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Variational mean-field study of a continuum model of crystalline tensionless surfaces
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We study analytically the equilibrium and near-equilibrium properties of a model of ad-dimensional surface
relaxing via linear surface diffusion and subject to a lattice potential. We employ the variational mean-field
formalism introduced by Saito for the study of the sine-Gordon model. In equilibrium, our variational theory
predicts a first-order roughening transition between a flat low-temperature phase and a rough high-temperature
phase with the properties of the linear molecular-beam epitaxy equation. Moreover, the study of a Gaussian
approximation to the Langevin dynamics of the system indicates that the surface shows hysteresis when
temperature is continuously tuned. Out of equilibrium, these approximate Langevin dynamics show that the
surface mobility can have different behaviors as a function of a driving flux. Some considerations are made
regarding different underlying lattices, and connections are drawn to related models or different approaches to
the same model we study.
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I. INTRODUCTION

During the last decade, there have been great theore
and experimental efforts to understand surface growth. T
is due to possible applications, e.g., to the production of t
films and, from the basic point of view, to the interesti
examples growing surfaces provide of nonequilibrium sta
tical systems@1#, in some cases with strong relation to re
evant equilibrium systems@2#. A very important example is
provided by the discrete Gaussian~dG! model, which de-
scribes the universal features of the equilibrium roughen
transition of many surfaces@3#. This transition is driven by
temperature fluctuations, the value of the critical tempera
being nowadays regarded as a standard property of,
metals@4#. The equilibrium roughening transition of the d
model is in the Kosterlitz-Thouless~KT! class, and thus the
model is related to other important models featuring a sim
transition, such as theF model or the Coulomb gas@2,3#.
The dG model describes a surface minimizing surface a
~to linear approximation!, in which the surface height take
on integer values. Relaxing the latter condition leads to
sine-Gordon~sG! model for a real valued height field subje
to surface tension and to a~lattice! potential favoring integer
values of the field. The sG model is amenable to approxim
analytic treatments@5,6#, which have allowed to develop
rather complete picture of the equilibrium roughening tra
sition, and of the near-equilibrium properties as determin
by Langevin dynamics@7# or kinetic Monte Carlo simula-
tions @8#. However, several authors have recently raised
idea that the KT transition in the sG model might be replac
by some kind of first-order discontinuity@9,10# when the
strength of the potential is increased further away from
renormalization-group~RG! perturbative regime, a resu
whose existence had been speculated for a long time@11#. In
this strong potential regime, the perturbative RG treatme
break down and mean-field-type methods have been use
study the transition.

There exist some interface phenomena contexts in wh
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the most relevant relaxation mechanism taking place at
interface can be modeled as minimization of surface cur
ture, instead of minimization of surface area as in the
model. Instances of these phenomena are membranes@12#,
two-dimensional melting@13#, or growth by molecular-beam
epitaxy ~MBE! @1# in which the main relaxation mechanism
is surface diffusion, which in the simplest approximation
described effectively as surface curvature minimization. I
close analogy with the dG model, several authors have s
ied the effect of the integer height value restriction in the
situations, but the understanding is not as complete as in
dG case. For instance, in some investigations of the t
dimensional melting problem@13# Nelson was led to formu-
late the discrete Laplacian roughening model~dLr! model

H5
k

2 (
r

@Dh~r !#2, h~r !/a'PZ, ~1!

where r is the lattice position on aL3L dimensional sub-
strate,a' is the vertical lattice constant, andD is the lattice
approximation to the Laplacian operator. This paper in
cated that Hamiltonian~1! should have two phase transition
both of them in the KT universality class, which are relat
with the unbinding of disclinations and dislocations in t
melting problem. This two-step melting mechanism
known as the Kosterlitz-Thouless-Nelson-Halperin-You
theory for two-dimensional melting. Despite the analytic
and numerical efforts spent@14#, this picture has not been
fully verified for model~1!, some authors claiming a singl
first-order roughening transition occurs@15–17#. The situa-
tion is not settled either for the actual physical problem
namely, two-dimensional melting—the Hamiltonian~1! was
intended to model@18#, since both first-order and KT-type
transitions have been observed in experiments and nume
simulations.

On the other hand, in Ref.@19# the following Hamiltonian
was proposed to study the effects of the crystalline struc
in tensionless surfaces
©2001 The American Physical Society04-1
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H5
k

2 (
r

$@Dh~r !#21V0@12cos 2ph~r !/a'#%,

h~r !PR. ~2!

