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Non-pharmaceutical measures such as preventive quarantines, remote
working, school and workplace closures, lockdowns, etc. have shown effec-
tiveness from an epidemic control perspective; however, they have also
significant negative consequences on social life and relationships, work rou-
tines and community engagement. In particular, complex ideas, work and
school collaborations, innovative discoveries and resilient norms formation
and maintenance, which often require face-to-face interactions of two or
more parties to be developed and synergically coordinated, are particularly
affected. In this study, we propose an alternative hybrid solution that
balances the slowdown of epidemic diffusion with the preservation of
face-to-face interactions, that we test simulating a disease and a knowledge
spreading simultaneously on a network of contacts. Our approach involves a
two-step partitioning of the population. First, we tune the level of node
clustering, creating ‘social bubbles’ with increased contacts within each
bubble and fewer outside, while maintaining the average number of contacts
in each network. Second, we tune the level of temporal clustering by pairing,
for a certain time interval, nodes from specific social bubbles. Our results
demonstrate that a hybrid approach can achieve better trade-offs between
epidemic control and complex knowledge diffusion. The versatility of our
model enables tuning and refining clustering levels to optimally achieve
the desired trade-off, based on the potentially changing characteristics of a
disease or knowledge diffusion process.
1. Introduction
The recent experience with COVID-19 has made us all aware of epidemics, their
possible appearance and their likelihood to overturn our lives all of a sudden.
The COVID-19 pandemic, as of June 2023, has caused almost 800 million cases
(among which 7 million deaths) around the world.1 Many containment
measures and non-pharmaceutical interventions (NPIs) have been put in
place before vaccines became available: lockdowns, preventive quarantines,
masks, physical distancing, school and workplace closures, remote working,
etc. [1–5]. All these measures have considerably impacted people’s lives,
social relationships, work and economy [6–10]. Indeed, if these measures can
represent possible solutions to reduce disease spreading, the other side of the
coin is that they imply a severe slowdown, or even interruption, of all the
social exchanges and face-to-face interactions which prove fundamental for
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the proper functioning of a society and, specifically, for
fruitful collaborative interactions.

Moreover, despite many collaborations, intimate relation-
ships, and, more in general, information and knowledge
sharing can nowadays easily travel through the Internet, the
limits of only remote interactions have become clear [11–13].
Several studies, indeed, have highlighted the importance of
in-person interactions for physical, psychological and social
wellbeing [14–17]. In particular, observational, interview-
based and questionnaire-based studies have found that in
workplaces face-to-face interactions are associated with
increased trust and improved communication among employ-
ees, efficient problem solving and a positive effect on the
overall organization knowledge diffusion, innovation ability
and performance [18–21]. Similar results have been also
found using wearable sensors to study face-to-face interactions
and their effect on productivity, performance and complex
tasks’ completion [22–24]. For this reason it is crucial, along
with the epidemic spreading reduction, to maintain as many
physical interactions as possible. These two objectives are not
easily pursued simultaneously. In this work, we will try to
find a trade-off between them by working on the design of
the network of social interactions, a useful exercise to find
alternative solutions allowing us to cope with a fast-spreading
disease. Tackling this problem within a coupled-dynamics
framework can nourish new perspectives for the future
management of epidemics and health emergencies.

Since the behaviour in time of a spreading process on a
network is heavily conditioned by the network topology,
several studies tried to regulate spreading by acting on the
network structure [25–28]. In this work, inspired by Block
et al. [29], we explore the ‘social bubbles’ strategy, which
implies partitioning the society into communities where
each individual can physically interact at will inside the
bubble but in a controlled amount (or not at all) outside. In
this way, people can maintain a normal amount of face-to-
face interactions but restrict them to a set of people who
interact exclusively in the same group. For example, in a
workplace this could imply restricting face-to-face inter-
actions only among the members of the same team or
department, while in a school and in a university campus
only within a classroom or a dorm. This strategy has been
proposed and largely discussed, and many numerical exper-
iments have been performed to assess the effect of social
bubbles on real populations [30] and in specific contexts
like schools [31–34] and workplaces [35], always showing
important advantages in reducing contagions. In order to
evaluate the effect of the community structure it is useful to
consider synthetic networks where we can tune the modular-
ity, i.e. the strength of division into modules or bubbles, and
observe how this affects the spreading [36–38]. The size and
density of the synthetic networks are chosen according to
real data of physical interactions [39].

