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Population mobility data provides meaningful indicators of
fast food intake and diet-related diseases in diverse populations
Abigail L. Horn 1,2✉, Brooke M. Bell2,3, Bernardo García Bulle Bueno4, Mohsen Bahrami 4, Burçin Bozkaya 5, Yan Cui6,
John P. Wilson 7,8, Alex Pentland4, Esteban Moro 4,9 and Kayla de la Haye 10

The characteristics of food environments people are exposed to, such as the density of fast food (FF) outlets, can impact their diet
and risk for diet-related chronic disease. Previous studies examining the relationship between food environments and nutritional
health have produced mixed findings, potentially due to the predominant focus on static food environments around people’s
homes. As smartphone ownership increases, large-scale data on human mobility (i.e., smartphone geolocations) represents a
promising resource for studying dynamic food environments that people have access to and visit as they move throughout their
day. This study investigates whether mobility data provides meaningful indicators of diet, measured as FF intake, and diet-related
disease, evaluating its usefulness for food environment research. Using a mobility dataset consisting of 14.5 million visits to
geolocated food outlets in Los Angeles County (LAC) across a representative sample of 243,644 anonymous and opted-in adult
smartphone users in LAC, we construct measures of visits to FF outlets aggregated over users living in neighborhood. We find that
the aggregated measures strongly and significantly correspond to self-reported FF intake, obesity, and diabetes in a diverse,
representative sample of 8,036 LAC adults included in a population health survey carried out by the LAC Department of Public
Health. Visits to FF outlets were a better predictor of individuals’ obesity and diabetes than their self-reported FF intake, controlling
for other known risks. These findings suggest mobility data represents a valid tool to study people’s use of dynamic food
environments and links to diet and health.

npj Digital Medicine           (2023) 6:208 ; https://doi.org/10.1038/s41746-023-00949-x

INTRODUCTION
Food environments, the spaces where people acquire and
consume food, impact diet and related diseases (i.e., nutritional
health)1. To date, research has focused on predefined local and
static food environments, largely of the home neighborhood2,3.
Their features (e.g., the availability of fast food outlets) can predict
nutritional health1 although findings are mixed4–6. A growing
proportion of food acquisition occurs miles from our homes7,
therefore the limited focus on static food environments may be
one cause of these mixed results.
A major gap in the literature is evidence of the dynamic food

environments people are exposed to in their daily routines (i.e.,
their “activity space”8), the food outlets they visit, and how these
mobile food environments impact dietary intake and health. With
the availability of big data on human mobility (i.e., geolocations
captured by people’s smartphones), population-level research on
the food outlets that people have access to and visit given their
daily movements is now possible. Some studies (often n < 100)
have begun to use GPS tracking technologies to continuously
observe how people navigate their environment to acquire food
over relatively brief time periods (i.e., 1 week)9,10. However, to our
knowledge, large-scale mobility data has not been used to study
the relationship between people’s dynamic, mobile food environ-
ments and their food behaviors and dietary outcomes over
extended time intervals.

A critical first step is to investigate whether visits to food outlets
observed in population-level mobility data provide meaningful
indicators of dietary intake and diet-related disease. Establishing
the link between visits to food outlets observed in mobility data
and nutritional health is also an important methodological issue.
Eating behaviors are notoriously hard to accurately measure,
traditional self-report-based assessment methods have well-
established biases11,12, and surveillance data are limited in terms
of both assessment frequency and spatial areas covered13,14. It
would therefore be valuable to identify a data source that is
passively and continuously collected to complement traditional
dietary surveillance measures.
This study addresses these gaps by investigating the relation-

ship between food-seeking behaviors observed in mobility data
and dietary intake and diet-related disease from health survey
data. We focus on fast food (FF) specifically because FF intake is
linked to disease risk15, makes up 16% of Americans’ caloric
intake7, and because FF outlets are plentiful and densely clustered
in ‘food swamps’ that are concentrated in communities with the
greatest health disparities16. First, we utilize a large mobility
dataset from Los Angeles County (LAC), U.S.A., to generate
neighborhood-level measures of visits to FF outlets as proxies
for visits to FF outlets by the residents of those neighborhoods.
We link the neighborhood-level measures to individual respon-
dents from a health survey of a representative sample of LAC
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adults and test whether the neighborhood-level measures are
associated with respondents’ self-reported FF intake, obesity, and
diabetes. The first objective is to determine whether
neighborhood-level visits to FF outlets are meaningful and
significant indicators of respondents’ self-reported FF intake. The
second objective is to determine whether neighborhood-level
visits to FF outlets are a significant predictor of respondents’
obesity and diabetes, and a comparable or better predictor than
self-reported FF intake. We find that neighborhood-level measures
of visits to food outlets observed in mobility data strongly and
significantly correspond to respondents’ self-reported FF intake,
obesity, and diabetes, and are furthermore a better predictor of
obesity and diabetes than their self-reported FF intake, controlling
for other known risks. These findings suggest that mobility data
represents a valid tool to study people’s use of dynamic food
environments and links to diet and health, with applications
ranging from behavioral health monitoring to population-scale
investigations into how food environments influence nutritional
health.

