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We consider the financial market as a model system and study empirically how agents strategically adjust the
properties of large orders in order to meet their preference and minimize their impact. We quantify this
strategic behavior by detecting scaling relations between the variables characterizing the trading activity of
different institutions. We also observe power-law distributions in the investment time horizon, in the number of
transactions needed to execute a large order, and in the traded value exchanged by large institutions, and we
show that heterogeneity of agents is a key ingredient for the emergence of some aggregate properties charac-
terizing this complex system.
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I. INTRODUCTION

Scaling �1� is a key concept in the modeling of complex
systems, and it is found in a wide range of systems and
phenomena ranging from supercooled liquids �2� to heartbeat
dynamics �3� and to the metabolism of organisms �4�. Scal-
ing has also been observed in social and economic systems
such as, for example, the price impact of a single transaction
occurring in a financial market �5� and, more recently, the
growth of cities �6�. Power-law distributions are also perva-
sive in complex systems investigation and modeling �7�.
Power laws are widely observed in physics, biology, com-
puter science, demography, earth sciences, economics and
finance, psychology, and the social sciences. In this paper,
we describe observables quantitatively characterizing the
strategic behavior of heterogeneous agents in terms of scal-
ing relations and power-law distributions.

The dynamics of many socioeconomic systems is deter-
mined by the decision-making process of agents. The deci-
sion process depends on the agents’ characteristics, such as
preferences, risk aversion, behavioral biases, etc �8,9�. In ad-
dition, in some systems the size of agents can be highly
heterogeneous, leading to very different impacts of agents on
the system dynamics �10–15�. The large size of some agents
poses challenging problems to agents who want to control
their impact, either by forcing the system in a given direction
or by hiding their intentionality. It is likely that large agents
impact the system in a way that is significantly different from
small ones. Indeed, small agents can easily hide their inten-
tionality, while for large agents this is not so easy and they
must adopt strategies taking into account their own effect
because revealing their intention could decrease their fitness.
Financial markets are an ideal system to investigate this
problem. There is empirical evidence that financial market
participants are very heterogeneous in size. For example, the
sizes of banks �14� and mutual funds �15� follow Zipf’s law,
i.e., the probability that the size of a participant is larger than
x decays as 1 /x �11�. As a consequence, large investors usu-
ally need to trade large quantities that can significantly affect

prices. The associated cost is called market impact
�5,16–19�. For this reason, large investors refrain from re-
vealing their demand or supply and they typically trade their
large orders incrementally over an extended period of time.
These large orders are called packages �23,24� or hidden
orders and are split into smaller trades as the result of a
complex optimization procedure which takes into account
the investor’s preference, risk aversion, investment horizon,
etc.

The empirical characterization of the statistical properties
of packages is a difficult task due to the difficulty of access-
ing proprietary data. A few studies have been performed by
using limited data sets of packages exchanged by a few fi-
nancial institutions. Here we tackle the problem from a dif-
ferent perspective. By making use of a special database in
which the identity of the buyer and the seller of each trans-
action is disclosed �at least in some form; see below�, we
develop a statistical algorithm able to identify in a statistical
way the presence of packages in the activity of a market
participant. While some uncertainty is unavoidably present
due to the statistical nature of our algorithm, our investiga-
tion is at the level of the whole market because essentially all
the trades are investigated. Specifically, here we investigate
the trading activity of a large fraction of the financial firms
exchanging a financial asset at the Spanish stock market
�Bolsas y Mercados Españoles �BME�� in the period 2001–
2004. We aim for a comprehensive approach analyzing the
overall dynamics of all packages exchanged in the market.
After the identification of the packages, we study the statis-
tical properties of these packages in terms of distributional
properties and scaling laws. We also investigate the role of
participants’ heterogeneity in explaining the observed statis-
tical regularities.

In Sec. II we introduce our database and the algorithm we
developed to identify in a statistical way the packages ex-
changed by each firm in the market. In Sec. III, we investi-
gate the statistical properties of the variables characterizing
the packages, and in Sec. IV we study the scaling relations
between the variables of the packages. In Sec. V we consider
the problem of whether the statistical regularities detected in
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Secs. III and IV hold for each firm individually or if they are
an effect of the heterogeneity of firms. Finally Sec. VI gives
the conclusions.