In this work, we explore the effect of the social bubbles’
reorganization of a network of proximity interactions. The
specific goal of this study is to find an optimal topological
network structure that minimizes the number of infected
individuals (and in particular the number of simultaneously
infected individuals) in order to avoid burdening hospital
intensive care units (ICUs), and, at the same time, minimizing
the social deterioration due to restrictions [40,41]. For this
reason, we consider two different and non-interacting spread-
ing processes: one regarding a disease, and one regarding the
diffusion of knowledge or of a social behaviour [42–47]. The
first one is represented by a simple contagion model, a SIR
(susceptible, infected or recovered) compartmental model
inspired by Anderson & May [48] and Pastor-Satorras et al.
[49], while the second one is governed by a complex conta-
gion approach, the threshold model with memory [50]. The
two processes take place simultaneously on an artificial
population where individuals are connected via a temporal
network, i.e. a set of pairwise links that appear and disappear
in time. The way these links are distributed among nodes
heavily affects the temporal evolution of the two spreading
processes. The effect of social bubbles, which in networks is
reflected by node clustering, is investigated for different
sizes of the groups (e.g. different sizes of teams or depart-
ments in a workplace, different sizes of classrooms at
school or university, etc.) and different levels of modularity
(i.e. the strength of network partition, represented by the con-
nectivity inside each bubble with respect to the admitted
contacts between bubbles). Importantly, all these different
networks have the same average number of links, such that
our analysis is not influenced by the number of connections
(a parameter that clearly has a role in fastening all kinds of
spreading processes).

We show that it is possible to find a trade-off between
minimizing the timescale of knowledge diffusion and the
number of simultaneous infected individuals, two competing
objectives. The effect of social bubbles (without preventive
quarantines) is compared with the effect of quarantines (on a
network that is not organized in bubbles). We will see that,
even if the quarantines are more effective in containing the
number of infected individuals, they do not allow knowledge
diffusion until most of the population is recovered. By contrast,
with the bubbles strategy it is instead possible to share knowl-
edge in the network since the beginning of the simulation, and
simultaneously maintain the number of infected below a criti-
cal level (generally higher but comparable with the case of
quarantines). The bubbles strategy, therefore, allows social
processes to coexist with an epidemic.

Additionally, we also find an optimal value of modularity
for information diffusion, revealing a non-monotonic relation
between knowledge diffusion and network structure. This is
in agreement with the results found by Nematzadeh et al. [37]
and Peng et al. [38] who, studying different models for
information diffusion (a linear threshold model and an inde-
pendent cascade model) on static networks, discovered the
existence of an optimal value of modularity able to enhance
both local and global spreading.
2. Results
Combining simple and complex contagion allows in general
to find strategies that take into account both the epidemic
threats and the socio-economical issues deriving from
prolonged isolation periods, societal fragmentation and,
potentially, segregation. Several works exist studying the
interplay between different spreading processes [46,47,51].
These works, however, consider that the two processes
mutually interact or one strongly affects the other one,
while in our work they are considered two parallel processes
(knowledge does not affect disease, and disease affects
knowledge only indirectly, via isolations and quarantines).
The focus of this work is indeed on the network structure
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Figure 1. Schematic of the combined model dynamics. (a) The epidemic spread is modelled through a modified SIR compartmental model framework. ‘S’ are
individuals susceptible to the infection, ‘Q’ are quarantined individuals, ‘I’ are infected individuals, ‘Is’ are isolated individuals, and ‘R’ are recovered individuals.
(b) The information dynamics follows a standard multistrain SI compartmental model. With ‘Si’ representing agents susceptible to information ‘i’, and ‘Ii’ representing
agents who acquired information ‘i’. (c) Schematic of the main aspects of the two dynamics over a network of agents, showing the evolution from time t to time
t + 1, and assuming for simplicity to have only two informations. Agents are represented with three concentric circles: the inner circle has a colour corresponding to
its current epidemiological compartment (either susceptible, quarantined, infected or isolated—see (a)); the two outer circles represent one information each, and
are partially coloured according to the fraction of information acquired at the given time.
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and how this can be set so as to regulate different spreading
processes taking place on it. We hence chose to consider a set-
ting where the interaction between the two processes is
minimal, thus avoiding to insert additional effects with the
risk of not being able to understand from what they are
generated, and hence to complicate the results’ interpretation.