Numerical Langevin simulations@19,20# showed an equilib-
rium roughening transition, similar to that in the sG mod
For temperatures below a critical valueTR , the lattice poten-
tial is relevant, imposing a finite value for the correlatio
lengthj, and thus the surface is flat. Namely, the roughn
w2[(1/L2)( r@h(r )2h̄#2 @where h̄5(1/L2)^( rh(r )&# is fi-
nite andL independent. For temperatures higher thatTR , the
lattice potential becomes irrelevant andj diverges, the sur-
face being rough. This means that the roughness dive
with the system size, in the same way as occurs if we t
V0[0 in Eq. ~2!, for which case the Langevin dynamics
that of the so-called linear MBE equation@1#. In studies of
epitaxial growth systems by Langevin dynamics, the te
proportional tok in Eq. ~2! generates the relevant surfa
diffusion effect~within a linear approximation in the surfac
slopes!, whereas theV0 term models in the simplest wa
effects due to a crystalline structure. Larger numerical sim
lations of Eqs.~1! and ~2! are nevertheless needed@21# in
order to settle the question about the character of the e
librium phase transition. On the other hand, Langevin sim
lations were extended to out-of-equilibrium situatio
@19,20#, finding that the mobility~to be defined below! be-
haves in various different ways, depending on the mo
parameters.

The above results make it even more natural to expect
both Hamiltonians~1! and ~2! are related with each other i
a similar way as the dG and sG models are. In fact,
Hamiltonian ~2! can indeed be derived~see Appendix A!
from Eq. ~1! using certain approximations@22#, although the
derivation we present is not unique. Other authors have
posed different approximations~through a mapping to a vec
tor Coulomb gas! to reproduce the integer height restrictio
@23#, yielding continuum approximations of Eq.~1! different
from Eq. ~2!. In this paper we restrict ourselves to the stu
of the properties of Eq.~2!, in the hope that they will reflec
some of the properties of the dLr model~1!. Specifically, our
aim is to study analytically the Lr model~1! using the con-
tinuum approximation ~2! and a variational mean-field
method proposed by Saito two decades ago@5# for the sG
model. Despite its simplicity, this method anticipated t
value of the transition temperature and the infinite-or
character of the transition occurring in the sG model, wh
were later confirmed by renormalization-group calculatio
and by numerical simulations@24#. Since then, this varia
tional mean-field theory has been used in other interf
problems, like the preroughening transition@25#, surface
growth over disordered substrates@26#, etc., showing that
despite its simplicity this approach can indeed explain
topological properties of the corresponding phase diag
and, in some cases, provide accurate predictions for m
specific properties like the values of the transition tempe
ture and of the critical exponents. One might argue tha
this mean-field-type treatment, fluctuations are not hand
03610
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properly and might eventually modify the phase diagra
Nevertheless, based on the success of Saito’s mean-
treatment for the sG model, we expect the results of
analysis to be relevant to model~2!, in particular for high
dimensions, where fluctuations are suppressed.

The present paper is organized as follows. In Sec. II
study the equilibrium Hamiltonian~2! for a two-dimensional
substrate, within the variational scheme of Ref.@5#; we de-
rive expressions for the roughening temperature and corr
tion length below the transition. The precise value of t
transition temperature within this approach is determined
the process of elucidating the character of the transition. S
tion III is devoted to the approximate study of the Langev
dynamics of~2! within a Gaussian approximation for th
probability distribution of the height field. A discussion o
the results obtained and our conclusions are found in S
IV. Appendix A contains the formal derivation of the con
tinuum model~2! from Eq. ~1!. Some computational detail
on the solution of self-consistent equations relevant to Se
can be found in Appendix B, while Appendix C discuss
how the results are modified when considering the mode
a triangular lattice~as opposed to the square lattice studied
the rest of the paper!, and Appendix D contains a discussio
on results for substrate dimensions different from two.

II. VARIATIONAL MEAN-FIELD METHOD:
EQUILIBRIUM PROBLEM

Following Saito@5#, our main assumption is that the mo
relevant features of model~2! can be described by a simple
solvable Hamiltonian:

H05
T

2 (
q

S21~q!h~q!h~2q!, ~3!

whereh(q) are the Fourier components of the height field

h~q!5
1

L (
j

eiq•r jhj . ~4!

