
Using Friends as Sensors to Detect Global-Scale
Contagious Outbreaks
Manuel Garcia-Herranz1*, Esteban Moro2,3, Manuel Cebrian4,5,6, Nicholas A. Christakis7,8,9,
James H. Fowler10,11

1 Department of Computer Science, Escuela Polite·cnica Superior, Universidad Auto· noma de Madrid, Madrid, Spain, 2 Department of Mathematics & GISC, Universidad
Carlos III de Madrid, Legane·s, Spain, 3 Instituto de Ingenier�·a del Conocimiento, Universidad Auto· noma de Madrid, Madrid, Spain, 4 Computer Science & Engineering
Department, University of California San Diego, San Diego, California, United States of America, 5 Media Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, United States of America, 6 National Information and Communications Technology Australia, Melbourne, Victoria, Australia, 7 Department of Sociology,
Yale University, New Haven, Connecticut, United States of America, 8 Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United
States of America, 9 Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America, 10 Medical Genetics Division, School of
Medicine, University of California San Diego, San Diego, California, United States of America, 11 Political Science Department, University of California San Diego, San
Diego, California, United States of America

Abstract
Recent research has focused on the monitoring of global�scale online data for improved detection of epidemics, mood
patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other
important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making
global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key
nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-
articulated social network and show that a simple method can yield not just early detection, but advance warning of
contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly
choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full
Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the
use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the
method actually works better than expected due to network structure alone because highly central actors are both more
active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring
is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global�scale
networks.
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Introduction

Modern social, informational, and transactional platforms offer
a means for information to spread naturally (e.g, as in the case of
the ‘‘Arab Spring’’ [1]), and there is increasing interest in using
these systems to intentionally promote the spread of information
and behavior [2–5]. In addition, they also yield a brand-new and
large-scale global view of social interactions and dynamics of
formerly hidden phenomena [6]. Recent work has taken
advantage of such monitoring of global-scale online data for
improved detection of epidemics [7–10], mood patterns [11,12],
stock performance [13], political revolutions [14], box-office
revenues [15], consumer behavior [9,16] and many other
important phenomena. However, the advent of global monitoring
has recently heightened concerns about privacy [17], and

anonymization is often insufficient to guarantee it [18]. Thus,
future efforts to monitor global phenomena may be restricted to
analysis at a local scale [10,19] or to incomplete pictures of the
system. Moreover, the explosive growth of online data has made it
more and more difficult to perform a complete global analysis. As
a result, scholars are beginning to develop local methods that
sample small but relevant parts of the system [20,21].

Here, we elaborate the theoretical framework of [22] sampling
technique to take advantage of the local structure inherent in
large-scale online social networks, to allow monitoring of a
network without relying on a complete picture of the system; and
we use it to test an important hypothesis about non–biological
social contagion.

If a message is transmitted exogenously via broadcast, then all
individuals are equally likely to receive it, regardless of their
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position in the network. On the other hand, if a message is
transmitted endogenously from person to person to person via
contagion, then individuals at the center of a network are likely to
receive it sooner than randomly-chosen members of the popula-
tion because central individuals are a smaller number of steps
(degrees of separation) away from the average individual in the
network [22,23]. As a result, for contagious processes, we would
expect the S-shaped cumulative ‘‘epidemic curve’’ [24] to be
shifted to the left (forward in time) for centrally located individuals
compared to the population as a whole.

If so, then the careful collection of information from a sample of
central individuals within human social networks could be used to
detect contagious outbreaks before they happen in the population
at large [22]. We call this the sensor hypothesis. In fact, the very
discrepancy in the time to infection between central and
randomly-chosen individuals could serve as a means to distinguish
between exogenous and endogenous mechanisms, either ex post by
comparing their mean times of infection or in real time by looking
for the first day in which there is a significant divergence in their
cumulative incidences.