The disease starts from one random infected node at time
0. Simple contagion implies that nodes can only be infected if
they have an infected neighbour and each contagion event is
independent of the other ones. When a connection appears
between an infected and a susceptible node, the probability
that the susceptible node gets infected is set by ω(τ), which
depends on the age τ of the infected node’s infection, i.e.
the time since it has been in turn infected (see Methods for
more details). Infected individuals can be identified and
isolated, which means that all their connections are cut and
they cannot spread disease or knowledge for a fixed interval
of time. This happens with a probability per unit time 1I , one
of the parameters of the model. Infected nodes, whether they
are isolated or not, eventually become recovered, hence
immune. This is the baseline model that we use to simulate
the disease spreading and to investigate social bubbles, but
we can also additionally consider the existence of quaran-
tines: in this case, once a node is isolated, its last contacts
are traced and preventively quarantined with a probability
1T , which means cutting the node’s contacts for a short inter-
val of time without knowing if it is actually infected or not.
All infected nodes that are not isolated or quarantined are
classified as active infected ones, being free to spread the dis-
ease (see Methods for a more detailed description of the
disease spreading).

In parallel, knowledge spreads across the network. We con-
sider 20 different pieces of knowledge distributed in the
network, they can be thought of as 20 different pieces of
information or expertise spread among different teams or
departments in a workplace. Initially, each piece of knowledge
is possessed by only one random node and we assume that the
other nodes need multiple exposures in order to acquire them.
This is represented by a threshold model with memory [50]:
each susceptible node becomes infected (i.e. it acquires a specific
knowledge) only after K interactions with nodes possessing that
particular knowledge. Nodes progressively store and accumu-
late the different pieces of information that they get in touch
with and only when the threshold is reached for a particular
knowledge it is considered as acquired. This is an SI
model: we assume that knowledge cannot be unlearned. See
figure 1c for a schematic of the two processes: infected nodes
(dark blue) infect their neighbours and then become recovered
(grey) or isolated (bright blue) and their neighbours can be
quarantined (green). In the meanwhile, nodes which possess
a particular knowledge pass pieces of it to their neighbours.
The neighbours start to collect them and when they obtain
the entire set of K pieces that knowledge is acquired. In
figure 1 only two different spreading pieces of knowledge
are represented, the purple and the pink one, while in the
numerical experiments we consider 20 pieces of knowledge.

We analyse several scenarios in which the two processes
can interact and several networks of contacts. The temporal
networks are generated building each layer with the stochastic
block model [52] where the number of nodes is fixed (N = 680)
and the number of links is fixed on average (400 links). The
number of nodes and connections are chosen so as to
mimic the proximity interactions’ dataset of the Copenhagen
Network Study [39]. The population is partitioned in several
communities which are strongly connected inside (random
temporal connections with a probability pintra) and poorly
connected between each other (random temporal connections
with a probability pinter). Since the number of links is fixed,
the values of pintra and pinter are not independent of each
other, and increasing pintra implies decreasing pinter and



no quarantines, no bubbles

quarantines

bubbles

bubbles with temporal clustering

active inf.

400

300

200

in
di

vi
du

al
s

m
ea

n 
kn

ow
le

dg
e

0 20 40
time (days)

time (days)

60 80 100

0 20 40 60 80 100

time (days)
0 20 40 60 80 100

time (days)
0 20 40 60 80 100 120

20

15

10

5

0

m
ea

n 
kn

ow
le

dg
e

20

15

10

5

0

m
ea

n 
kn

ow
le

dg
e

20

15

10

5

0

m
ea

n 
kn

ow
le

dg
e

20

15

10

5

0

100

0

400

300

200

in
di

vi
du

al
s

in
di

vi
du

al
s

in
di

vi
du

al
s

100

0

400

300

200

100

0

400

300

200

100

0

isolated quarantined simultaneous inf. recovered knowledge

(a)

(b)

(c)

(d)