Here we consider periodic boundary conditions. Thus,qx
52pnx /L with nx52(L21)/2, . . . ,L/2 and a similar rela-
tion holds forqy . Equation~3! defines a Gaussian Hami
tonian in which the values ofS(q) are L2 free parameters
We will fix them by minimization of the variational free
energyFV[F01^H2H0&0, which is known to be an uppe
bound of the exact free energyF of model~2! by the Bogo-
liubov thermodynamic inequality@2#

F<FV[F01^H2H0&0 , ~5!

whereF0 is the free energy of modelH0 and^•••&0 stands
for the average with respect to the Boltzmann factore2H0 /T.

Using the Hamiltonians~2! and ~3! we obtain for the
right-hand side of Eq.~5!:
4-2
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FV

T
52

1

2 (
q

ln 2pS~q!1
1

2 (
q

@S0
21~q!2S21~q!#S~q!

1
L2V0

T H 12expS 2
2p2

a'
2

w2D J , ~6!

where we have definedS05T/@kv(q)# with v(q)
516@sin2(qx/2)1sin2(qy/2)#2 and

w25
1

L2 (
j

hj
25

1

L2 (
qÞ0

S~q! ~7!

@note that model~2! is symmetric underh→2h and thus, in
equilibrium, h̄[0#. By minimizing FV with respect to the
parametersS(q), we find they have to verify

S21~q!5S0
21~q!14p2

V0

a'
2 T

expS 2
2p2

a'
2

w2D . ~8!

We can rewrite Eq.~8! by noting that the second term on th
right-hand side does not depend onq. Hence

S~q!5
T

k@v~q!1j24#
, ~9!

where j is a constant given by the self-consistent relat
@notew2 depends onj through Eqs.~7! and ~9!#

kj245
4p2V0

a'
2

expS 2
2p2

a'
2

w2D . ~10!

Equations~9! and ~10! are the solution to the equilibrium
problem. We observe that the variational~Gaussian! approxi-
mation of Hamiltonian~2! has a structure factorS(q) similar
to that of the linear MBE equation. The only effect of th
potential is to introduce a correlation lengthj given self-
consistently by Eqs.~10! and ~9!. Among all mathematica
solutions of Eq.~10!, the best approximation to model~2! is
given by that value ofj that minimizes the variational fre
energyFV , which we denote byjphys. Note all roots of Eq.
~10! can be easily shown to be stationary points of the fu
tion FV(j).

In order to proceed analytically, we need to take the c
tinuum limit of the integrals appearing in Eqs.~6! and~7!. In
this limit, we make the replacementL22(q→(2p)22*dq,
and we can approximatev(q)5q4, hence using Eq.~9! we
get

w2.
1

~2p!2 E dq
T

k@v~q!1j24#
5

Tj2

8k
2

T

4kp3
1O~j24!.

~11!

Keeping the dominant term in the above equation~in powers
of j), and definingx52k1/2a'T21/2p21j21, Eq. ~10! be-
comes

x45ge21/x2
, ~12!
03610
-

-

where g564V0a'
2 kT22p22. As shown in Appendix B,

there are different solutions of Eq.~12! depending ong ~and
therefore on temperature!. Thus,j2150 is always a solution
of Eq. ~12!, and is the unique solution forT.TC

516V0
1/2k1/2a' /ep. However, forT<TC there appear two

other finite solutions 0,j1
21,j2

21 of Eq. ~12!. In order to
check which of the three roots providesjphys in this tempera-
ture range, we compute the free-energy difference

DFV~j!

TL2
[

1

TL2
@FV~j!2FV~j2150!# ~13!

.
j22

16
2

V0

T
e2Tp2j2/(4ka'

2 )1O~j24!. ~14!

We plot DFV(j) in Fig. 1 for different values ofT.
For T<TC , as can be seen in the figure,DFV(j) has

indeed a local maximum atj1
21 and a local minimum atj2

21,
while for T.TC both disappear. As derived in Appendix B
for temperatures aboveTR5(e1/2/2)TC.0.82TC , the varia-
tional free-energy difference has its global minimum
jphys

21 50. However, for lower temperaturesT,TR , the finite
correlation lengthj2 features a lower value of the variation
free energy than the infinite correlation length solutio
hence jphys5j2 in this temperature range. Summarizin
within the variational approximation a roughening transiti
takes place at a temperature

TR5
8

pe1/2
a'k1/2V0

1/2. ~15!

