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We report large scale Monte Carlo simulations of the equilibrium discrete Laplacian roughening �dLr�
model, originally introduced as the simplest one accommodating the hexatic phase in two-dimensional melting.
The dLr model is also relevant to surface roughening in molecular beam epitaxy �MBE�. Our data suggest a
single phase transition, possibly of the Kosterlitz-Thouless type, between a flat low-temperature phase and a
rough, tensionless, high-temperature phase. Thus, earlier conclusions on the order of the phase transition and
on the existence of a hexatic phase are seen as due to finite size effects, the phase diagram of the dLr model
being similar to that of a continuum analog previously formulated in the context of surface growth by MBE.
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Two-dimensional �2D� melting has played a driving role
in statistical physics for more than two decades. Efforts made
at clarifying its nature �1� have aided to understand systems
in which topological defects are relevant, from the equilib-
rium fluctuations of metallic surfaces �2� to superfluidity and
superconductivity in thin films, and phase transitions in liq-
uid crystals �3�. One of the most intriguing related notions is
the hexatic phase, between a solid at low temperature �T� and
an isotropic fluid at high T, transitions between phases being
of the Kosterlitz-Thouless �KT� type. Such is the Kosterlitz-
Thouless-Halperin-Nelson-Young �KTHNY� mechanism for
2D melting �3�. Although controversial for some time, the
hexatic phase has indeed been found in atomistic model sys-
tems �4� and in experiments �5�.

A successful approach to systems with defect-mediated
phase transitions as the above has been the use of duality to
formulate equivalent height models. For example, the dis-
crete Gaussian �dG� model �Eq. �1� below for bending rigid-
ity parameter �=0� is dual of the 2D Coulomb gas, and the
roughening transition in the former corresponds �6� to the
well-known KT phase transition of the latter, driven by the
unbinding of vortex-antivortex pairs. With a similar philoso-
phy, the discrete Laplacian roughening �dLr� model was in-
troduced by Nelson �7� to describe the 2D melting. Its
Hamiltonian is

H =
1

2�r
����dh�r��2 + ���d

2h�r��2� , �1�

where r denotes the position on a 2D lattice of lateral size L,
�d is a discrete gradient, and h�Z. The original dLr model
�7� is obtained by setting to zero the surface tension param-
eter �. Note, the dLr model is a discrete version of the linear
approximation to Helfrich’s energy functional for 2D mem-
branes �8�, and provides a simplified description of fluctuat-
ing tensionless surfaces, such as biological membranes �8�,
or, e.g., such as those grown under conditions typical in mo-
lecular beam epitaxy �MBE� �9�.

For the dLr model, the KTHNY mechanism would imply
�1� an intermediate hexatic phase in which the surface disor-
ders in heights, but not in slopes �quasilong range orienta-
tional order�. For low T, the surface would be in a flat phase,
dual of the isotropic fluid in melting, while for high T the
surface would disorder in heights and slopes, providing the
dual of the solid phase. In terms of the surface structure
factor S�q�= �ĥ�q�ĥ�−q�	 �10�, the rough high T phase im-
plies the power law behavior as S�q�
q−4, changing to
S�q�
q−2 in the hexatic phase �11�, and to the existence of a
finite correlation length in the flat low T phase. Equivalently,
for the stationary height-difference C�r� and slope-difference
Cd�r� correlations �12�, these behaviors amount to: �i� rough
phase C�r�
r2 log r, Cd�r�
 log r; �ii� hexatic phase C�r�

 log r, Cd�r�
1; �iii� flat phase C�r�
1, Cd�r�
1. Results
supporting this picture were obtained on small �L�32�
square and triangular lattices �13�. However, conflicting evi-
dence for L�64 was presented that the model had a single
first order transition, see �14�, and references therein. The
discrepancy has remained unsolved, in spite of recent ana-
lytical studies �15�; elucidation of the phase diagram being
important to the diverse contexts mentioned above.

Here, we provide new Monte Carlo �MC� simulations of
the dLr model on the square and triangular lattices. Our re-
sults for sizes up to 512�512, much larger than those pre-
viously studied �13,14�, allow us to see previous works as
inconclusive due to finite size effects. The model seems to
display a single continuous transition, possibly of the KT
type, between the flat and the rough phases, there being no
sign of a hexatic phase to within our numerical resolution in
T. Notably, this provides an instance of a roughening transi-
tion in which the rough phase corresponds to a free tension-
less surface, rather than a free surface with tension, as in the
dG model. Moreover, the phase diagram of the dLr model is
seen to resemble closely that of a continuum model proposed
�9,15� for MBE growth, suggesting that both models are in
the same universality class, much like the relationship be-
tween the dG and the continuum sine-Gordon models �16�.