Figure 2. Time evolution of disease and knowledge spreading. Results of 200 simulations on temporal networks organized in 10 bubbles with 68 nodes. (a) p = 5
(i.e. connections inside and outside bubbles are of the same order; in practice, bubbles do not exist), 1T ¼ 0 (i.e. no quarantines). (b) p = 5, 1T ¼ 0:1 (i.e.
quarantines without bubbles). (c) p = 199, 1T ¼ 0 (i.e. bubbles without quarantines). (d ) p = 199, 1T ¼ 0, plus temporal clustering of 10 days. The parameter
1I ¼ 0:1 for all these cases.
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vice versa. Thus, we rely on a parameter p = pintra/pinter which
represents the network modularity: namely, tuning the value
of p allows us to generate more self-contained bubbles (higher
p) or more interconnected groups less connected inside (lower
p). By doing this, we can explore the effect of stronger or
weaker bubbles as possible ways to reorganize a network
without cutting or adding any link (see Methods for a detailed
description of network generation).

In figure 2, we depict the evolution in time of both disease
and knowledge spreading quantities: the number of active
infected (dark blue) individuals, isolated (light blue) individ-
uals and quarantined (green) individuals, plus the number
of simultaneous infected (orange) individuals corresponding
to the sum of active infected, isolated and true positive
quarantined individuals (i.e. those that are actually infected).
The horizontal dashed orange line highlights the maximum
number of simultaneous active infected individuals reached
during the temporal evolution. Additionally, we plot in
purple the evolution of the mean number of different knowl-
edge obtained by the nodes (averaged on all the nodes). We
report mean knowledge in the y-axis on the right, which
spans from 0 to 20 since we are considering 20 pieces of
knowledge spreading in the network (at time 0 each piece
of knowledge is only possessed by one node so the mean
is 1/N = 0.0015). We highlight three significant steps of
knowledge spreading: the time when the average reaches the
number of pieces of knowledge initially contained in one clus-
ter, 20/Nc with Nc being the number of clusters (Nc = 10 in the
example of figure 2); the time when it reaches 50% of total
pieces of knowledge (10 in this case); and the time when it
reaches 80% of total knowledge (16 in this case). All the
reported results are obtained as averages over 200 stochastic
simulations.

The first scenario that is depicted (figure 2a) corresponds to
the case without quarantines (1T ¼ 0) and where the social
bubble strategy is not at play (p = 5, meaning that intra-
bubble and inter-bubble connections are of the same order of
magnitude). The only NPI is represented by the isolation of
individuals who are identified as infected. This is the worst
case: we have a peaked curve of infected individuals and at
the maximum peak almost one third of the population is sim-
ultaneously infected. The average knowledge stays around 0
for the entire time span where people are infected and starts
to grow only after the epidemic has been controlled.

Then, we introduce the scenario that serves as a bench-
mark to compare the social bubbles’ strategy: it is the one
with quarantines (1T ¼ 0:1), still without the bubbles’ organ-
ization of the network of interactions (p = 5). Quarantines
clearly have an effect on infection number, managing to flat-
ten the curves so as to reduce the number of simultaneously
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active infected individuals. However, this reduction comes at
a great social cost, confining a significative fraction of healthy
individuals. In the example reported in figure 2b, while
the maximum average number of simultaneous infected is
only the 12% of the population, the average percentage of
population confined at least once without being infected
(collateral confinement) is as high as 34% (see electronic sup-
plementary material, section S7, for collateral confinement in
simulations with different parameters). Moreover, we observe
that flattening the curve also implies extending the time span
of the epidemics and this, in turn, badly affects the possibility
of people having face-to-face interactions, thus slowing down
knowledge diffusion. In fact, we observe that the purple
curve starts to grow only when the other curves are very
low. The time needed to acquire knowledge is hence longer
than in the previous case. In other words, also in this case
knowledge spreading via physical interactions can hardly
coexist with an ongoing epidemic.