AboveTR the correlation length is infinite and the surface
rough, with the same properties as the linear MBE mod
i.e., S(q);q4 andw2;L2. Below TR the surface is flat with
a finite correlation length equal toj2. When we approach the

FIG. 1. Variational mean free-energy differenceDFV as a func-
tion of the~inverse of the! correlation length for different tempera
tures. The values ofj1 and j2 are only displayed for theT,TR

case. The physical value of the correlation lengthjphys is given by
the global minimum ofDFV . For temperaturesT.TR the global
minimum is always reached atj2150. The parameters used ar
V05a'5k51. Units are arbitrary.
4-3
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roughening temperature from below, the correlation len
doesnot diverge but, rather, tends to a constant value~see
Appendix B! given by

j~T→TR
2!5S 4ka'

2

TRp2D 1/2

~16!

implying the roughening transition atTR is of first order.
Specifically, a cusp develops in the free energyFV as a func-
tion of temperature atT5TR , as depicted in Fig. 2.

Although the results in this section have been obtain
using a certain continuum approximation, we have num
cally verified all our conclusions using the exact discr
sums in Eqs.~6! and~7!. The exact variational results for th
correlation length and the values ofTC and TR for L
51024 are compared in Fig. 2 to the approximate analyt
expressions obtained in this section. We see that a first-o
transition indeed takes place, although the values ofTR and
TC are modified. However, we still observe the nonline
dependence ofTR on V0, see inset of Fig. 2.

III. DYNAMICS WITHIN THE GAUSSIAN
APPROXIMATION

In this section, we study the near-equilibrium dynamics
model ~2! by means of the generalized Langevin grow
equation

]hi~ t !

]t
5F2

dH
dhi~ t !

1h i~ t !, ~17!

where h i(t) is a white noise with correlation
^h i(t)h j (t8)&52Td i , jd(t2t8) andF is the flux of incoming
particles in the surface growth picture, or a chemic
potential difference in a generic context. This equation
scribes not only the nonequilibrium statistical dynamics

FIG. 2. Variational free energyFV as a function of temperatur
for model ~2! using the exact expression~6! ~solid line! and our
continuum approximation~dashed line!. In both cases,FV develops
a cusp atT5TR due to the jump in the physical value ofj. The
inset shows the values ofTR ~lower curves! andTC as functions of
V0 within our continuum approximation~dashed lines! and using
the exact discrete expressions~solid lines!. In both cases,TR}TC

;V0
1/2. The parameters used area'5k51 and the units are arbi

trary.
03610
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our model, but also the dynamics of the system fluctuati
around the equilibrium state~for F50). Our approximation
@5# to the study of Eq.~2! will be to assume a Gaussia
time-dependent probability distribution for the height fiel
Thus, we only have to calculate the first two moments of
probability distribution, namely, the mean height@27# h̄
5^hi(t)& and the second moment̂ h(q,t)h(2q,t)&
5S(q,t). Using Eqs.~2! and ~17! ~see a detailed account i
Ref. @25#! we find

dh̄

dt
5F2

2pV0

a'
K sinS 2phi

a'
D L , ~18!

dS~q,t !

dt
522TS~q,t !FS0

21~q!2S21~q,t !

1
4p2V0

a'
2 T

K cosS 2phi

a'
D L G ~19!

524TS~q,t !
dFV

dS~q,t !
, ~20!

where, within our Gaussian approximation,

K sinS 2ph

a'
D L 5e22p2w2(t)/a'

2
sinS 2ph̄

a'
D , ~21!

K cosS 2ph

a'
D L 5e22p2w2(t)/a'

2
cosS 2ph̄

a'
D ~22!

with w2(t) being the time-dependent surface roughness
all cases, we will study the set of coupled differential equ
tions ~18! and ~19! subject to the initial conditionhi(t50)
50 for all substrate positionsi.