For our MC simulations we follow the same procedure as
in �13�, fluctuations being treated by the histogram method
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�17�, further validated through additional simulations on dif-
ferent points of the extrapolated intervals. Thermalization
has been checked by monitoring the behavior of nonlocal
observables such as the specific heat and the structure factor
at the smallest wave vector on our finite lattices, S�q
=2� /L�, as functions of MC time. Note that the dLr model
has a richer ground state structure than the dG model, Hamil-
tonian �1� with �=0 being minimized not only by configu-
rations with uniform heights, but also by configurations with
uniform slopes �and by more complex morphologies, see be-
low�, see, e.g., the surface morphology made up of patches
with various constant slopes shown in Fig. 1 for high T. In
simulations, this requires large enough system sizes and ap-
propriate boundary conditions so that the full minima struc-
ture can be significatively probed. In particular, for small

sizes and periodic boundary conditions the system is effec-
tively constrained to fluctuating around a single energy mini-
mum �the morphology with zero slope�, inducing apparent
hystheretic behavior associated with a first order transition
�14�. In our simulations, we have employed both periodic
and free �Neumann� boundary conditions, and we have made
sure that results provided are �qualitatively� independent of
these.

As done for the dG model in �18�, we study the phase
transition through the behavior of the structure factor S�q�
for different temperatures. In order to test the KTNHY
mechanism, we have studied the behavior of S�q� as a func-
tion of T and L, by fitting the small wave-vector part of S�q�
to S�q�
q−r. As seen in Fig. 2 for the square lattice �for the
sake of clarity, we omit plots for the triangular lattice, in
which completely analogous results are obtained�, there is no
evidence of a finite temperature interval within which r�2,
that would be the signature of the hexatic phase. Rather, we
find a gradual change from the flat phase behavior �r�0� to
the rough phase one �r�4�. This change becomes more
abrupt when the system size is increased, so that only the flat
and the rough phases remain well defined in the thermody-
namic limit. These results may thus explain the apparent ob-
servation of a hexatic phase in �13� for small L values, where
no systematic finite size effects were assessed. By defining
the critical temperature Tc as the value at which curves for
different system sizes cross �17�, we estimate Tc=1.65�1� for
the square lattice and Tc=1.90�2� for the triangular lattice.

Further evidence on the existence of a single phase tran-
sition is provided by the behavior of the specific heat
c�T ,L�= ��HdLr

2 	− �HdLr	2� / �T2L2� as a function of tempera-
ture. Figure 3 shows c�T� on the square and triangular lat-
tices for the largest system sizes in our simulations. Within
our statistics, a single peak at T=T* can be detected, rather
than two as would be expected within the KTHNY scenario.
The height and position of the peak are functions of lattice

FIG. 1. Surface morphologies for three sample temperatures
around Tc on the L=128 square lattice for Neumann �zero deriva-
tive� boundary conditions. Inset: Lateral cut of the surface for T
=1.7. All units are arbitrary.

FIG. 2. Effective exponent r in the small wave-vector behavior
S�k�
k−r �for k�2 sin�q /2��k*�L�3� /L�, as a function of T,
for L=32 ���, 64 ���, and 128 ��� for the square lattice. Inset:
surface structure factor S�k� on the L=128 square lattice vs k, for
T=1.62 �bottom� up to T=1.69 �top�. Dashed reference lines have
slopes −2 �bottom� and −4 �top�. All other lines are guides to the
eye. All units are arbitrary.

RUIZ-LORENZO, MORO, AND CUERNO PHYSICAL REVIEW E 73, 015103�R� �2006�

RAPID COMMUNICATIONS

015103-2



size L. Figure 4 �inset� provides the results of finite size
analysis on the specific heat curves, in which the maximum
value cmax�L� obtained for each lattice size is plotted as a
function of L. Remarkably, although for lattice sizes L�70
the specific heat grows approximately as
cmax�L—compatible with claims on the apparent weakly
first order character of the transition for L�64 �14�—for
larger L values the increase of cmax�L� slows down. For our
largest simulated systems, the best fit is logarithmic cmax

 log L. Actually, for the 2D XY model the specific heat at
the transition temperature is known �19� to first grow loga-
rithmically with system size and then saturate for large
enough values of L, suggesting that our result might reflect

finite size effects. Indeed, saturation is expected provided
that the correlation length at T* is smaller than L and thus a
horizontal plateau would occur at low k for S�k�, namely r
=0 as defined in Fig. 2. The steady decrease of r at T* for
increasing L indicates that such a condition has not been
reached. Persistence of logarithmic behavior in the L→�
limit would rather suggest that the phase transition is in, e.g.,
the 2D Ising class �20�. In order to explore this possibility, in
Fig. 4 we study the dependence of the specific heat jump
position T*�L� with lateral size L. In a continuous transition,
T*�L� scales as �20� T*�L�−T*
L−1/	�1+gL−
�, where g is a
numerical constant and 
 is an exponent that accounts for
corrections to scaling, and is in the range 7/4�
�2 for the
2D Ising class �21�. The best multiparameter fit to such scal-
ing forms yields 	=1.54�47� and 	=0.94�16� on the square
and the triangular lattices, together with 
=1.6�3� and
2.2�2.0�, respectively, to be compared with 	=1 for the 2D
Ising class �22�. Although these results might seem compat-
ible with the 2D Ising universality for the present transition,
we believe our numerical evidence favors more strongly a
different interpretation. Thus, in marked contrast with a 2D
Ising and as shown by Fig. 2, the transition in the dLr model
is from a phase with finite correlation length to a continuous
line of fixed points �in the renormalization group �RG�
sense�, characterized by an infinite value of the correlation
length, as occurs in a KT transition �16�. In order to corrobo-
rate the latter interpretation, we can try a phenomenological
KT-type form for T*�L�, namely �20�

