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Abstract

A simple model for the collective behaviour of diverse speculative agents in a competitive mar-
ket is considered from the point of view of statistical physics. The only information about other
agents available to any one is the total trade e.ected at each time-step. Evidence is presented for
correlated adaptation, phase transitions, scaling, regimes of non-equilibration and equilibration,
and relevant stochasticity. An intermediate-level quasi-continuous micro-dynamics is derived and
shown to have a novel character. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper reviews some recent work on the application of methodology of statistical
physics to a simple but interesting model problem inspired by a stockmarket of many
individual speculators attempting to pro8t by buying low and selling high but with
only global macroscopic information on which to base decisions (and no knowledge
of their fellow-speculators as individuals).
Before describing the model, one might ask why such an economics-based model

should be of professional interest to statistical physicists. At two extremes one can
consider the answer as a producer or a consumer, the former in terms of the potential
of statistical physics to aid the economist by complementing conventional neo-classical

∗ Corresponding author. Departamento de Matematicas, Universidad Carlos III de Madrid, Avda. de la
Universidad 30, 28911 Leganes, Spain. Tel.: +34-91-6249101; fax: +34-91-6249129.

E-mail address: emoro@math.uc3m.es (E. Moro).

0378-4371/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0378 -4371(02)00835 -X



528 D. Sherrington et al. / Physica A 311 (2002) 527–535

economics theory (which typically assumes a hyper-rationality which is often unreal-
istic and unhelpful), the latter in terms of the challenges that economics poses to the
statistical physicist. Here we shall concentrate on the latter perspective, albeit remarking
on some of the implications for the former. 1 Hence we note: (i) economics systems
of many agents are many-body systems which typically show complex emergent coop-
erative behaviour even with simple rules of individual action, (ii) frustration, the key
ingredient for complexity in material systems such as spin glasses, is integral to the
operation of speculative stockmarkets, (iii) disorder, or non-uniformity of individual
behaviour, is essential to eDcient operation, (iv) as we shall see, there is evidence for
phase transitions and important Euctuation phenomena, two of the elements of ‘meat’
in modern statistical physics, as well as fruitful stochasticity and non-equilibration, and
(v) economics systems are usually non-Markovian and involve features not found in
material systems, such as anticipating the future. There is thus both a potential for
applying existing knowledge and also a challenge of new issues and features beyond
those of conventional condensed matter.

2. The model

The model system we consider is one known as the minority game (MG) [1]. It is
intended to mimic in a simple minimalist fashion a stockmarket of speculative agents
bidding to pro8t by buying when the majority wish to sell (so that the price can be
lowered) and selling when the majority wish to buy (so that a higher price can be
negotiated). It comprises a large number of agents each of whom can act as buyer
or seller, deciding on how to play at each time-step through the application of a
personal strategy to commonly available information. Each agent has a small set of
strategies, drawn randomly, independently and immutably with identical probabilities
from a large suite. At each time-step each agent picks one of his or her strategies, based
on points allocated cumulatively to the strategies according to their virtual performance
in predicting the minority which actually occurred. For simplicity, no other rewards
are given and no account is taken of friction (dealing costs and spreads).
The system has frustration in that rewards are for minority action and quenched

disorder in the strategies allocated to each agent. There is no direct interaction between
agents but correlation arises through the adaptive evolution of the strategy points.
The original formulation of the MG was based on a Boolean formulation in which

each agent had only two possible choices, buy or sell with no weight attached to the
order, and a straight minority determined the outcome. The strategies were Boolean
functions and the information on which they acted was the minority choice for the
previous m time-steps. Points were allocated to strategies based on their ability to
predict the minority and strategy-use choices were deterministic. Simulations [2,3]
clearly demonstrated correlated behaviour, an apparent phase transition and scaling
behaviour. Here, however, we shall concentrate on an alternative version which
allows for continuous-valued bids, stochastic decisions and continuous-valued point