A. Equilibrium

In equilibrium, i.e., forF50, the solution of Eq.~18! is
h̄50 @note Eq.~21!# and the solution of Eq.~19! is the same
as that of Eqs.~8! and~10! obtained in the previous section
The interest of Eq.~19! is that it allows us to study dynami
cally how the system chooses the physical value of the c
relation length, and corroborate the results obtained in
previous section from the point of view of Langevin dynam
ics. Thus, we will integrate numerically the complete set
L2 discrete equations~18! and ~19! and perform the follow-
ing experiment: starting from a flat surface andT50, we
increase temperature by a certain~small! amount and wait
until the system reaches equilibrium. Then, we increase t
perature by the same amount and repeat the equilibra
process. When the temperature is high enough~i.e., once the
system is in the rough phase! we decrease temperature by th
same amount and repeat the process of equilibration unT
50 is reached back closing a temperature cycle.

We observe that the equilibrium first-order transitio
found in the previous section indeed induces hysteresis in
system correlation length~see Fig. 3! when the system is
4-4
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heated starting fromT50, in the sense that the roughenin
transition takes place at thehigher temperatureTC andnot at
TR . The reason is that, for allT up to TC , the system stays
in the local FV minimum at j2, even though forTR,T
,TC the free energy already has its global minimum
j2150, since there is an energy barrier for the system
jump across the local maximum inDFV . Once the local
minimum at j2 disappears~i.e., for T>TC), the surface is
rough and exhibits an infinite correlation length. Converse
when the system is cooled down starting atT.TC , the sys-
tem remains in the rough phase untilT50 is reached be-
causej2150 is always a free-energy minimum.

B. Nonequilibrium

In this section we allowFÞ0 in Eqs.~18! and ~19!, in
which case the former no longer has the trivial solutionh̄
50). Rather, when the fluxF is small~quasiequilibrium con-
dition! we expect the system to feature a structure fac
S(q,t) of the same form as in equilibrium, all nonequilib
rium effects reflecting in the~possibly nontrivial! behavior of
the average height. Actually, numerical simulations@19,20#
of the full nonlinear model~2! seem to confirm this expec
tation. For this reason we neglect the feedback effect of
evolution of h̄(t) on the structure factorS(q,t) and take

S~q,t !.
kBT

k@v~q!1j24#
, ~23!

wherej is given by the physical equilibrium solution of Se
II. Within this approximation,

Fc~T![
2pV0

a'

exp$22p2w2/a'
2 %

becomes a constant and Eq.~18! can be written as

dh̄

dt
5F2Fc sin

2ph̄

a'

~24!

FIG. 3. ~Inverse of the! physical correlation length as a functio
of temperature, as determined from Eqs.~19! and ~9!. The arrows
indicate the heating and cooling experiment explained in the t
Parameters used areV05a'5k51 andL51024 and the units are
arbitrary.
03610
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which is simple to integrate analytically~exact expressions
for the solution can be found in Refs.@5# and @25#!. This
equation has two different solutions depending on the val
of F. If F<Fc , then h̄ tends to a constant value and th
surface does not grow. If we define the surface mobilitym as

m5
1

FK dh̄

dt L , ~25!

where the overline stands for average over a time larger t
m21, then forF.Fc , one obtains from the exact solution o
Eq. ~24! a nonzero value form:

m5S 12
Fc

2

F2D 1/2

. ~26!

In Fig. 4 we plot the surface mobility as a function ofT.
Using the equilibrium solution forj described in Sec. II,

for temperatures above roughening (T.TR), we have that
jphys

21 50, which implies Fc50 and m51. Thus, above
roughening the surface shows linear growth with a maxim
~unit! mobility. In the flat phase (T,TR) the mobility is
equal to zero~i.e., the surface does not move! for a small flux
F,Fc(T). For larger values of the flux@F.Fc(T)#, the
mobility depends nonlinearly onT for all temperatures up to
TR and actually the surface moves featuring an oscillat
roughness reminiscent of reflection high-energy electron
fraction oscillations in MBE systems, see Refs.@19,28#. Due
to the jump of the correlation length atT5TR , the mobility
also has a jump at this temperature value. These three be
iors of the surface mobility as a function of temperature a
driving flux agree with those obtained@19,20# for the full
model~2!, except for the discrete jump ofm at T5TR . They
have been summarized in the (T,F) phase diagram shown in
Fig. 5, whose form differs from that computed numerica
in Ref. @19# only in the mentioned jump of the mobility a
T5TR . A more detailed discussion on the relevance of F
5 to, e.g., MBE systems can be found in Ref.@19#.

t.