RESULTS
Health and demographic data study population
Individual-level measures of FF intake and diet-related disease
come from the 2011 Los Angeles County Health Survey (LACHS), a
population‐based dual frame (landline and cellular) telephone
survey conducted by the Los Angeles County Department of
Public Health (LACDPH)17. Our analytic sample included 5447
adults (18 or older) with residential information, without missing
data on any study variable, and not living in areas designated as
‘rural’18. When comparing the full (n= 8036) and analytic samples
of LACHS respondents (Table 1), we found small (1–3%) but
statistically significant differences in age group, gender, race and
ethnicity, and household income level. The sample also differed
on self-reported FF intake frequency, a four-category variable
coded as never, infrequent (<once per month), moderate (≥once
per month to <once per week), and frequent (≥once per week). Of
the analytic sample, 17.3% reported never eating FF, 19.1%
reported infrequent intake, 26.9% reported moderate intake, and
36.7% reported frequent intake; 24.8% had obesity (having a Body
Mass Index, BMI ≥ 30); and 11.1% had diabetes.

Mobility data study population and measures of food
outlet visits
We utilize a large, privacy-preserving population-scale mobility
dataset collected by Spectus19 representing the geolocations from
October 2016 - March 2017 (6 months) of 243,644 smartphone
users living within LAC, representing 3.1% of the adult popula-
tion20. We excluded users if they had fewer than two stays, or
stops at any geographic location for 5 min or longer, resulting in
an analytic sample of 234,995 users. Supplementary Table 1
provides statistics on the distribution of individual stays in the
analytic sample. We find a total of 63,299,255 stays at locations
within LAC, with a median (interquartile range [IQR]) number of
stays per user of 172 (IQR, 93, 320). These stays were collected
across a total of 16,009,417 observation days (Supplementary
Table 4), with a median of 57 (IQR, 34, 90) days of observation for
each user. Of these stays, 14,498,850 were at food outlets (22.9%
of stays). Further details on the mobility data source and how stays
were measured can be found in “Methods”.
Visits to food and FF outlets were identified by linking

geolocated stays to a points of interest (POI) database from the
Foursquare API21 in 2017, which provides the names and
geolocations of 239,509 POI in LAC. Further details on this linkage

Table 1. Demographic, diet, and diet-related disease characteristics in
the full and analytic samples of participants of the 2011 Los Angeles
County Health Survey (LACHS).

Participants, no.
(%)

Characteristic Full sample
(n= 8036)

Analytic sample
(n= 5447)

P value

Age 0.005

18–24 596 (7.4%) 467 (8.6%)

25–29 438 (5.5%) 341 (6.3%)

30–39 1204 (15.0%) 878 (16.1%)

40–49 1596 (19.9%) 1063 (19.5%)

50–59 1674 (20.8%) 1118 (20.5%)

60–64 748 (9.3%) 464 (8.5%)

65 or over 1780 (22.2%) 1116 (20.5%)

Gender 0.044

Female 4863 (60.5%) 3201 (58.8%)

Male 3173 (39.5%) 2246 (41.2%)

Race and ethnicity 0.002

White 3414 (43.4%) 2257 (41.4%)

Hispanic/Latino 2769 (35.2%) 2050 (37.6%)

Black/African
American

784 (10.0%) 584 (10.7%)

Asian 728 (9.3%) 432 (7.9%)

Multiracial/other 174 (2.2%) 124 (2.3%)

Unknown 167 0

Education 0.5

Less than high school 1385 (17.4%) 942 (17.3%)

High school 1370 (17.2%) 965 (17.7%)

Some college or trade
school

2007 (25.2%) 1409 (25.9%)

College or post
graduate degree

3206 (40.2%) 2131 (39.1%)

Unknown 68 0

Income 0.034

Low 2980 (37.1%) 2119 (38.9%)

High 5056 (62.9%) 3328 (61.1%)