Results

Using 6 months of data from Twitter recorded in 2009 [25], we
analyze a network containing 40 million users around the world
who are connected by 1.5 billion directed relationships (‘‘follows’’).
Over six months, these users sent nearly half a billion messages
(‘‘tweets’’), of which 67 million contained a user-supplied topic
keyword called a ‘‘hashtag’’. These hashtags are prefixed by a
pound sign (#) and are used to denote unique people, events, or
ideas, making them useful for studying the spread of information
online [26–28].

To test the sensor hypothesis, we need a sample of individuals
with higher network centrality (the ‘‘sensor’’ group) to compare
with a sample of randomly chosen individuals (the ‘‘control’’
group). However, measuring centrality can be a computationally
expensive task in large-scale networks like Twitter (see SI).
Therefore, we use a simplified approach that first randomly
selects a set of users for the control group, and then randomly
chooses ‘‘friends’’ of members of this group to put in an equally-
sized sensor group. This procedure generates a sensor group with
higher degree centrality than the control group because of the
‘‘friendship paradox’’: high-degree individuals are more likely to
be connected to a randomly chosen person than low-degree
individuals [22,29]. In other words, ‘‘your friends have more
friends than you do’’ [30].

In Fig. 1a we demonstrate that the sensor group contains more
high degree individuals and fewer low degree individuals, and this
is true even if we remove duplicates from the sensor group
(duplicates occur when the same person is randomly chosen as a
friend by multiple individuals in the control group). However, this
difference between the sensor and control groups depends on what
fraction of the network is sampled. As the fraction increases, there
is increasing overlap between the two groups, reducing the
difference in their degree distributions (Fig. 1b). We derive closed
form equations that characterize the expected degree distribution
for both the sensor groups (with and without duplicates) and
control groups based on the fraction of nodes sampled and an
arbitrary known degree distribution for the network as a whole (see
SI ‘‘An Analytic Elaboration of the Friendship Paradox’’). Fig. 1c,d
show that these equations fit the data well for a random sample of
1.25% of all users (500,000 total) on Twitter, confirming our
expectation that the sensor group is more central than the control
group.

To test whether sensors can provide early warning of a
contagious message spreading through the network, suppose ta

i
denotes the time at which a sampled user i first mentions hashtag a
(i.e the infection time). We would expect ta

i to be smaller on
average for users belonging to a central sensor group S than for
those of a random control group C. If we denote
Dta~StTi[S{StTi[C for hashtag a, the sensor hypothesis is that
Dtav0.

However, note that Dta depends on the size of the samples in
two ways. For small samples, the number of ‘‘infected’’ users (i.e.
users mentioning hashtag a) will be scarce, leading to large
statistical errors. On the other hand, for big samples, the degree
distribution of the control and sensor groups tend to overlap and
consequently Dta approaches 0. Therefore, it may be necessary to
find an optimal ‘‘Goldilocks’’ sample size that gives statistical
power while still preserving the high-centrality characteristic of the
sensor group. Fig. 2a shows results from a theoretical simulation of
an infection [31] spreading in a synthetic network (see SI ‘‘Sensor
Performance in a Simulated Infection Model’’) while Fig. 2b shows
an empirical analysis of widely used hashtags in our Twitter
database (see SI ‘‘Sensor Performance in Real Data’’). Both theory
and data suggest that there exists an optimal (and moderate)
sample size that may perform best for detecting large and
significant differences between the sensor and control group
resulting from contagious processes.

To analyze the performance of the sensor mechanism, we
collected five random control samples of 50,000 users and a
random set of their followees of the same size to use as sensors for
each one. Focusing on the 32 most widespread hashtags that
appear at least 10 times in each control sample, Fig. 2c shows that
Dta is negative (i.e., the sensor sample uses the hashtag prior to the
control sample) in all but two cases, with a mean for all hashtags of
7.1 days (SEM 1.1 days). In the SI ‘‘Using the Sensor Method with
a Small Set of Samples’’, we also show this distribution for a wider
range of hashtags, and these all show that Dta tends to be negative.
In other words, the sensor groups provide advance warning of the
usage of a wide variety of hashtags.