1 See also J.P. Garrahan, E. Moro and D. Sherrington, Quant. Finance 1 (2001) 246.
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updates, and also incorporates the recognition [4] that random common information is
equally e.ective in inducing e.ective correlation between agents as is the quasi-random
sequence of actual past action.
Thus, in the continuous minority game [5] the common information on which all

agents base their actions is taken at each time-step as a stochastically random uncor-
related noise vector Ĩ(t) of unit length in a D-dimensional space. The strategies R̃�

i ,
where i = 1; : : : ; N label the agents and � = 1; : : : ; s their corresponding strategies, are
quenched vectors of length

√
D chosen randomly, also in D-dimensional space. In the

presence of information Ĩ(t), strategy R̃�
i yields a (real number) bid

b�i (t) = R̃�
i · Ĩ(t) : (1)

However, at any time each agent employs only one of his or her strategies, which we
denote by R̃∗

i (t), yielding an actual individual bid b∗i (t) = R̃∗
i (t) · Ĩ(t) and a total bid

A(t) =
∑
i

b∗i (t) ≡ Na(t) : (2)

Strategy choices are determined by points Pi(t) which are updated to reward minority
action by

P�
i (t + 1) = P�

i (t)− b�i a(t) ; (3)

note that the a(t) are determined by the actual strategies used at t but all P�
i are updated.

Since there is no bias towards positive or negative bid, the 8rst relevant macroscopic
observable is the normalized standard deviation � of the total bid, or ‘volatility’, given
with appropriate normalization by

�2 = N−1〈A2〉 ; (4)

where 〈· · ·〉 refers to a temporal average. � is self-averaging and so in theoretical
analysis may be averaged over the actual strategy choice in the thermodynamic limit
N → ∞.

3. Simulations

Fig. 1 shows the results of simulation of the model [5] starting with all P�
i zero. It

shows all the same qualitative features as the original formulation, with now d=D=N
playing the role of relevant scaling dimension; i.e., the volatility at low d is higher than
that for agents making purely random choices, �r = 1, decreasing monotonically to a
minimum value below �r at a critical d=dc(s) and rising to approach �r asymptotically
as d → ∞. The deviation from �r is evidence for correlation between agents and the
minimum at dc(s) suggests a phase transition. In fact, further probing reveals that
dc is a critical boundary between non-equilibrating and equilibrating behaviour, as is
demonstrated in Figs. 2 and 3 for s = 2 (which Fig. 1 already shows has the crucial
ingredients and to which we now specialise for simplicity). Fig. 2 shows that for d¡dc

the behaviour depends on the starting con8guration, with the volatility always ¡�r for
systems started with each agent’s points (arbitrarily) suDciently biased in favour of one
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Fig. 1. Scaled volatility of the T = 0 minority game as a function of relevantly scaled information-strategy
dimension, for s = 2; 4 and unbiased initial strategy weights (from Ref. [5]). The horizontal line is the
corresponding value for uncorrelated behaviour.

10
_1

10
0

d 

0.0

1.0

2.0

σ

Fig. 2. Volatility for the T = 0 minority game s = 2 with randomly chosen biased initial strategy weights
|pi(0)|�0 ( ), compared with unbiased starts (—–).

of his or her strategies, in stark contrast to the case of unbiased starts (see Fig. 1) and
thereby demonstrating non-equilibration. For d¿dc the system equilibrates from any
start. Fig. 3 shows a complementary ‘hysteresis’ behaviour in which, starting from an
unbiased state at low d, the scaled dimension d is gradually increased quasi-statically
into the region d¿dc, either by increasing D or decreasing N , and then quasi-statically
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Fig. 3. Hysteresis e.ects in the volatility as d is quasi-statically evolved (increasing and decreasing slowly
the parameter D for a given number of agents) from an unbiased point start. Numerically identical results
are obtained by slow variation of N at 8xed D.