Fast food intake
frequency

0.014

Never 1552 (19.4%) 944 (17.3%)

Infrequent 1540 (19.3%) 1040 (19.1%)

Moderate 2113 (26.9%) 1463 (26.9%)

Frequent 2794 (34.9%) 2000 (36.7%)

Unknown 37 0

Obesity 0.072

No 5751 (76.6%) 4097 (75.2%)

Yes 1757 (23.4%) 1350 (24.8%)

Unknown 528 0

Diabetes >0.9

No 7125 (88.8%) 4841 (88.9%)

Yes 895 (11.2%) 606 (11.1%)

Unknown 16 0

P values indicate χ2 test for the statistical significance of differences based
on non-missing categories.
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are included in “Methods” and Supplementary Note: Mobility Data
Processing. Food outlets were defined as any location where food
might be sold (including restaurants, food retailers, and other
locations), identified using Foursquare’s existing categorization
taxonomy with manual checks. FF outlets were defined as the
subgroup of limited-service restaurants serving menus predomi-
nantly containing ultra-processed and/or low-nutrient, energy-
dense foods strongly linked to risk of obesity and type 2 diabetes
(i.e., rich in highly processed meat and refined carbohydrate,
sodium, total fat, saturated and trans fatty acids, cholesterol, and
poor in essential nutrients and dietary fibers)15. We identified
these FF outlets through a bottom-up search using a list of chain
brands validated in previous nutritional health research as linked
to disease risk22 (e.g., McDonald’s, Taco Bell, Pizza Hut). In total, we
identified 53,588 food outlets and 4151 FF outlets in the
Foursquare database. In comparison, the LAC Restaurant and
Market Inventory23, which comprises Environmental Health
permitted restaurants and markets in LAC that are inspected by
the LAC Department of Public Health, contains a total of 40,600
restaurants and markets. See Supplementary Note: Detecting Food
and Fast Food Outlets for further details on how food and FF
outlets are measured.
We defined measures of visits to FF outlets at the level of each

individual user, and then spatially aggregated and averaged these
measures across users living within 272 LAC Neighborhoods24

(LACN) (Supplementary Fig. 1); see “Methods” for details on how
LACN is defined. Data on food outlet visits from the mobility data
sample needed to be aggregated into measures at an area level
because privacy protections set out in the IRB protocols did not
allow reporting of individual mobility user behavior. Aggregation
was therefore the only way to relate measures of visits to food
outlets to individual respondents in the LACHS health survey
sample. Specifically, the mobility variables were linked as
contextual variables to the analytic sample of LACHS survey
respondents (n= 5447) based on their residential LACN (n= 247).
The neighborhood-aggregated food outlet visit measures can

be seen as a proxy for the “typical” food outlet visit behaviors of
residents of a neighborhood, given the following two assump-
tions: First, that the sample of smartphone users from the mobility
data residing in a neighborhood is representative of that
neighborhood’s population; and second, that adults living within
a neighborhood have similar FF outlet visit patterns. To address
the first assumption, we have established that the mobility user
samples are representative of the population size of each
neighborhood unit and demonstrate low bias across income
classes (Supplementary Note: Mobility Data Representativeness).
The second assumption may present challenges given resi-

dents’ unique mobility patterns. However, the neighborhood
measures are likely to be conceptually relevant for the following
reasons: (i) Neighborhood-level measures representing (average)
neighborhood-level behavior are commonly used in public health
research and practice, such as census statistics, survey measures
related to behavioral and metabolic health25, and measures of
social determinants of health26. (ii) Neighborhood indicators
assume some degree of homophily among residents based on
evidence that people with similar characteristics, including food
preferences27, self-select into similar neighborhoods. Similar
exposures to social and structural factors within and beyond the
neighborhood influence the behavior and health of neighborhood
residents8,28. (iii) Neighborhood-level indicators are often used to
identify priority populations for public health interventions and
policies, such as interventions to improve neighborhood food
environments through instituting FF bans or building
supermarkets29.
Gaps in the measurement of each smartphone user (e.g., when

phones are out of service) mean that we cannot measure behavior
continuously for all users at all time points. We address this by
defining percentage-based variables in which observations of FF