FIG. 4. Surface mobility as a function ofT for different values
of the driving fluxF. The values of the mobility are obtained from
Eq. ~25! using Eqs.~9! and ~10! with the parameter valuesV05k
5a'51 and the units are arbitrary.
4-5
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IV. DISCUSSION AND CONCLUSIONS

In this paper, we have performed an analytical appro
mation to the properties of model~2!, which may be relevan
to physical growth processes such as MBE or tw
dimensional melting. We have employed the variational
proximation successfully applied by Saito to the study of
equilibrium roughening transition in the dG model. For o
model system~2!, the equilibrium results obtained in th
previous sections predict a first-order phase transition
the associated hysteresis phenomenon. In particular, with
Gaussian approximation, Langevin dynamics predicts th
rough surface can preserve its infinite correlation len
when cooled down across the roughening temperat
Moreover, we have found that these results apply both on
square and on the triangular lattices~see Appendix C!. Hys-
teresis behavior and a first-order transition have been
ported in Refs.@15# and@16# for models related with the dL
model~1! on the square lattice, and for the dLr model on t
triangular lattice@17#. However, as mentioned in the Intro
duction, other authors seem to obtain two KT transitions
the dLr model, both on the square@29# and on the triangular
@30# lattices. Note that our Langevin dynamics results with
the Gaussian approximation yield a discrete jump in the s
face mobilitym at T5TR , which isnot found in simulations
of the full nonlinear model~2!. This might indicate that the
first-order character of the transition is in our case an arti
of the variational approximation. Moreover, this approxim
tion ~see Appendix D! also predicts a phase transition f
model~2! in d51, which is also obtained for the sG mode
This result points out the limitations of this approxima
scheme for situations in which fluctuations are very relev
for the system behavior, as in thed51 case. Since model~2!
features strong fluctuations~as does, e.g., the linear MB
equation@1#!, it is desirable to go beyond our present mea
field approach to this model. We can take two steps in
direction. One~numerical! is to perform extended simula
tions of both the dLr model and model~2! @or, equivalently,
its equilibrium Langevin dynamics~17!#. The results@21#
seem to indicate that inboth cases there is only one con

FIG. 5. Phase diagram as a function of temperatureT and driv-
ing flux F for model ~2! within the variational approximation. The
solid line separating the flat, nonmoving and the flat, oscillat
phases is the locusF5Fc(T). The parameters used areV05a'

5k51 and the units are arbitrary.
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tinuum roughening transition as in the discrete Gaussian
sine-Gordon models, although with strong size depende
in the dLr case for sizes up to moderate, but not large. T
other ~analytical! improvement is to perform a dynamic RG
analysis of Eq.~2! along the lines of that in Ref.@6# for the
sG model. This study is particularly important bearing
mind that the lattice potential is expected to contribute
surface tension, absent in Eq.~2!, which should then domi-
nate the scaling behavior as compared with surface diffus
@1#. This phenomenon is clearly beyond our mean-field
proach, which neglects parameter renormalization, and
be the subject of a forthcoming publication@31#. In any case,
the study presented in this paper does indeed predict a p
diagram in two dimensions, including the numerical value
the roughening transition temperature, that compares w
with numerical simulations@20,21# of the complete mode
~2! and reflects the qualitative features of, e.g., the grow
dynamics of some MBE systems. Moreover we expect
results presented here to be even more accurate in dim
sions higher than two.
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APPENDIX A: DERIVATION OF THE CONTINUUM
APPROXIMATION TO THE LAPLACIAN

ROUGHENING MODEL

Here we follow Ref.@22# in order to derive a continuum
approximation to the dLr model~1!. The dLr partition func-
tion is given by

ZdLr[ (
$h(r )%

expH 2
k

2T (
r

@Dh~r !#2J , h~r !/a'PZ,

~A1!

where the sum extends over all possible configurations
h(r ). The integer height condition can be implemented
using delta functions in the integrals, thus giving

ZdLr5E Dh~r !F (
n(r )52`

`

d@h~r !2n~r !#G
3expH 2

k

2T (
r

@Dh~r !#2J , ~A2!

whereDh(r )[) r dh(r ). Inserting the following representa
tion for the sum of delta functions in Eq.~A2!,

(
n52`

`

d~h2n!5 lim
B→`

B

Ap
exp$2B2 sin2ph%, ~A3!

we obtain

y
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ZdLr5 lim
B→`

B

Ap
E Dh~r !expH 2

k

2T (
r

$@Dh~r !#2

12TB2 sin2ph~r !%J . ~A4!