reduced. In the region d¿dc � is identical in both directions, but for d¡dc it enters
the strongly biased regime of Fig. 2, again demonstrating non-equilibrium behaviour
in this region.
A further interesting feature appears if one allows for stochasticity in agents’

decisions. This is the case in the ‘thermal minority game’ (TMG) [5,6], where the
strategy-use choices are probabilistic with a characteristic control measure analogous
to a temperature. For s= 2 a single point measure per agent suDces

pi(t) = P1
i (t)− P2

i (t) (5)

and one can consider a strategy choice probability

�1;2
i (t) ∼ exp{±f(pi(t)=T} : (6)

The results of two choices are shown in Figs. 4(a) and (b), in each case for unbiased
starts. The ‘natural’ choice of f(p) = p was employed initially [5] and simulations
demonstrated that for d¡dc a non-zero T improves global performance in the sense
of reducing �. More particularly, a fairly sharp drop is observed to a minimum value
less than both �(d = 0; T = 0) and �r at a temperature Tc(d) ∼ O(1). The choice
f(p) = signp shows essentially the same behaviour for T up to this critical value
[6]. For T ¿Tc the two choices di.er however. This is a consequence of another
feature, namely that above dc, after an initial settling, the agents freeze with the |pi(t)|
growing quasi-linearly with time. Consequently, for the initial choice of f(p) = p
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Fig. 4. Volatility as a function of T for (a) f(p) = p (b) f(p) = sign(p). In both cases d¡dc and starts
are unbiased.

time and temperature e.ectively cancel [7] so that in the long time limit � does not
change further with T . However, interestingly and potentially valuably, it stays at its
minimum value [8]. By contrast, for f(p)= sign(p) � moves asymptotically towards
�r as T is increased further beyond Tc towards ∞ [6], as expected. Both choices
show that stochastic ‘irrationality’ can improve performance, demonstrate a thermal
phase transition and extrapolate to a phase boundary in (d; T ) space separating the
non-equilibrating (low d and low T ) region from the equilibrating one (high d or
high T ) with minimum volatility on the boundary.

4. Theory

Let us now turn to theory and consider the derivation of a coarse-grained quasi-
continuous microdynamics, as an intermediate step towards an analytic derivation both
of the macro-dynamics and of quasi-equilibrium in the relevant regime of its applica-
bility. Again for simplicity, without losing conceptual generality, we take s = 2. It is
also convenient to re-de8ne parameters [7,6]

!̃i ≡ (R̃1
i + R̃2

i )=2; �̃i ≡ (R̃1
i − R̃2

i )=2; si(t) ≡ �1
i (t)−�2

i (t) (7)

so that the choice of strategies used at each stage is given by

R̃∗
i (t) = !̃i + �̃i sign (si(t) + �(t)) ; (8)

where �(t) is a stochastic random variable uniformly distributed between −1 and +1
and independently distributed in time. The equations for the point di.erences then read

pi(t + 1) = pi(t)− (̃a(t) · Ĩ(t))(̃�i · Ĩ(t)) ; (9)
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where ã(t) ≡ ∑
R̃∗
i (t)=N . Together with the random processes for Ĩ(t) and R̃∗

i (t),
Eqs. (7) de8ne the microdynamics of the TMG.
It is useful to consider the system on quasi-continuum coarse-grained mesoscopic

time-scales in such a way as to simplify but preserve all the macroscopic features of
the TMG. To this end we average over the random processes Ĩ(t) to yield an e.ective
interaction between the agents [3,6,9]

Ppi =−(ND)−1
∑
j

R̃∗
j (t) · �̃iPt + O(Pt2) : (10)

At T = 0 these equations are deterministic and

Ppi =−
[
hi +

∑
j

Jij sign (pj(t))

]
Pt + O(Pt2) ; (11)

where

hi = (ND)−1
∑
j

!̃j · �̃i; Jij = (ND)−1�̃i · �̃j ; (12)

while the volatility is given by

�2 = " + 2
∑
i

hi〈sign(pi(t))〉+
∑
ij

Jij〈sign(pi(t)) sign(pj(t))〉 : (13)

Simulation of Eq. (11) demonstrates that it correctly reproduces the behaviour of the
original model, including the non-equilibrium preparation-dependence for d¡dc.

