3)e,, wheren
1 5 =—(L—-1)/2,... /2 andeg are the standard basis vectors.
1=ydt—e 1% (B3) In the continuum limit,Sy(q)=4T/(9«q*), and we recover
2X3 Eq. (10). Taking the continuum limit, i.e,
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2 Joz2m? 47 Jo aaa T4~ d 8smdidt T

1 > V3 d?q 3 (@3 aq AFR(E 4-d 7Ky 4 Voe,z,,zwz/aZ
— —_ = L.
L2 “q

(D4)
where BZ denotes the first Brillouin zone, we get
, In this case, the local minimurd, *#0 is also the global
W2 T f” q dq’. (C2 minimum and the physical solution for temperatures below
2mk(21\3)2 Jo q'4+ £ 4(2143)2 the roughening temperatur@ € T$~), which is given by

Thus, by definingT’ =T/3, and&’ =34, we get the same d

Eq. (12) but with redefined constanft’ and ¢&’. One can Te4=—gl-dATd=4, (D5)
readily reproduce all the results obtained in the text, simply 4

by making the replacemen®—T' and é—¢'. In conclu-

sion, on the triangular lattice a first-order roughening transiFor temperatures above roughenifg=(Ta %), £ *=0 pro-
tion is also obtained, the only effect of the geometry being &ides the global free-energy minimum. Thus, tbx4 there
shift in the value of the roughening temperatuTégang is a first-order roughening transition Tﬁf’f"’. Note this in-

= 3Tiuare cludesd=1, which might seem conflictive since in this case
model(2) is expected to be in the rough phase for all values
APPENDIX D: SUBSTRATE DIMENSIONS d#2 of T [13]: In d=1 thermal fluctuations are expected to de-

stroy the ordered flat phase for any temperature value. Our
In this Appendix we discuss the possibility to find a result can be understood by noting ttfaf is not a true free
roughening transition in equilibrium when mod@) is de-  energy, in the sense that it is not the free energy of any
fined on a substrate of generic dimensibrin such a case model[32], but rather an upper bound for the free energy of

Eq. (10) is still valid, but with model (2). Actually, exactly the same result is obtained in
§ the variational study of the sG model ih=1 [5]. Note that
W2(§)=f d’q T (D1) in this reference the analysis of tde=1 case is incomplete,
2m)9 k[w(q)+ & 4] with the incorrect conclusion that the variational theory pre-

dicts no phase transition whah=1. The complete expres-
within the continuum limit. For substrate dimensidi»4,  sion forA 7,(§) analogous to EqD4) indeed shows that for
the integral(D1) is finite for £~ 1=0, namely,w?(¢~1=0) the sG model id=1, the variational approximation predicts
=Kqm *T/[k(d—4)] (whereK is the d-dimensional an- a nonzero temperature below which the physical value of the
gular integralK 4= [d%"1Q/(27) =279 (27)T'(d/2)]).  correlation length is finite.
Thus, ¢ =0 is no longer a solution of Eq10). Therefore Finally, ford=4, Eq.(10) is very similar to that obtained
the system has no rough solution and is in the flat phase fday Saito[5] for the sine-Gordon model
all temperatures. On the other hand, t4, the integral
above may be approximated by —y 472V,
a?

(1+ W4§4)—(T/16Kaf_). (DG)

T 7TKd
206\ 4—d
WA= Tsinmdim ¢ (02)
_ . _ _ Following Saito’s analysis, we readily obtain that fib+ 4
In this case,§”"=0 is always solution of Eq(10), there  our model has a Kosterlitz-Thouless transitionTat T4~ *

being two additional finite solutions whan<T¢.Thevalue  =16xa®. The correlation length now diverges &s-exp
of Tc can be calculated using the same argument a8 in {— A/(T—T2"4} whenT—T3 %~ (A being aT independent
=2 andis constant
s . oy, \ 1-did In summary, within the variational approach, our model
g<q_ SKALSINAm/4) [ 47V, (D3) displays a first-order transition fak<4 between a flat phase
c (4—d)Kger® | «ka? and a rough phase with the properties of the linear MBE

equation. For the marginal dimensiah=4 this transition
In order to know which solution of Eq10) minimizes the becomes of the Kosterlitz-Thouless type, whereasdford
variational free energy, we calculadeF,,, which now reads the surface is in the flat phase for all temperature values.
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