The sum in the exponent of Eq.~A4! is the Hamiltonian~2!,
with the identification 2B25V0 /kBT. A completely analo-
gous calculation relates the dG and sG models@22#.

APPENDIX B: SOLUTION OF THE SELF-CONSISTENT
EQUATIONS

In this Appendix we calculate the self-consistent solut
of Eqs.~9! and~10! for the equilibrium correlation length o
the variational approximation~3! to model~2!. By defining
x52k1/2a'T21/2p21j21 and g564V0a'

2 kT22p22, Eqs.
~9! and ~10! become, within the continuum approximatio
made in Sec. II,

x45ge21/x2
. ~B1!

It is obvious that Eq.~B1! always has the solutionx50, and
that for some values ofg it may also have nonzero solution
Our first aim is to determine the critical value ofg for which
x50 is the unique solution. To this end, we rewrite the eq
tion in the following way:

x5g1/4e21/4x2
. ~B2!

Now the solutions are the intersections of the functiony

5 f (x)5g1/4e21/4x2
with the straight liney5x. As we can

see in Fig. 6, forg.gC there are three solutions of Eq.~B2!,
two solutions forg5gC , and only the trivial solutionx50
for g,gC . The value ofgC can be calculated using that fo
g5gC the unique solutionx5xsÞ0 verifies Eq.~B2! and
also the equation

15gC
1/4 1

2xs
3

e21/4xs
2

~B3!

FIG. 6. Graphical representation of Eq.~B2!. The dashed line is

the y5x function, while the solid lines showy5g1/4e21/4x2
for

different values ofg.
03610
-

obtained by requiring that the slopes ofy5x andy5 f (x) be
equal atx5xs . With these two equations it is easy to obta
xs5221/2 andgC5e2/4. Using the definition ofg, the tem-
perature for whichj2150 is the only solution of Eq.~10! is
then given by

TC5
16V0

1/2k1/2a'

ep
. ~B4!

Now, for T,TC we have to determine which of the thre
solutions of Eq. ~B1! provides the physical correlatio
length. Sincej2150 is the unique solution for high tem
peratures, we take as a reference valueFV(j2150), and
note thatDF(j)5FV(j)2FV(j2150) is stationary at any
root of Eq. ~10!. Thus, we will consider, as the physica
solution for the correlation length, that root of Eq.~10! for
which FV has an absolute minimum. Starting out with hig
temperatures, the conditionDFV(j)50 will signal the tem-
perature at~and below! which j2150 ceases to be the globa
minimum of the variational free energy and thus the syst
physical correlation length. Using our previous notation,
conditionDFV(j)50 reads

x25g8e21/x2
, ~B5!

whereg8564ka'
2 V0 /(p2T2). Using the same argument a

above, it is easy to show that forg8,gR85e there are non-
zero solutions of Eq.~B5!. This means, using the definitio
of g8, that there is a temperature given by

TR5
e1/2

2
TC , ~B6!

such that forT,TR the global minimum of the free energy i
attained for a correlation lengthjÞ0, whereas forT>TR the
physical solution isjphys

21 50.

APPENDIX C: TRIANGULAR LATTICE

The Laplacian roughening model was initially propos
by Nelson on the triangular lattice@13#. Thus, it is worth
studying how do the features of our model~2! change when
the substrate geometry is different from the square lat
considered in the text. Nevertheless, we expect that o
nonuniversal quantities—such as the transition tempera
and the numerical value of correlation length—depend up
the lattice geometry. The Laplacian roughening model on
triangular lattice is given by

HLR5
k

2 (
i

F(
d

~hi2hi 1d!G2

~C1!

with i 1d being any of the six nearest neighbors of sitei. For
this case @25#, v(q)516$sin2(qx/2)1sin2@(qx1A3qy)/4#
1sin2@(qx2A3qy)/4#%2, where q5(nx /L)bx1(ny /L)by ,
with bx52p@ex2(1/A3)ey# andby5(4p/A3)ey , whereni
52(L21)/2, . . . ,L/2 andei are the standard basis vector
In the continuum limit,S0(q).4T/(9kq4), and we recover
Eq. ~10!. Taking the continuum limit, i.e,
4-7
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1

L2 (
q

→
A3

2 E
BZ

d2q

~2p!2
.