We also hypothesized that comparative monitoring of a sensor
group and a control group may help distinguish which hashtags
are spreading virally via a contagious process and which are
spreading via broadcast. We studied 24 hashtags (Fig. 3a) that
were ‘‘born’’ during our sample period (they first appeared at least
25 days after the start date of data collection) and then became
widely used (they were eventually used more than 20,000 times).
Notably, the users using these hashtags tended to be highly
connected and many were connected to a giant component, a sign
that the hashtags may have spread virally online from user to user
(see Fig. 3d and Fig. S11 to S14 in File S1 for more examples).

For each of these hashtag networks, we constructed a random
control sample of 5% its size and a similarly-sized sensor sample of
their followees to calculate Dta. We then repeated this process
1,000 times to generate a statistical distribution of these observed
lead times (as in Fig. 2c). The sensor group led the control group
(Dtav0) 79.9% (SE 1.2%) of the time. However, note that there
was considerable variation in lead times, from 20 days to a few
hours or no advance warning.

An alternative explanation to the sensors lead time might be
that hashtags are more likely to be created by the most active users
such as the ones in the sensor group, and that, being more central,
they are in a better position to make them popular; or from the
opposite perspective, that sensors end up being more central
because they create content that end up trending. In other words,
that central actors select novel topics rather than being agents of
contagion. In order to evaluate this possibility, we calculated the
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Figure 1. Twitter exhibits the ‘‘friendship paradox’’. a) Expected degree distributions for a 1.25% random sample of the Twitter network (black
line), friends of this randomly chosen group (red line), and the same friends group with duplicates removed (blue line); b) Larger samples of friends
show a smaller difference in degree distribution from the overall network (black = overall network, green = 25% sample, blue = 7.5% sample,
red = 1.25%); c) and d) Respectively, In-degree (follower) and out-degree (followee) distribution of a random sample of 500,000 users, 1.25% of
Twitters users (the ��control�� group, black line) and the theoretical (red line) and observed (blue line) in-degree and out-degree distributions of their
friends (the ��sensor�� group) with duplicates from the friends group removed.
doi:10.1371/journal.pone.0092413.g001

Figure 2. Friends as sensors yield early detection of the use of hashtags. a) Measures of lead times based on simulations of an infection
spreading through a network with infection probability l~0:1 and recovery probability c~0:01 on a Barabasi-Albert random network with tail
exponent bw3 show that a sensor group tends to provide earlier warning than a randomly-chosen control group in smaller samples, but decreasing
sampling variation in larger sample sizes means that the statistical likelihood of providing early warning is maximized in moderately-sized samples. b)
Observed results for hashtags on Twitter used by 1% of the individuals using a hashtag of each sample. c) Average lead time of first usage of each
hashtag in the sensor group vs. the control group for all hashtags used by at least 10 users in each of 5 random samples of 50,000 random users.
doi:10.1371/journal.pone.0092413.g002
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exposure rates of sensors and controls (i.e. the number of users
who used the hashtag after being exposed to it). The results (see SI
‘‘Using the Sensor Method with Hashtag Networks’’) show that
the exposure rate is significantly higher in the sensor group,
meaning that sensors are better transmitters in Twitter (they are
aware of whats happening in Twitter and transmit it very soon)
while controls seem to introduce more information in Twitter from
other sources (or to create it), rather than transmitting what they
are exposed to in Twitter. These findings therefore militate against
the selection idea in favor of the contagion hypothesis.