In figure 2c, we finally introduce the social bubbles strategy.
In this case, no quarantine strategy is put in place (i.e. 1T ¼ 0)
but the network is generated with p= 199, meaning that the
intra-bubble interactions are, on average, 199 times more fre-
quent than inter-bubble interactions. The number of infected
individuals is higher with respect to the previous case: a
simple organization of the network of interactions in bubbles
is not able to reduce infections as quarantines, even if they are
reduced with respect to the case without a bubble structure
(figure 2a). However, we note that in this case knowledge
starts to spread inside bubbles already during the unfolding of
the epidemic. So, even if complete knowledge spreading remains
quite slow, pieces of information that circulate inside bubbles
guarantee that part of the knowledge is acquired from the begin-
ning (in the reported case, already at day 43). This important
achievement still has to pay the price of (i) a high number of sim-
ultaneously active infected individuals and (ii) a still long time
before all the pieces of knowledge are able to reach all the nodes.

Hence, we consider an additional containment strategy: we
add to the node clustering, represented by the social bubbles, a
temporal clustering, thus obtaining temporal social bubbles.
We leverage again the value of p setting the ratio of intra-
bubble and inter-bubble connections but, in this strategy, the
inter-bubble connections, instead of involving nodes of
random different bubbles, are now concentrated only between
specific couples of bubbles (as in the toy example depicted in
figure 2d). So, each bubble (e.g. a team or department within
an organization) only interacts with another bubble (e.g. a
different team or department) at a specific time. Then, with a
time periodicity d the couples change in such a way that, at the
end of the simulation, each bubble has interacted with each
other bubble. The result is that knowledge starts to grow
from the early stages of the simulations inside each couple of
bubbles and each node of one bubble easily acquires the
ideas of its matched bubble, doubling the nodes’ average
knowledge. In a similar manner, once matches are updated,
nodes are able to acquire knowledge from another bubble,
and gradually augment their knowledge following a staggered
growth. In figure 2d, this dynamic is clearly visible: the purple
line shows the process of knowledge acquisition, which grows
more rapidly in correspondence with the update of bubble
matches (every d = 10 days in the reported simulations), and
slows down once most of the matched bubble nodes have
acquired the new piece of knowledge. For what concerns the
disease spreading, leveraging the peculiar structure of node
interactions, it naturally remains confined between a limited
number of bubbles and, as a consequence, the number of
infected individuals grows more slowly. Moreover, the
number of simultaneously active infected does not reach a
high value (only 11% of the population, similar to that of the
quarantine strategy) since a fraction of the infected nodes can
recover within the time that matches between bubbles are
changed. By observing the curves in figure 2d we note that
the disease curve and the knowledge one are partially overlap-
ping, indicating that, in this framework, the epidemic can
coexist with the diffusion of knowledge by social face-to-face
interactions. Note also that in the simulations the epidemic
variables are updated every 2 h while the knowledge variables
only every 24 h. For this reason the epidemic curves are
smooth while the knowledge ones reflect the daily updates.

In figure 3 we report, for different strategies and different
parameters’ settings, four significant quantities characterizing
disease and knowledge spreading: (i) the maximum number
of simultaneously active infected individuals (orange horizontal
dashed lines in figure 2), (ii) the time at which the average
knowledge acquired by nodes becomes equivalent to the
number of different pieces of knowledge initially present in
one cluster, (iii) the time at which it reaches 50% of the total
knowledge and (iv) the time at which it reaches 80% of the
total knowledge (the three purple vertical lines in figure 2). For
the quarantine strategy, these indicators are reported versus 1T
and while, clearly, infected individuals decrease with 1T , the
knowledge times it is only marginally affected by it. For the
bubbles’ strategy, the indicators are instead depicted as functions
of p, where increasing p means making the bubbles more self-
contained. We consider the case with temporal clustering for
three different values of d (i.e. 5, 10 and 20 days), and without
temporal clustering. In all cases, we note that the number of
infected individuals decreases with p, not drastically as for 1T,
but significantly. This is due to the fact that closer bubbles
tend to maintain the disease confined to a few bubbles, while
the other nodes remain safe. The lowest numbers of infected
individuals are obtained with temporal clustering of 20 days;
in fact with longer temporal clustering there is more chance
that infected individuals inside a bubble recover or are quaran-
tined before they have the possibility to meet new susceptible
nodes. For what concerns knowledge times, instead, we note a
peculiar behaviour with respect to the modularity, showing in
all cases a minimum value in p, corresponding to an optimal
value which varies according to different conditions. We also
note that in order to shorten times to reach total knowledge,
shorter temporal clustering is to be preferred (see light purple
curves), while the partial knowledge times are not visibly
affected by the length of the tournament d, at least for what
concerns the three explored values.
3. Discussion
In this work, we have investigated the social bubbles frame-
work as a potential strategy for controlling disease
spreading and simultaneously allowing higher levels of
face-to-face interactions, which in turn facilitate the process
of knowledge diffusion. More specifically, we have con-
sidered different settings of the social interactions’ network
organization in bubbles with the aim of finding an alternative
strategy to preventive quarantines.