At 8nite temperature the stochastic choice of strategies is relevant and Euctuation
e.ects cannot be ignored [6]. The transition probabilities in the large N limit are given
by

W (p′|p) = $(∇sH;M) ; (14)

where $ corresponds to a normal distribution with mean ∇sH, where

H[p(t)] =
1
2
" +

∑
i

hisi +
1
2

∑
ij

Jijsisj (15)

and covariance matrix M= {Mij} with

Mij[p(t)] =
∑
k

JikJjk(1− s2k(t)) : (16)

This then yields the Fokker–Planck equation for the point (or strategy probability)
distribution

@p
@t

=−
∑
i

@
@pi

(
@H
@si

P
)
+

1
2

∑
ij

@2

@pi@pj
(MijP) (17)

and the e.ective stochastic di.erential equation for the point di.erences

dp=−(sHdt +M · dW ; (18)



534 D. Sherrington et al. / Physica A 311 (2002) 527–535

where W is an N -dimensional Wiener process. The volatility is given by

�2 = 2〈H〉+
∑
i

Jii(1− 〈s2i 〉) : (19)

Again, numerical iteration of Eq. (18) con8rms that it reproduces the results of
simulation of the original TMG.

5. Interpretations

Let us now turn to interpretation. Eq. (16) is suggestive of a descent in an energy
landscape but it should be noted that the gradient is with respect to s, not p, so that a
metric is necessary, and at 8nite T there is also the unusual extra di.usive=noise term
M ·dW . Notwithstanding these subtleties H can be interpreted as a combination of an
exchange between spins together with a random 8eld term. Furthermore, the exchange
Jij has a form reminiscent of the Hop8eld model for neural networks with the Carte-
sian coordinates of the � analogous to the di.erent memories of the Hop8eld model.
However, it di.ers in the important regard of having the opposite sign, hindering rather
than assisting freeze-out=retrieval into one of the Cartesian directions=patterns. Nor does
it favour a simple exchange-induced ‘spin-glass’ like correlation over a ‘paramagnet’
as becomes evident if one chooses the agents’ strategies to be equal and opposite,
R̃2
i =−R̃1

i , so as to eliminate the random 8eld terms hi; in this case the volatility never
drops below �r , as demonstrated in Fig. 4. Indeed, we deduce that it is the random
8eld terms that lead to the better-than-average volatility of the original models. Mini-
mization of H , using the techniques of spin glass theory developed for neural networks,
yields results in accord with simulation at T = 0 above the critical dc both for fully
random strategies [7] and also for the case of R̃2

i =−R̃1
i with R̃1

i random, and give dc

as a validity breakdown.
Finally, we note that the origin of the di.erence of behaviour between d�dc and

d�dc can be attributed to the fact that in the former case R̃ is dilutely distributed on
the hypersphere while in the latter it is densely distributed with large clusters. Indeed
this is analogous to Johnson’s picture of crowds and anticrowds [10] with the overlap
of collective R̃∗

i with Cartesian directions in strategy space

n�(t) = D−1=2
∑
i

R̃∗
i (t) · ê � ; (20)

where ê � is a unit vector in the �th direction, corresponding to the di.erence of size
between a crowd and an anticrowd [10] and

�2 = N−1
∑
�

n�(t)2 : (21)

Notice that large Euctuations in the region d¡dc are a consequence of period-two
dynamical anticorrelations between crowds and anticrowds [9]. Temperature-induced
stochasticity e.ectively loosens these anticorrelated clusters, while, even at T =0, zero
time preferences prevent the initial creation of these clusters.
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6. Conclusion

With a very simple model we have seen that markets provide challenges and oppor-
tunities for statistical physics. Already this minimalist model is subtle and demonstrates
non-Markovian behaviour, novel dynamics, phase transitions, non-equilibrium and fruit-
ful irrationality. Although the system is mean 8eld-like it is far from trivial.
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