outlet visits are relativized to other observables: Temporal
frequency of FF outlet visits (FF visits/time) was defined as the
percentage of observed periods (out of three possible daily
periods: before 11:00 am, 11:00 am–4:00 pm, after 4:00 pm) in
which a user visits at least one FF outlet in any LACN, out of the
total number of observed periods for that user. Relative frequency
of FF to all food outlet visits (FF visits/food) was defined as the
percentage of the total number of visits to FF outlets for a user out
of the total number of visits to any food outlet for that user. We
also defined a covariate representing average mobility behavior as
the average number of trips (trajectories between stays) per user
per day (trips/day). These mobility variables were linked as
contextual variables to the analytic sample of LACHS survey
respondents (n= 5447) based on their residential LACN (n= 247).
Across the mobility variables linked to LACHS respondents, the

median (over respondents) percentage of observed daily periods
in which smartphone users living in that LACN visited FF outlets
(FF visits/time unscaled) was 4.3% (range, 1.0–13.0%); the median
percentage of visits to any food outlets that were FF (FF visits/food
unscaled) was 10.6% (range, 2.8–22.4%); and the median number
of trips per day (trips/day unscaled) was 4.0 (range, 2.2–8.0). The
variability of the neighborhood-level variables within any given
LACN was much lower than across the LACN: the median (across
LACN) variance of FF visits/time over smartphone users residing
within a LACN was 0.7% (range of variance over LACN, 0.04–4.8%)
and of FF visits/food was 2.0% (range of variance over LACN,
0.4–4.5%). Figure 1 shows geographic visualizations of the
neighborhood-level variables before linkage to LACHS respon-
dents, and Fig. 2 provides histograms of the distribution of the
variables linked to LACHS respondents.

Association between visits to FF outlets and FF intake
frequency
In unadjusted multinomial logistic regression models predicting
FF intake frequency, higher frequencies of FF outlet visits
(aggregated across users in a LACN) were significantly associated
with higher levels of individual FF intake for both FF mobility
variables, investigated in separate models (Table 2). With a 10%
increase in FF visits/time (i.e., a 1-unit increase in the scaled
variable): relative to no FF intake, the odds of high FF intake
increased by 35% (OR, 1.35; 95% CI, 1.28–1.42), of moderate FF
intake increased by 26% (OR, 1.26; 95% CI, 1.19–1.33), and of low
FF intake increased by 13% (OR, 1.13; 95% CI, 1.06–1.2). With a
10% increase in the frequency of FF visits/food: relative to no FF
intake, the odds of high FF intake increased by 28% (OR, 1.28; 95%
CI, 1.22–1.33), of moderate FF intake increased by 22% (OR, 1.22;
95% CI, 1.16–1.27), and of infrequent FF intake increased by 12%
(OR, 1.12; 95% CI, 1.06–1.17). FF outlet visit variable effect
estimates were not meaningfully changed after adding adjust-
ment variables (AOR decreased by 1–4% from crude OR).

Association between visits to FF outlets and diet-related
disease
In adjusted logistic regression models predicting diet-related
disease, higher frequencies of FF outlet visits were associated with
greater odds of obesity and diabetes. A 10% increase in FF visits/
time was significantly associated with 16% (95% CI, 12–21%)
greater odds of obesity and 15% (95% CI, 9–21%) greater odds of
diabetes (Table 3). A 10% increase in FF visits/food was
significantly associated with 13% (95% CI, 10–17%) greater odds
of obesity and 11% (95% CI, 7–16%) greater odds of diabetes.
Obesity and diabetes were also predicted by self-reported FF

intake. There was not a significant increase in the odds of obesity
or diabetes between individuals with self-reported infrequent vs.
no FF intake. However, individuals with moderate self-reported FF
intake had a 26% (95% CI, 3–55%) greater odds of obesity than
those with no FF intake. Individuals with frequent FF intake had a
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63% (95% CI, 34–99%) greater odds of obesity and 39% (95% CI,
8–81%) greater odds of diabetes than those with no FF intake
(Table 3). The odds ratios for the continuous variables and the
categorical variable are not directly comparable.

These non-nested models were compared on the basis of
Akaike weights, and transformations from raw Akaike Information
Criterion (AIC) values to facilitate model comparison30. Comparing
Akaike weights across the models of obesity, the probability that

Fig. 2 Histograms of the distribution of the unscaled mobility variables linked to LACHS respondents. LACHS Los Angeles County Health
Survey, FF fast food. Histograms of the three mobility variables linked to LACHS respondents, unscaled. The range of variable values are
presented in the x axis. Frequency counts in the y axis represent the number of LACHS respondents with a linked mobility variable at this
binned interval. a FF visits/time represents the unscaled percentage of observed daily periods with visits to FF outlets; b FF visits/food
represents the unscaled percentage of visits to all food outlets that were FF; and c Trips/day represents the unscaled number of trips per day;
all averaged over all smartphone users with an estimated home residence within a LACN.