To see how the sensor method works for hashtags that are not
spreading virally, we generated a null distribution in which we
randomly shuffled the timestamp of each hashtag use within the
fully observed data, and then measured the resulting difference in
the sensor and control group samples, DRta. There is a positive

correlation between degree and number of tweets per day so,
having higher degrees on average than controls, sensors also tend
to tweet more often. Therefore, in the shuffling process sensors
actually have a greater chance of getting smaller times of infection
than controls because they have more tweets to be assigned a new
timestamp. By shuffling the timestamps of every tweet we are
measuring the lead time sensors would get not because of their
centrality in a viral process but because of their higher tweeting
rates. The difference, therefore, between this lead time and the
observed one corresponds to the viral component of the process.
Again, we repeated the procedure 1,000 times to generate a
statistical distribution (see SI ‘‘Using the Sensor Method with
Hashtag Networks’’). The results show that the observed
distribution of lead times falls outside the null distribution for

Figure 3. Signs of virality in hashtag usage. a) The average lead for the 24 most-used hashtags time across 1,000 trials of the sensor group (in
blue) vs. the same calculated lead time when all times of hashtag usage are randomly shuffled (in red). Vertical bars are SEM.; b) daily incidence and c)
cumulative daily incidence for the hashtag #openwebawards show a shift forward in the S-shaped epidemic curve and a burst in the sensor group
relative to the control group that could be used to predict the outbreak of this hashtag on the 13th day (the first day on which, using all available
information up to that day, there is a significant difference between the sensor and control groups with p-valuev0.05), 15 days before the control
group reaches the same cumulative incidence and before the estimated peak in daily incidence; d) greatest connected component of the follower
network of users using the #openwebawards hashtag shows that many users are connected in a large component.
doi:10.1371/journal.pone.0092413.g003
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65.4% (SE 1.2%) of the hashtags, suggesting they did, in fact,
spread virally (Fig. 3a).

The hashtags also generally showed a shift forward in the daily
and cumulative incidence curves of the sensor group compared to
the control one (Fig. 3c,d). This shift forward, another sign of
virality in itself, could allow for identification of an outbreak in
advance, as the sensors deviation from the trajectory of the control
group identifies a process that is spreading through the network,
affecting central individuals faster than random ones. For example,
estimating the models each day using all available information up
to that day, for #openwebawards users, we find two consecutive
days of significant (pv0:05) lead time by the sensor group
compared to the control group on day 13, a full 15 days before the
estimated peak in daily incidence (see SI ‘‘Using the Sensor
Method with Hashtag Networks’’ and Fig. S11 to S14 in File S1),
and also 15 full days before the control sample reaches the same
incidence as the sensor group (See Fig. 3c).

One can also use fixed thresholds to trigger a ‘‘divergence
alarm’’ when the sensor group usage of a particular hashtag is

growing faster than the control group usage. We tested a variety of
these thresholds (see SI ‘‘Reproduction Rates of Hashtags as a
Factor Affecting Early Detection’’) and found that they consis-
tently provided advance warning of the hashtags that would be
most likely to yield high usage in future. In Fig. 4a, we show that
the false positive rate for these alarms (an alarm that was triggered
by a hashtag that would not be widely used) is low. In Fig. 4b, we
also show that the alarms can anticipate behavior outside Twitter
as well. A survey of several Google search terms that are closely
related to certain hashtags in our data shows that the peaks in
Twitter usage tend to precede or coincide with Google Trends
peaks, and thus increases in the Twitter sensor group and their
divergence with the control group provide early warning not only
on Twitter but on Google searches as well (see SI ‘‘Twitter,
Sensors in Twitter, and Google Trends’’ for several examples).

Finally, while the sensor mechanism allows us to identify a more
central group, in terms of degree–centrality, that can be used to
detect contagious outbreaks in advance, it may also allow us to
focus on users who have other characteristics that could improve