II. DATA AND DETECTION METHOD

Our database of the electronic open market Sistema de
Interconexión Bursátil Electrónico �SIBE� allows us to fol-
low each transaction performed by all the firms registered at
the BME. In 2004 the BME was the eighth in the world in
market capitalization. We consider firm transactions only on
the stocks Banco Bilbao Vizcaya Argentaria �BBVA�, Banco
Santander Central Hispano �SAN�, and Telefónica �TEF�
which are three highly liquid stocks. The investigated period
is 2001–2004. We do not consider other stocks because we
have verified that the number of detected firm packages is
too small for a careful statistical estimation. In this market,
firms are local and foreign credit entities and investment
firms which are members of the stock exchange and they are
the only firms entitled to trade. Orders to buy and sell are
entered into the market only through members of the stock
market. Approximately 75% of them are major financial in-
stitutions and 25% are established securities dealers. Both
types may trade on their own behalf and also on behalf of
other individuals and/or institutions that are not members of
the market. It is important to stress that firms are not neces-
sarily quoted companies �stocks� but rather are the only in-
stitutions entitled to trade stocks directly. The interest of this
work is in part related to the availability of data on the firms’
activity rather than on stock macroscopic variables �price,
volume, etc.�. In this paper we consider only the most active
firms defined by the criterion that each firm made at least
1000 trades per year and was active at least 200 days per
year. The number of firms is 50 �BBVA�, 55 �SAN�, and 61
�TEF�. These firms are involved in 81–86 % of the transac-
tions. The series under study is the series of signed traded
value. For each firm and for each stock we construct a series
composed of all the trades performed by the firm with a
value +v for a buy trade and −v for a sell trade, where v is
the value �in euros� of the traded shares.1

Our database does not contain direct information on pack-
ages, so that this information must be statistically inferred
from the available data. Since we do not have information on
clients but only on firms, we develop a detection algorithm
which is not sensitive to small fluctuations in the buy-sell
activity of a firm. The algorithm is adapted from Ref. �25�,
where it was introduced to study patchiness in the
non-stationary dynamics of the human heart rate, and it de-
tects time segments in the inventory time evolution of a firm
when the firm acts as a net buyer or seller at an approxi-
mately constant rate. The algorithm works as follows. One
moves a sliding pointer along the signal and computes the
mean of the subset of the signal to the left and to the right of

the pointer. From these mean values one computes a t statis-
tic and finds the position of the pointer for which the t sta-
tistic is maximal. The significance level of this value of t is
defined as the probability of obtaining it or a smaller value in
a random sequence. One then chooses a threshold �in our
case 99%� and the sequence is cut if the significance level is
larger than the threshold. The cut position is the boundary
between two consecutive patches. The procedure continues
recursively on the left and right subsets created by each cut.
Before a new cut is accepted, one also computes t between
the right-hand new segment and its right neighbor and t be-
tween the left-hand new segment and its left neighbor, and
one checks if both values of t are statistically significant
according to the selected threshold. The process stops when
it is not possible to make a new cut with the selected signifi-
cance.

We call the detected segments patches. Since firms act
simultaneously as brokers for many clients, it is rather fre-
quent that in a patch not all the transactions have the same
sign. However, a vast majority of firm inventory time series
can be partitioned into patches with a well-defined direction
toward buying or selling. This is probably due to the fact that
in most cases the trading activity of a firm is dominated by
the activity of one big client.

In the present study, we are mainly interested in direc-
tional patches, i.e., patches where the trader consistently
buys or sells a large amount of shares. Our working hypoth-
esis is that each of these patches contains at least one pack-
age. To clarify this point, consider the case of a firm submit-
ting two packages with the same sign and the same trading
velocity. Our detection algorithm will detect only one long
package. We wish to exclude patches in which the inventory
of the firm is diffusing randomly, without a drift. To this end,
for each patch we compute the total value purchased, Vb, the
total value sold, Vs, and the total value V=Vb+Vs. We then
consider a patch as directional when either Vb /V�� �buy
patch� or Vs /V�� �sell patch�. The parameter � can be var-
ied and in the present study we set it to �=75%. We obtain
similar results for different values of � such as 85% and
95%. Finally, in the present paper we consider patches with
at least ten trades. An example of an inventory time series
and the output of the segmentation algorithm is shown in
Fig. 1.

The characterizing variables of a directional patch are the
time length T �in seconds� of the patch, measured as the time
interval between the first and the last orders of the patch, the
traded value Vm, and the number Nm of trades characterizing
the patch. For example, Nm is the number of buy trades and
Vm is the purchased value for buy patches.