Table 2. Odds ratios for unadjusted and adjusted multinomial logistic regression analyses of the association between visits to fast food outlets
observed in mobility data and self-reported fast food intake.

Unadjusted analysis Adjusted analysis

Model FF intake frequency, odds
ratio (95% CI)

FF intake frequency, adjusted odds
ratio (95% CI)

Infrequent Moderate Frequent Infrequent Moderate Frequent

FF visits/time 1.13 (1.06–1.20) 1.26 (1.19–1.33) 1.35 (1.28–1.42) 1.12 (1.05–1.20) 1.22 (1.15–1.30) 1.30 (1.23–1.38)

FF visits/food 1.12 (1.06–1.17) 1.22 (1.16–1.27) 1.28 (1.22–1.33) 1.11 (1.06–1.17) 1.19 (1.14–1.24) 1.25 (1.19–1.31)

Reference group: no fast food intake. P < 0.001 for each estimated odds ratio. Each model estimated fast food intake frequency using the fast food visit variable
listed in the Model column as the primary independent variable. Adjusted analyses consider age group, gender, race and ethnicity, educational level, and
household income level. CI confidence interval, FF fast food.

Fig. 1 Geographic distribution of the unscaled mobility variables across Los Angeles County neighborhoods. LACHS Los Angeles County
Health Survey, FF fast food. Figure represents the geographical distribution of the unscaled mobility variables across the 272 Los Angeles
County Neighborhoods (LACN), before linkage to LACHS respondents. Areas with gray shading were predominantly rural neighborhoods. a FF
visits/time represents the unscaled percentage of observed daily periods with visits to FF outlets; b FF visits/food represents the unscaled
percentage of visits to all food outlets that were FF; and c Trips/day represents the unscaled number of trips per day; all averaged over all
smartphone users with an estimated home residence within a LACN.
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the model including FF visits/time was the best-fitting model was
0.10, including FF visits/food was 0.90, and including FF intake
frequency was 3.6e-7 (Table 4). Comparing Akaike weights across
the three models of diabetes, the probability that the model
including FF visits/time was the best-fitting model was 0.69,
including FF visits/food was 0.31, and including self-reported FF
intake frequency was 2.3e-5. Thus, the mobility variables were the
better predictor of obesity and diabetes, compared to self-
reported FF intake frequency.

Sensitivity of findings to time gap between datasets
The LACHS and mobility datasets are from different years because
FF intake was not assessed by the LACHS survey after 2011, while
geolocation-based mobility data was not available before 2016,
representing possible incompatibility between linked population
samples. We evaluated the sensitivity of regression results to this
time gap. Previous research on a U.S.-wide individual-level
longitudinal sample has demonstrated stability of associations
between neighborhood-level predictors and individual-level
behavioral outcomes measured at different time points, if
neighborhood characteristics most predictive of the outcomes
are also stable over the intervening time period31. We tested

whether this finding could apply to our own data by (i) evaluating
the stability of neighborhood-level characteristics most predictive
of FF intake (relating to ethnicity and income) across Census tract
neighborhoods in the LAC study region between 2011–2017,
using data from the American Community Survey20; and (ii) re-
estimating regression models after removing the LACHS study
participants residing in Census tracts with the greatest demo-
graphic change.
We found that Census tract-level ethnicity and income

population characteristics (measured as the percentage of the
population above 200% of the Federal Poverty Limit, FPL; that is
Black or African American Alone; and that is Hispanic or Latino)
remained relatively stable during the time gap between data
collection for the LACHS (2011) and mobility data (2016–17).
Supplementary Fig. 2 shows the distributions of the differences in
these percentage-based characteristics between 2011 and 2017,
which are approximately normally distributed and mean-centered
at 0. Across all Census tracts, 95% demonstrated less than: a 16%
change in the percentage of the population above 200% of the
FPL; a 10% change in the population that is Black or African
American Alone; and a 15% change of the population that is
Hispanic or Latino.
We also found that regression effect estimates experienced little

to no change after removing LACHS respondents in neighbor-
hoods with the greatest demographic changes. We used two
outlier detection methods to identify Census tracts demonstrating
the largest change in any of the three neighborhood-level
characteristics considered and removed LACHS respondents living
in those neighborhoods from the analytic sample (details in
“Methods”). In unadjusted multinomial regression models of FF
intake frequency fit to the full analytic sample compared with
models fit to the analytic sample subtracting out respondents
living in outlier Census tracts, odds ratios changed by 2% or less
for all categories for FF intake frequency and both methods of
outlier identification and removal (Table 5). In adjusted logistic
regression models of obesity and diabetes fit the full analytic
sample compared with results from regression models fit the
analytic sample subtracting out respondents living in outlier
Census tracts, odds ratios for models of obesity changed by <1%
and for diabetes by <2% (Table 6).
Sensitivity analyses were also conducted to examine whether