A3

4p E
0

(2/A3)1/2p
q dq,

where BZ denotes the first Brillouin zone, we get

w2.
T

2pk~2/A3!2 E0

p q8

q841j24/~2/A3!2
dq8. ~C2!

Thus, by definingT85T/3, andj8531/4j, we get the same
Eq. ~12! but with redefined constantsT8 and j8. One can
readily reproduce all the results obtained in the text, sim
by making the replacementsT→T8 and j→j8. In conclu-
sion, on the triangular lattice a first-order roughening tran
tion is also obtained, the only effect of the geometry bein
shift in the value of the roughening temperatureTR

triang

53TR
square.

APPENDIX D: SUBSTRATE DIMENSIONS dÅ2

In this Appendix we discuss the possibility to find
roughening transition in equilibrium when model~2! is de-
fined on a substrate of generic dimensiond. In such a case
Eq. ~10! is still valid, but with

w2~j!.E ddq

~2p!d

T

k@v~q!1j24#
~D1!

within the continuum limit. For substrate dimensiond.4,
the integral~D1! is finite for j2150, namely,w2(j2150)
5Kdpd24T/@k(d24)# ~whereKd is thed-dimensional an-
gular integralKd5*dd21V/(2p)d52pd/2/@(2p)dG(d/2)#).
Thus,j2150 is no longer a solution of Eq.~10!. Therefore
the system has no rough solution and is in the flat phase
all temperatures. On the other hand, ford,4, the integral
above may be approximated by

w2~j!&
T

k

pKd

4 sin~pd/4!
j42d. ~D2!

In this case,j2150 is always solution of Eq.~10!, there
being two additional finite solutions whenT,TC

d . The value
of TC

d can be calculated using the same argument asd
52 and is

TC
d,45

8ka'
2 sin~dp/4!

~42d!Kdep3 S 4p2V0

ka'
2 D 12d/4

. ~D3!

In order to know which solution of Eq.~10! minimizes the
variational free energy, we calculateDFV , which now reads
d

03610
y

i-
a

or

DFV~j!

TLd
.

42d

d

pKd

8 sin~pd/4!
j2d2

V0

T
e22p2w2/a'

2
.

~D4!

In this case, the local minimumj2
21Þ0 is also the global

minimum and the physical solution for temperatures bel
the roughening temperature (T,TR

d,4), which is given by

TR
d,45

d

4
e12d/4TC

d,4 . ~D5!

For temperatures above roughening (T>TR
d,4), j2150 pro-

vides the global free-energy minimum. Thus, ford,4 there
is a first-order roughening transition atTR

d,4 . Note this in-
cludesd51, which might seem conflictive since in this ca
model~2! is expected to be in the rough phase for all valu
of T @13#: In d51 thermal fluctuations are expected to d
stroy the ordered flat phase for any temperature value.
result can be understood by noting thatFV is not a true free
energy, in the sense that it is not the free energy of a
model@32#, but rather an upper bound for the free energy
model ~2!. Actually, exactly the same result is obtained
the variational study of the sG model ind51 @5#. Note that
in this reference the analysis of thed51 case is incomplete
with the incorrect conclusion that the variational theory p
dicts no phase transition whend51. The complete expres
sion forDFV(j) analogous to Eq.~D4! indeed shows that for
the sG model ind51, the variational approximation predict
a nonzero temperature below which the physical value of
correlation length is finite.

Finally, for d54, Eq.~10! is very similar to that obtained
by Saito@5# for the sine-Gordon model

kj245
4p2V0

a'
2 ~11p4j4!2(T/16ka'

2 ). ~D6!

Following Saito’s analysis, we readily obtain that ford54
our model has a Kosterlitz-Thouless transition atT5TR

d54

[16ka'
2 . The correlation length now diverges asj;exp

$2A/(T2TR
d54)% whenT→TR

d54,2 (A being aT independent
constant!.

In summary, within the variational approach, our mod
displays a first-order transition ford,4 between a flat phas
and a rough phase with the properties of the linear M
equation. For the marginal dimensiond54 this transition
becomes of the Kosterlitz-Thouless type, whereas ford.4
the surface is in the flat phase for all temperature values
d
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