T*�L� = T* +
a

�log L + b�2 , �2�

for constant a and b. As seen in Fig. 4, this fit is in very good
agreement with the numerical data for large sizes. We must
caution the reader on the well-known feature of the KT tran-
sition, that the peak of the specific heat does not occur at the
critical temperature but, rather, at a temperature preceding Tc
�19,20�. Although the size of this offset can be model depen-
dent, Fig. 3 indeed provides estimates, T*=1.63�1� on the
square lattice, and T*=1.85�1� on the triangular lattice, that
are below the corresponding Tc values, and are still inside
the low T behavior for the spatial correlation functions, see
Fig. 2. Thus, the inexistence of an intermediate phase and the
fact that the spatial correlations and the specific heat change
behavior at different values of T can be hardly reconciled
with a single transition of the Ising class.

Our results seem to replace the KTHNY scenario for the
dLr model by a single, tensionless, KT-type phase transition.
The absence of the hexatic phase may seem surprising when
contrasted with the often accepted argument that, for increas-
ing T, the surface should first disorder in heights and, then, in
slopes. However, this is a sufficient condition for surface
roughening, but it is not necessary. For instance, in the dG
model slopes are not disordered at any temperature. It is also
conceivable, as is our belief, that heights and slopes disorder
at the same temperature in the dLr model. This remarkable
result is also against the expectation that discreteness in sur-
face heights renormalizes the surface tension �, as it indeed
does in the dG model �16�. For the dLr model, a generation

FIG. 3. c�T� vs T on the square �main panel� and triangular
�inset� lattices for L=16 �*�, 32 ���, 64 ���, 128 ���, 256 ���, and
512 ���. Bars are statistical errors and thin lines are guides to the
eye. For the larger L values in each case, thick solid lines show the
c�T� curve extrapolated by the histogram method �17�. All units are
arbitrary.

FIG. 4. Transition temperature T* as obtained from Fig. 1, as a
function of L for the square ��� and triangular ��� lattices. For
each case, the dashed line is a power-law fit T*�L�−T*
L−1/	, and
the solid line is a fit to Eq. �2�. L=512 is not employed for the fit
due to low statistics. Inset: cmax�L� vs L on the square ��� and
triangular ��� lattices. Lines are logarithmic fits to the data, shown
for reference. All bars represent statistical errors and all units are
arbitrary.
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of a nonzero � would imply that the asymptotic properties of
the high T phase coincide with those of the dG model �11�.
In order to explore this possibility, various analytical ap-
proaches �15� have been applied to the following continuum
analog of the dLr model, introduced in the context of growth
by MBE �9�:

�h

�t
= − ��4h −

2�V

a�

sin�2�h

a�

� + �2kBT� , �3�

where � is a delta-correlated Gaussian white noise, and a�,
V, are parameters. Although a dynamical RG study for �3�
does predict the generation of a nonzero surface tension, nu-
merical simulations of this Langevin equation �9� give re-
sults in complete qualitative agreement with those of the dLr
model presented here. The discrepancy between the RG ar-
guments and the numerical results for both the discrete and
continuum models might be due to inaccuracies in the treat-
ment of model symmetries in the RG studies. Namely, the
dLr model can be written as a model for the surface slopes
m��dh, i.e., HdLr= �� /2��r��d ·m�r��2, with the implicit
restriction that �d�m�0. Thus, the dLr model has larger
symmetries than the dG model, the Hamiltonian being in-
variant under arbitrary global shifts in the heights, as in the
latter, but also in the slopes. Thus the ground state degen-
eracy here is much larger, with minima occurring for all
height configurations for which �d ·m=0. However, standard
perturbative RG analyses �15,23� are oblivious to such an
added complexity in the ground state structure of the model.

Perhaps in a related fashion, the zero-vorticity constraint for
the slope field may be playing a dynamical role in the un-
binding of surface defects for T=Tc in the 2D melting tran-
sition described by the dLr model.

Summarizing, our numerical study suggests that the dLr
model features a single continuous phase transition. Al-
though sizes of our simulations are confined to a regime in
which the specific heat still grows logarithmically with L,
rather than saturating as in proper KT scaling, the combined
information from the spatial correlations and the specific
heat are consistent with a KT transition. This behavior is
remarkably similar to that of the continuum model �3�, in-
cluding the tensionless nature of the high T phase. Progress
in the analytical description of these phenomena might im-
prove our understanding of nonperturbative effects in defect-
mediated transitions, and of dynamical effects of geometrical
constraints �such as the curl-free condition above� in equilib-
rium systems.
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