the associations between the FF visit variables and obesity or
diabetes were meaningfully impacted by users’ general mobility
behavior (trips/day), a potential confounder associated both with
these diseases and FF mobility behavior. Effect estimates were not
impacted by controlling for general mobility behavior (Supple-
mentary Table 2).

DISCUSSION
This study leverages large-scale population-level data on human
mobility to study food environments and their connection with
nutritional health. Using mobility data from LAC, we find strong
and consistent evidence that visits to FF outlets aggregated over
smartphone users residing in an LAC Neighborhood significantly
correspond to the FF consumption of individuals living in those
neighborhoods. Thus, passively observed visits to FF outlets via
mobility data, aggregated at the neighborhood level, appear to be
meaningful indicators of typical FF intake in a diverse, urban
population.
Visits to FF outlets aggregated at the LACN level also predicted

obesity and diabetes, two prevalent diet-related diseases, for
individuals living in those neighborhoods. Moreover, model fit
results show that mobility variables were comparable or better
predictors of obesity and diabetes than individual self-reported FF
intake, the latter a commonly used diet assessment tool in public
health surveillance. Effect sizes held after controlling for
individual-level sociodemographic factors and LACN-level general

Table 4. Values of the Akaike Information Criterion (AIC) and Akaike
weights calculated from binary logistic regression models of the
association between visits to fast food outlets, self-report fast food
intake frequency, and diet-related disease.

Obesity Diabetes

Model AIC Akaike
weight

AIC Akaike
weight

FF visits/time 5754.7 0.10 3353.8 0.69

FF visits/food 5750.2 0.90 3355.4 0.31

Self-report FF intake
frequency

5777.9 3.6e-7 3374.4 2.3e-5

Each model includes the variable listed in the Model column as the primary
independent variable. All models adjusted for age group, gender, race and
ethnicity, educational level, and household income level. Each model’s
Akaike weight can be interpreted as the probability that it is the best
model out of the set of three candidate models. AIC Akaike information
criterion, FF fast food.

Table 3. Odds ratios for multivariable binary logistic regression
analyses of the association between visits to fast food outlets and diet-
related disease.

Obesity Diabetes

Model Adjusted odds
ratio (95% CI)

P value Adjusted odds
ratio (95% CI)

P value

FF visits/time 1.16 (1.12–1.21) <0.001 1.15 (1.09–1.21) <0.001

FF visits/food 1.13 (1.10–1.17) <0.001 1.11 (1.07–1.16) <0.001

Self-report FF intake frequency (reference: never)

Infrequent 1.06 (0.85–1.33) 0.621 1.08 (0.81–1.44) 0.594

Moderate 1.26 (1.03–1.55) 0.028 1.17 (0.89–1.54) 0.254

Frequent 1.63 (1.34–1.99) <0.001 1.39 (1.08–1.81) 0.013

Each model includes the variable listed in the Model column as the primary
independent variable. All models adjusted for age group, gender, race and
ethnicity, educational level, and household income level. Adjusted odds
ratios for the continuous variables (FF visits/time, FF visits/food) and the
categorical variable (self-report FF intake frequency) are not directly
comparable. CI confidence interval, FF fast food.
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mobility behavior, suggesting these indicators uniquely represent
visits to FF outlets rather than mobility alone.
The study finds agreement between the measures of

neighborhood-aggregated FF outlet visit behavior, and self-
reported FF intake and diet-related disease of individual health
survey respondents residing in those neighborhoods. Concep-
tually, this suggests that the FF behaviors of the sample of
smartphone users reflect those of the health survey sample and
that both study samples are representative of the underlying
residential population of the neighborhoods. These findings lend
support to the two assumptions underlying the use of the
neighborhood-aggregated measures of FF outlet visits as proxies
for the “typical” FF outlet visit behaviors of residents of a
neighborhood: (i) that population-scale mobility data can be used
to construct representative samples of the behavior of the
underlying population, and (ii) that adults living within a
neighborhood have sufficiently similar food outlet visit patterns
for neighborhood-aggregated measures to meaningfully repre-
sent the behaviors of individuals living in those neighborhoods.
The second assumption is additionally supported by the finding
that the variability in FF outlet visits across mobility users living
within a neighborhood was much lower than the variability in
aggregated FF outlet visits across neighborhoods.
In addition to the suitability of using neighborhood-aggregated