120

100

80

0 0.1 0.2
p

0.3 0.4 0 50 100 150 200

60

40

120

100

80

60

40

p
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

p p

200

150

100

50

bubbles with 5 days
temporal clustering

bubbles with 10 days
temporal clustering

bubbles with 20 days
temporal clustering

simultaneous infected

time to reach 50% knowledge

time to reach 80% knowledge

time to reach knowledge
initially contained in one cluster

εT

εI  =  0.1

εI  = 0.25

εI  = 0.4

quarantines bubbles

m
ax

. n
o.

 in
fe

ct
ed

200

150

100

50 m
ax

. n
o.

 in
fe

ct
ed

tim
e 

of
 n

od
es

’ 
pa

rt
ia

l k
no

w
le

dg
e

tim
e 

of
 n

od
es

' p
ar

tia
l k

no
w

le
dg

e

Figure 3. Scenario with 10 bubbles (i.e. 10 different teams or departments in an organization). Orange stars represent the maximum number of infected individuals,
the other symbols represent the time at which the nodes reach on average 10%, 50% and 80% of knowledge. The first percentage corresponds to acquiring the
entire knowledge initially contained in one bubble from all the nodes. We report results for 1I ¼ 0:1 (continuous lines), 1I ¼ 0:25 (dashed lines), 1I ¼ 0:4
(dotted lines). The quarantine results are reported versus 1T , the bubble results versus p and for different levels of temporal clustering.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230471

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 J

an
ua

ry
 2

02
4 
From the point of view of reducing the number of infected
individuals, the quarantine strategy is the most effective one.
However, arguably, quarantines impede social contacts and,
as a consequence, all the diffusion processes that do not
rely on simple contagion models but require multiple con-
tacts to spread, as is the case for the considered knowledge
spreading process. The bubble strategy instead permits
face-to-face interactions between people, albeit limited to
smaller groups than to an entire organization, school, univer-
sity campus, workplace, etc. These free physical interactions
allow complex dynamics (like complex contagions) to
emerge, as is demonstrated by the progress of knowledge
spreading, here represented by the threshold process. We
note in fact that, despite the acquirement of the entire knowl-
edge set still being reached after a long time, the singular
ideas are free to circulate since the beginning inside the
bubbles and are then easily acquired by the nodes (figure 2c).

Other strategies to flatten the infection curve by making
use of social bubbles consist in cutting inter-bubble links
instead of rewiring them [29]. However, the reduction of con-
nections incontestably induces a slowdown of the epidemic
spreading, which is not entirely due to the organization in
bubbles. In our work, we show instead that the bubbles strat-
egy is effective even if the number of links is maintained
constant. In particular, we use networks with different
levels of modularity, quantified by different values of p, but
we generate the networks always with the same average
number of links.

One of the most salient results of this work is that the
existence of communities in a network facilitates know-
ledge diffusion (i.e. complex contagion), limiting collateral
confinement, while it mitigates disease diffusion (i.e. simple
contagion). An analogous conclusion about knowledge
diffusion, implemented as a linear threshold model, has been
obtained by Nematzadeh et al. [37] (and by Peng et al. [38]
in a follow-up of the first work). They observe that strong com-
munities enhance local spreading, while weak communities
enhance global spreading, and they find an optimal range of
intermediate values for community strength (analogous to
our p) that maximize diffusion and the speed of cascades.
This result agrees with our results on knowledge spreading;
in fact, with our analyses we also observe the existence of an
optimal value of p corresponding to the shortest times of
knowledge diffusion (figure 3). The minimum in p tells us
that the best performances of the bubbles strategy are not
monotonic with p; on the contrary, very high or very low
values of p slow down the knowledge diffusion. In fact, trivi-
ally, if p is too small we lose the effect of population partition
and what we observe is a mixed population without bubbles
and without quarantines, so a very inefficient network struc-
ture. If, instead, we increase p, i.e. we make the bubbles
progressively more self-contained, we interestingly observe
progressively longer knowledge spreading times, suggesting
that a certain level of promiscuity between bubbles is instead
advisable. It is important to note that the existence of quaran-
tines and isolations does not affect the ratio p between the
amount of intra- and inter-bubble connections. In electronic
supplementary material, figure S9, we show indeed that,
while the number of overall connections in the network is sig-
nificantly reduced during the central phase of the disease
epidemic, both within and between clusters, the ratio pintra/
pinter remains stable around the value p set to generate the
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networks. This confirms the validity of the parameter p to dis-
cern the different networks and the resulting processes.