III. DISTRIBUTIONAL PROPERTIES OF PATCHES

We investigate first the distributional properties of the
patches identified by our algorithm. Figure 2 shows the dis-
tributions of T, Nm, and Vm for the three investigated stocks.
The asymptotic behavior of all three distributions can be
approximated by a power-law function P�X��1 /X�X+1,
where X can be T, Nm, or Vm, and �X is the exponent char-
acterizing the power-law behavior. A summary of the esti-

1We have repeated the analysis by considering the time series of
volume, i.e. number of shares, rather than of value. The results are
essentially the same and the exponents shown in Table I for the
value time series are statistically indistinguishable from the ones
obtained for the volume time series.
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mated exponents is shown in Table I from which one can
conclude that �Vm

�2, �Nm
�1.8, and �T�1.3. Our analysis

makes explicit the presence of a very broad distribution for
the three variables characterizing a patch. In fact the very
low value of the exponents is consistent with the conclusion
that T and Nm belong to the domain of Lévy-stable distribu-
tions. This result indicates that in the market there is a huge
heterogeneity in the scales characterizing the trading profiles
of the investors. The volume of the packages is likely to be
related to the size of the investor. Large investors need to
trade large packages to rebalance their portfolio. Gabaix et
al. �26� developed a theory which predicts that package size
should be power-law distributed with an exponent �Vm

=3 /2.
The value we find for �Vm

�2 is slightly larger than the one
predicted by them. On the contrary, the value �Nm

=3 derived
by the theory in �26� is significantly larger than our estimate
��Nm

�1.8�. Finally, the power-law distribution of packages
time length T might reflect the heterogeneity of time scales
among investors. The power-law distribution for T has been
recently suggested in stylized models of investment deci-
sions �20–22� and is quantitatively compatible with the ones
obtained by using specialized databases describing the in-
vestment packages of large investors �23,24� �see Fig. 2�.
The Gabaix et al. theory �26� predicts the value �T=3, which
is significantly larger than our value ��T�1.3�. The role of
size heterogeneity in the emergence of power-law distribu-
tions will be considered below.

IV. SCALING RELATIONS

To complete our characterization of firm patches, we now
consider the relation between the variables characterizing

each patch. Specifically, by applying the principal compo-
nent analysis �PCA� to the set of points with coordinates
�log T , log Nm , log Vm�, we investigate the scaling or allom-
etric relations between any two of the above variables, i.e.,

Nm � Vm
g1, T � Vm

g2, Nm � Tg3. �1�

Figure 3 shows the scatter plots and the contour plots for the
stock Telefónica. In all three cases a clear dependence be-

FIG. 1. �Color online� Example of an inventory time series. The
series refers to a particular firm trading Santander. The vertical lines
indicate the position where our algorithm predicts the boundary
between two patches. Directional patches are shown as red lines.
Due to their statistical nature, in each patch there are buy �with a
total traded value Vb� and sell �with a total traded value Vs� trades.
We consider directional patches, i.e., patches where either Vb /V
�� �buy patch� or Vs /V�� �sell patch�, where V=Vb+Vs. For buy
patches Vm=Vb whereas for sell patches Vm=Vs. In the present
study we set �=75%. The black patches are not directional and are
not considered in the rest of the paper.

FIG. 2. �Color online� Distribution of T, Nm, and Vm for the
stocks Banco Bilbao Vizcaya Argentaria �BBVA�, Banco Santander
Central Hispano �SAN�, and Telefónica �TEF�. In the panel show-
ing the distribution of T we plot the distribution of packages re-
ported in the literature on packages. Specifically, empty blue circles
are results from Ref. �23� for packages traded at the New York
Stock Exchange and empty magenta squares are results from Ref.
�24� for packages traded at the Australian Stock Exchange.
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tween the variables is seen. PCA analysis shows that the first
eigenvalue explains on average 91%, 83%, and 89% of the
variance for the first, second, and third scaling relations, re-
spectively, indicating a strong correlation between the vari-
ables. The estimated exponents �see Table I� are consistent
for different stocks so that the scaling relations are

Nm � Vm
1.1, T � Vm

1.9, Nm � T0.66. �2�

The presence of scaling relations between the variables was
first suggested in Ref. �26�, but it is worth noting that the
theory developed in that paper predicts g1=g2=1 /2 and g3
=1, and these values are quite different from the ones we
estimate from data. The first scaling relation in �2� indicates
that the number of transactions into which a package is split
is approximately proportional to the total traded value of the
package. This implies that the mean transaction volume is
roughly independent of the size of the package. We have
independently verified that the mean transaction size is
roughly independent of Vm �see Fig. 4�. This mean value is
on average determined by the size of the available volume at
the best quote, indicating that the trader does not trade orders
larger than the volume available at the best quote, probably
to avoid being too aggressive. In fact, it has been recently
shown that the orders initiating transactions are almost al-

ways smaller than or equal to the size available at the best
price �27�. Thus, even if a trader has a large hidden order to
trade, the size of each transaction will be determined by the
best available volume, i.e., the liquidity of the market.