measures of FF outlet visits as proxies for residents’ visits and
ultimately for FF intake, several additional factors may explain the
strength of our findings. First, measures of food behaviors
observed directly from smartphone-captured mobility data may
be less prone to measurement error than self-reported food
intake, since mobility data captures behavior continuously, over
months (or potentially longer), recording more detail of behavioral
patterns than can be reliably assessed by self-reported recall32,33.
Second, beyond the assumption that individuals with similar food
preferences self-select into similar neighborhoods27, social feed-
back regarding eating behavioral norms may influence the eating
behaviors of neighborhood residents. It is well-established that
eating behavior is influenced by social and cultural factors and
strengthened by propinquity34. This “social signal”35 may be
captured by the aggregated measures of visits to FF outlets,
providing additional prediction of disease risk. Third, the FF visit
indicators may be picking up other neighborhood-level risk factors
for these diseases, such as area-level deprivation.
This study has limitations. Its findings are prone to ecological

fallacy, since we use aggregated area-level estimates of behaviors
assumed to be typical of residents in those areas and investigate
how these correspond to individual health behaviors and
outcomes. Summarizing mobility features at the LACN (or other
spatial) level will obscure individual or group differences, for
example, differential visits to FF outlets based on gender or other
demographics36. However, as noted, the validation of all study
objectives suggests that this assumption may have been
appropriate in the case of FF outlet visit measures.
Mobility variables were aggregated at the LACN level because

(i) LACN boundaries were designed to represent similar groups of
people24; (ii) this was the smallest spatial area over which we
could demonstrate that our mobility user sample achieved broad
geographic representation of the underlying population, and (iii)
we could demonstrate that the variability of the mobility measures
within was much smaller than across this chosen area. More
highly-resolved aggregation should now be possible, since human
mobility data available in 2022 is more highly sampled than in
2017, enabling aggregation of mobility variables over smaller
areas while still protecting user privacy. Future analyses will be
needed to explore the generalizability of this study’s findings
when using mobility variables summarized over more refined
levels of spatial aggregation. We also note that although the LACN
is specific to LAC, the “neighborhood” unit is generalizable to
other city contexts. For example, New York City has a similarTa
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mapping in the Neighborhood Tabulation Areas (n= 195) (https://
www1.nyc.gov/site/planning/data-maps/nyc-population/geograp
hic-reference.page); Chicago has a designation of 77 community
areas for statistical and planning purposes, as well as 200
neighborhoods (https://www.chicago.gov/city/en/depts/dgs/supp
_info/citywide_maps.html). For any given study, researchers will
need to determine the best spatial level to aggregate mobility
measures based on the data sampling and the research context.
Future research will also be needed to explore the generalizability
of our study findings to these different city contexts, which will
likely differ in the spatial structure of food environments and
patterns of food environment access.
An additional limitation is a potential bias in the smartphone

user sample. Although smartphone users constituted 83% of the
U.S. adult population in 201737, they represent a subset of the
population that has some uneven representation across socio-
demographic groups (e.g., low-income, older, and non-white38).
Quantifying these biases in mobility data is challenging since
demographic information is not available to individual smart-
phone users to protect privacy. We have taken several steps to
investigate and address the representativeness of the sample to
the overall population: (i) we establish that our sample sizes are
representative of the population size in each LACN, and (ii) in our
previous work on this dataset, we demonstrated low bias across
income classes by imputing this characteristic for each user based
on their mobility-observed shopping behaviors39 (Supplementary
Note: Mobility Data Representativeness). Different study designs
will be necessary to investigate to what extent inferences derived
from smartphone users are generalizable to all populations.
We have linked two different study populations and time-

frames, which leads to potential sources of incompatibility.
However, previous research on a U.S.-wide individual-level long-
itudinal sample has demonstrated that the power of
neighborhood-level features to predict individual-level behavioral
outcomes measured at a different time point is stable if
neighborhood characteristics most predictive of the outcomes
are also stable31. We evaluated the stability of neighborhood-level
characteristics relating to ethnicity and income that are highly
predictive of FF intake in our own data between 2011–17 and
found very little change. Furthermore, regression effect estimates
were not impacted when neighborhoods demonstrating the
greatest change in these characteristics were removed. Together,
these analyses suggest that FF outlet visit effect estimates were
most likely not meaningfully affected by the time gap between
dataset collection.
A limitation of the mobility data is the under-sampling of visits