The greatest advantage is, however, obtained with the
insertion of bubbles’ temporal clustering. In fact in that case
we have a combined effect: the existence of bubbles allows
to keep the epidemics under control, and the temporal clus-
tering enforces the nodes to be exposed to periodically
different ideas. The result is a faster acquisition of knowledge
while the disease is kept under control. This strategy reveals
impressively effective and, to our knowledge, it is a
completely novel idea.

All these results are confirmed by considering different
sizes of bubbles (with the same number of nodes and the
same average number of links), in particular 5 bubbles of
136 individuals and 20 bubbles of 34 individuals, as reported
in section S2 of the electronic supplementary material.

Our work comes with some limitations that could be
addressed by further exploring this research direction in the
future. First of all, we are only considering synthetic networks,
which are generated with random interactions without tem-
poral correlations, clustering or other structural information
that would make them more similar to real networks of inter-
actions. The reason for this choice stemmed from the need to
investigate the effect of social bubbles, disentangled from
other possible structural constraints that could affect the
dynamics. The choice of random networks ensures that the
only structure existing in the considered graphs is the modu-
larity, which we introduce and control by setting the
parameter p when generating the networks. This allows us
to directly scrutinize the phenomenon and draw untwisted
conclusions. Envisaging possible applications to real networks
will be a matter of future investigations. Moreover, the effect of
network density is not explored, but we test different network
sizes (increasing or decreasing the number of nodes and chan-
ging consequently the number of links so as to keep density
fixed) and different bubble sizes and we observe that the
results essentially do not change (see electronic supplementary
material, section S3). Finally, only some of the simple and com-
plex spreading parameters are explored, which implies that the
results about optimal p are not general, they only apply in this
specific context. However, the interesting result is that a mini-
mum exists, even if its exact value will probably change by
changing the parameters. In conclusion, we realize that the
temporal social bubbles strategy represents a valid alternative
to other NPIs like preventive quarantines when looking for a
solution permitting to coexist with a spreading disease. This
strategy, while still affecting the social structure of interactions,
allows the pursuit of a series of otherwise hardly attainable
collective goals that prove fundamental to the growth and
social enrichment of society and individuals, from collabor-
ations to social relationships, from knowledge transfer to
opinion exchange. These results could spur innovative
approaches to epidemic control strategies, for example, based
on different interaction-mixing prescriptions in different set-
tings, such as home, work and leisure places. While a
systematic assessment of mixed strategy approaches is
needed to better inform policymakers, our results provide a
first insight about social bubbles strategies, exploring their effi-
cacy under the prescription of temporal clustering. This study
could help find viable solutions that are alternatives to stan-
dard ones, given that strategies solely focused on flattening
the curve can dramatically affect knowledge diffusion and
social cohesion.
4. Methods
4.1. Disease spreading
The disease-spreading model is non-Markovian and it is inspired
by previous literature on COVID-19 models [53–55]. Each
numerical simulation starts with one random infected individ-
ual, who has been infected for a number of days, τ, randomly
sampled between 0 and 10. The variable τ is important in the
spreading process since we assume that infectiousness, i.e. the
probability of transmitting the disease, of an infected individual
depends on the time since their own contagion, with a function
ω(τ) which has a maximum peak at around 5 days (see electronic
supplementary material, figure S1). Such probability governs
which individuals, among those that the infected seed meets
according to the temporal network, will contract the disease.
These can in turn infect their contacts. We assume that every
infected individual becomes recovered, hence immune,2 after
10 days [56]. We assume that 80% of infected individuals
become symptomatic after being infected, with a symptom
onset probability which increases in time according to a function
s(τ) [55] (see electronic supplementary material, figure S1). As
soon as they show symptoms they have a probability 1I of
being isolated. If this does not happen they go on spreading,
otherwise their contacts are cut for the next 10 days, at the end
of which they will become recovered. When an individual is iso-
lated, their past contacts (last 7 days) are traced and preventively
quarantined with a probability 1T. The quarantined individuals
can be infected (true positive) or susceptible (false positive). In
the first case, if they show symptoms during quarantine, they
will become isolated (the only difference with quarantine is
that their past contacts are traced and, in the end, they will be
recovered), otherwise, they finish the quarantine after 10 days
and they are released. The reproduction number [57] with this
parameter setting is R0 = 1.64.