We consider the relation between the three variables to-
gether by performing a PCA on the set of points describing
the patches and identified by the coordinates

TABLE I. Summary of the properties of detected patches. The
number in parentheses in the column headings is the number of
patches detected for the considered stock. Rows 1–3: Tail exponents
of the distribution of T, Nm, and Vm estimated with the Hill estima-
tor �or maximum likelihood estimator�. In parentheses we report the
95% confidence interval. Rows 4–6: Exponents of the scaling rela-
tions defined in Eq. �1�. The exponents are estimated with PCA and
the errors are estimated with a bootstrap algorithm. In parentheses
we report the 95% confidence interval. Rows 7–9: Percentage of
firms with at least ten patches for which one cannot reject the hy-
pothesis of log-normality with 95% confidence according to a
Jarque-Bera test. The numbers in parentheses are the numbers of
firms for which one cannot reject the hypothesis of log-normality
divided by the number of firms used in the test. Rows 10 and 11:
Percentage of firms with at least ten patches for which the 3D PCA
gives the first ��1� or second ��2� eigenvalue larger than the corre-
sponding first or second eigenvalue obtained from the PCA of the
pool of all the patches. The numbers in parentheses are the absolute
numbers of firms.

BBVA �2104� SAN �2086� TEF �2062�

�Vm
2.3 �1.9;2.7� 2.0 �1.7;2.3� 1.9 �1.6;2.2�

�Nm
2.0 �1.7;2.3� 1.7 �1.4;2.0� 1.7 �1.4;2.0�

�T 1.5 �1.3;1.7� 1.5 �1.3;1.7� 1.2 �1.0;1.4�
g1 1.08 �1.05;1.12� 1.06 �1.01;1.10� 1.07 �1.04;1.11�
g2 1.81 �1.69;1.93� 1.81 �1.68;1.94� 2.00 �1.88;2.14�
g3 0.68 �0.65;0.71� 0.68 �0.65;0.70� 0.62 �0.59;0.64�
T 75 �15/20� 63 �17/27� 77 �24/31�

Nm 90 �18/20� 100 �27/27� 100 �31/31�
Vm 90 �18/20� 100 �27/27� 94 �29/31�
�1 90 �18/20� 85 �23/27� 87 �27/31�
�2 15 �3/20� 18 �5/27� 22 �7/31�

FIG. 3. �Color online� Scatter plots of the variables T, Nm, and
Vm for Telefónica. The black lines are contour lines of the bivariate
probability density function. The insets show the probability density
functions of the three exponents g1, g2, and g3 describing the scal-
ing relations of Eq. �1� computed on the patches of individual firms
with at least ten patches. The red vertical lines indicate the values of
the scaling exponents computed in the pool of all firms and reported
in rows 4–6 of Table I. It is worth noting that the dispersion of g2 is
significantly larger than that for the other two exponents.
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�log T , log Nm , log Vm� �28�. The set of points effectively lies
on a two-dimensional manifold which has one dimension
much larger than the other. The fact that the first eigenvalue
is large indicates that one factor dominates the trading strat-
egy. The scaling relations of the three variables associated
with the first eigenvalue of the PCA provide an estimation of
the exponents �g1�1.2, g2�1.8, and g3�0.67 for
Telefónica� which, unlike in the bivariate case, are of course
coherent among themselves and only slightly different from
the ones obtained from the bivariate analysis.

V. THE ROLE OF FIRM HETEROGENEITY

We now go back to the problem of assessing the role of
firm heterogeneity. The first scientific question is as follows:
Is the fat-tailed distribution of T, Nm, and Vm due to the fact
that individual firms place heterogeneously sized packages,
or is this an effect of the aggregation of many different firms
together? To answer this question we test the hypothesis that
the patches identified for a given firm trading a given stock
are log-normally distributed. The test �see Table I� shows
that for most of the trading firms we cannot reject the hy-
pothesis that the patches have characteristic sizes distributed
log-normally. Since we reject the log-normal hypothesis for
the pool obtained by considering all the firms, we conclude
that the power-law distribution of T, Nm, and Vm is due to a
heterogeneity in patch scale between different firms rather
that within each firm. In Fig. 5 we show the probability den-
sity functions of T, Nm, and Vm for those firms for which the
log-normal hypothesis cannot be rejected. The figure quali-
tatively confirms the result of the statistical test.