Figure 4. Early warnings of the sensor mechanism and differences between users in the sensor and control groups. a) The Twitter
sensor sample anticipates outbreaks in both Twitter hashtags and Google searches. The purple solid line shows a normalized measure of the number
of Google searches per day for ��health care��. The green dashed line shows the a normalized measure of the number of tweets using the hashtag
#healthcare per day. Thinner lines at the bottom show normalized daily incidence (DI) for the control (dotted red) and sensor (dashed blue) groups.
Thinner lines from the bottom left to the upper right show the empirical cumulative distribution (ECDF) of control (dotted red) and sensor (dashed
blue) groups. Vertical dotted lines show dates when an alarm was first triggered by a 2.5% divergence (orange) and 5% divergence (red) in the sensor
and control groups. b) An early warning alarm triggered by a 0.25% divergence in the sensor and control groups predicts overall usage with relatively
few false positives (see SI ��Reproduction Rates of Hashtags as a Factor Affecting Early Detection�� for details). c & d) Users in the sensor group (blue)
are more active (c) and also use a wider variety of hashtags (d) than those in the control group (red), even controlling for activity. These attributes
both contribute to early warning provided by the sensor groups structural position.
doi:10.1371/journal.pone.0092413.g004
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monitoring. First, in terms of network centrality, we have found
sensors to have also greater betweenness. Second, in terms of
activity, users in the sensor group may be more central because
they are more active on twitter, and indeed we find this to be true
too (Fig. 4c). On average, users in the sensor group sent 154 tweets
(SE 2.8) during the six months they were monitored, while users in
the control group tweeted only 55 times (SE 1.0, difference of
means t = 36, pv2:2e{16). However, we also find that sensor
users tend to use a greater variety of hashtags, even controlling for
activity levels (Fig. 4d) (see SI ‘‘Differences in Sensor and Control
Characteristics That Also Affect Propagation’’). In summary, the
sensor mechanism, while targeting users with higher degree
centrality, is able to identify users that are more central in many
ways.

The distribution of the number of users using any one hashtag is
heavy tailed (see SI ‘‘The Twitter Data’’) with most hashtags being
used by less than a few hundred people and very few reaching the
tens of thousands. Therefore, for most hashtags, the probability of
finding sufficient users to perform a significant analysis in a
random sample of Twitter is very small. Yet, despite the relatively
small size of the infected populations, the sensor mechanism we
test here seems to anticipate the global spread of information in a
wide variety of cases. And, importantly, it only requires a tiny
fraction of the network as a whole to be monitored, allowing us to
find a sample 6 times more connected than selecting the most
connected users of a sample 5 times larger (see SI ‘‘Friends vs.
Most Connected Nodes and Most Connected Friends as Sensors’’).

Discussion

We believe that this method could be applied in a wide variety
of contexts in which scholars, policy-makers, and companies are
attempting to use ‘‘big data’’ online to predict important
phenomena. For example, the sensor method could be used in
conjunction with online search to improve surveillance for
potential flu outbreaks [8,22]. By following the online behavior
of a group known to be central in a network (for example, based
on e-mail records which could be used to construct a friend sensor
group), Google or other companies that monitor flu-related search
terms might be able to get high-quality, real-time information
about a real-world epidemic with greater lead time, giving public
health officials even more time to plan a response. Similarly,
policy-makers could monitor global mood patterns [12] to
anticipate important changes in public sentiment that may
influence economic growth, elections, opposition movements, or
even political revolutions [14]. We also conjecture that investors
might use these methods to better predict movements in the stock
market [13].

Just as we find variation in lead time for different hashtags, we
expect that the ability of the sensor method to detect outbreaks
early, and how early it might do so, will depend on a number of
factors, including: the online context (e.g., whether twitter or some
other data environment); the intrinsic properties of the phenom-
enon that is spreading and how it is measured; the size or
composition of the population, including the overall prevalence of
susceptible or affected individuals; the number of people in the
sensor group; the topology of the network (for example, the degree
distribution and its variance, or other structural attributes) [23];
and other factors, such as whether the outbreak modifies the
structure of the network as it spreads (for example, by affecting the
tendency of any two individuals to remain connected after the
information is transmitted). Nevertheless, it seems clear that taking
advantage of the topological architecture of human populations
offers the prospect of detecting a wide variety of contagious

informational or behavioral outbreaks in advance of their striking
the general population.
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