4.2. Network generation
We generate a synthetic temporal network with N nodes orga-
nized in Nc clusters, characterized by a strength of network
modularity p = pintra/pinter, and a total number of links L. We
hence generate a series of static networks which are going to
constitute the layers of the temporal network. In each layer,
nodes are classified into clusters (the first n1 nodes in the first
cluster, the second n2 nodes in the second cluster, and so on,
with ni the a priori chosen number of nodes in cluster i, the
same for each static network). All the temporal layers are charac-
terized by the same values of intra-cluster connection probability
pintra and of inter-cluster connection probability pinter.

The static networks are generated using the stochastic block
model [52], once all the parameters (Nc, ni, pintra, pinter) have
been fixed.

Since pintra and pinter are not independent of each other but
are constrained by the value of L, we need first to find the func-
tion that associates these three variables. We consider the general
case where clusters do not contain the same number of nodes,
but each cluster i contains a number ni of nodes. This means
that, statistically, in cluster i we can find a number of internal
links given by

liintra ¼
niðni � 1Þ

2
pintra, ð4:1Þ

and summing over all clusters we obtain

lintra ¼
XNc

i¼1

liintra ¼
XNc

i¼1

niðni � 1Þ
2

pintra: ð4:2Þ

For what concerns the inter-cluster links, instead, we should
consider that each node in cluster i can be connected to a
number of external nodes (N− ni)pinter. This is true for every
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node in the cluster, so it should be multiplied by ni to find the
number of connections of cluster i that point to other clusters:

liinter ¼ niðN � niÞpinter: ð4:3Þ
To obtain the total number of inter-cluster links we just have to sum
over all the clusters and divide by 2, to avoid double counting:

linter ¼
XNc

i¼1

liinter
2

¼
XNc

i¼1

niðN � niÞ
2

pinter: ð4:4Þ

The total number of links can, therefore, be written as

L ¼ lintra þ linter ¼
XNc

i¼1

niðni � 1Þ
2

pintra þ niðN � niÞ
2

pinter

� �
: ð4:5Þ

This equation represents the constraint between L, pintra, and pinter.
In our case, we consider all the clusters with the same number of
nodes: ni=N/Nc≡ nc 8i, hence it reduces to

L ¼ Nc
ncðnc � 1Þ

2
pintra þ ncðN � ncÞ

2
pinter

� �
: ð4:6Þ

The networks that we generate for this paper have a fixed number
of links, L = 400. By varying the chosen value for pintra we can
obtain different choices of pinter (and hence of p), always maintain-
ing constant the number of links L, by inverting equation (4.6):

pinter ¼ 2L
NcncðN � ncÞ �

nc � 1
N � nc

pintra: ð4:7Þ

Data accessibility. This work did not include the use of real data. The net-
works used for the numerical simulations are synthetic, generated
with the procedure described in the Methods section. The code
used for the generation of temporal network, simulations and analy-
sis is available from the GitHub repository: https://github.com/
giuliacencetti/Social˙bubbles [58].

Supplementary material is available online [59].
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Endnotes
1World Health Organization: https://covid19.who.int.
2If we extend the time span of the simulations we should consider the
fact that immunity only exists for a finite period of time; however,
since we are considering only around four months, considering that
recovered people remain immune until the end of the simulations
is a good approximation of reality.
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