The second scientific question concerns the role of firm
heterogeneity for scaling laws. To assess the role of hetero-
geneity, for each firm we compute the exponents g1, g2, and
g3 of the bivariate relations of Eq. �1� �see insets of Fig. 3�.
We observe that the exponents obtained for each firm are
distributed around the corresponding value of the exponent
obtained for the pool. This result indicates that the bivariate

scaling relations are not an effect of the aggregation but are
observed, on average, also for individual firms.

Finally we study how the heterogeneity affects the three-
dimensional �3D� allometric relations. To this end we per-
form the 3D PCA on the patches detected for each firm with
at least ten patches. We find that for the vast majority of
firms �see rows 10 and 11 of Table I� the first eigenvalue is
larger than the first eigenvalue of the 3D PCA of the pool of
all the firms. Moreover, the second eigenvalue obtained from
PCA of individual firms is very often smaller than the second
eigenvalue of the pool sample. Our analysis suggests that
patches of an individual firm are essentially explained by one
eigenvector, i.e., one size variable is enough to explain the
other two. Our investigation also suggests that the second
eigenvalue of the pool, which explains 15% of the variance,
is mainly due to the heterogeneity between firms. In other
words, imagine representing each patch as a point in a tridi-
mensional space with coordinates log T, log Vm, and log Nm.
The 3D PCA on the pool of the patches of all the firms
indicates that these points form an approximately bidimen-
sional cloud having one dimension much larger than the
other. If one now considers only the points representing the
patches of a given firm, one observes that these points lie
approximately on a straight line with a direction close to the
direction of elongation of the cloud. The bidimensional cloud
representing the pool of patches can be seen as the aggrega-
tion of many straight lines �one for each firm�.

VI. CONCLUSIONS

In conclusion, our comprehensive investigation of pack-
ages traded at the BME shows the presence of statistical laws

FIG. 4. �Color online� Scatter plot of the mean transaction vol-
ume in a patch E�v� as a function of the total volume Vm of the
patch. The considered stock is Telefónica. The black line shows the
mean value of E�v� for points in equal-sized bins of Vm. Error bars
are one standard deviation.

FIG. 5. �Color online� Probability density function of the stan-
dardized logarithm of the variables T, Nm, and Vm of the firms for
which the Jarque-Bera test of log-normality cannot be rejected. Spe-
cifically, for each stock and each variable we consider the firms for
which the log-normal hypothesis cannot be rejected �see Table I and
text�. For each of these firms we compute the logarithm of the
variable; we subtract the mean value and divide by the standard
deviation. According to the null hypothesis these normalized vari-
ables should be Gaussian distributed. In the figure we plot on a
semilogarithmic scale the probability density functions for each
firm �continuous lines� and we compare them with the Gaussian
probability density function �dashed line�. Each column refers to a
stock �from left to right, BBVA, SAN, TEF� and each row refers to
a variable �from top to bottom T, Nm, and Vm�.
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describing the properties of the trading activity of market
participants. The empirical evidence that the variables de-
scribing the size of the packages are power-law distributed
with a low exponent indicates that many different time scales
are present in the market. In other words, the time horizon of
the investment strategy ranges from a few minutes to many
months. This multiscale property of the market dynamics has
often been suggested, but, to the best of our knowledge, our
study is the first empirical evidence that different scales are
present at the level of investment strategies. This evidence
has rarely been taken into consideration in agent-based mod-
els of financial markets. The scaling laws between the vari-
ables characterizing the packages are a starting point for un-
derstanding the optimization process traders use to minimize
their own impact. Finally, our investigation is useful in un-
derstanding the role of firms’ heterogeneity in the statistical
laws of the packages. We have shown that heterogeneity of
firms has an essential role for the emergence of power-law
tails in the investment time horizon, in the number of trans-
actions, and in the traded value exchanged by packages. This
suggests that the multiscale property mentioned above is the

result of a heterogeneity of scales between different market
participants. In contrast, scaling laws between the variables
characterizing each package are essentially the same across
different firms, with the possible exception of the relation
between T and Vm, perhaps reflecting different degrees of
aggressiveness of firms. This suggests that market partici-
pants are roughly homogeneous in the optimization process
they follow to minimize their impact.
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