to FF outlets due to the gaps in measurement of each smartphone
user (e.g., when phones are out of service). We address this by

defining percentage-based variables in which observations of FF
outlet visits are relativized to other observables (e.g., all food
outlet visits), but there may be measurement error that cannot be
quantified. Separately, the individual-level FF intake measures
from the LACHS may be subject to biases common to self-report
food frequency measures11.
We have taken several approaches to establish the robustness

of findings to our methods to attribute geolocations to particular
POI (Supplementary Note: Mobility Data Processing), and to
define, detect, and appropriately label food and FF outlets
(Supplementary Note: Detecting Food and Fast Food Outlets).
However, there may be limitations to our ability to detect visits to
certain food outlets, such as those in particularly dense urban
areas or multi-story or multi-purpose buildings (e.g., malls) where
FF outlets may be concentrated. Additionally, because we only
detect visits greater than 5min in duration, we may miss very brief
FF outlet visits (e.g., drive-through).
A limitation of our study design is not knowing whether people

consumed fast food when they visited an FF outlet, or the
nutritional quality of the food they ordered. Our results suggest
individuals were consuming FF during these visits because there is
high correspondence with self-reported frequency of FF intake.
Still, variability in nutritional content across menus and in food
choices across patrons could serve to weaken the results of the
association between FF outlet visits and diet-related disease. We
partially addressed this limitation in our study design by focusing
our definition of FF outlets on the subgroup of limited-service
outlets serving menus predominantly containing ultra-processed
and/or low-nutrient, energy-dense foods strongly linked to risk of
obesity and type 2 diabetes. While the menus of this subgroup of
outlets carry some “healthy” items (i.e., characterized by minimally
processed ingredients, or using lower added sugars and saturated
fats), extensive research and industry sales reports have docu-
mented that these “healthier options” are not what is typically
consumed or purchased at FF outlets40–44. In ongoing work, we
are developing methods to more realistically characterize the
diversity of the nutritional quality of foods served at FF (and other
types of) restaurants by analyzing digital menu data45. We also
note that the variability in foods offered and ordered at FF outlets
should not impact the relationships we observe between FF visits
observed in the mobility data and self-reported FF intake, as the
latter captures self-reported consumption of foods from FF
restaurants, regardless of their type or nutritional quality (captured
by the survey question “How often do you eat any food, including
meals and snacks, from a fast food restaurant like McDonald’s, Taco
Bell, Kentucky Fried Chicken, or another similar type of place?”
A further limitation is that our study focuses on in-person visits

to FF outlets (including both sit-down and take-out meals) and

Table 6. Adjusted Odds ratios from binary logistic regression models of obesity and diabetes in sensitivity analyses to time change between 2011
and 2017.

Full sample Method 1 Method 2

Model AOR of obesity
(95% CI)

AOR of diabetes
(95% CI)

AOR of obesity
(95% CI)

AOR of diabetes
(95% CI)

AOR of obesity
(95% CI)

AOR of diabetes
(95% CI)

FF visits/time 1.16 (1.12, 1.21) 1.15 (1.08, 1.21) 1.17 (1.12, 1.22) 1.17 (1.09, 1.24) 1.17 (1.12, 1.22) 1.16 (1.09, 1.23)

FF visits/food 1.13 (1.10, 1.17) 1.11 (1.06, 1.16) 1.14 (1.09, 1.18) 1.12 (1.06, 1.17) 1.14 (1.10, 1.18) 1.12 (1.06, 1.17)

P < 0.001 for all estimated odds ratios. Each model includes the variable listed in the Model column as the primary independent variable. All models adjusted
for age group, gender, race and ethnicity, educational level, and household income level. Sensitivity tests fit regression models to the analytic sample
subtracting out respondents living in outlier census tracts demonstrating the largest change in demographic variables between 2011 and 2017 according to
the two methods. Method 1: Outliers are identified by the Tukey method as values >1.5 times the interquartile range from each of the quartiles for a variable,
i.e. upper outliers are values of the distribution >Q3+ 1.5 × IQR and lower outliers are values <Q1–1.5 × IQR. Method 2: Outliers are identified as values of a
variable above and below 2 standard deviations of the mean. For each method, we remove from the LACHS sample all respondents living in outlier census
tracts. We then identified the union over outlier census tracts across the three measures, as some census tracts overlapped. Regression model results fit to the
full analytic sample (full sample) are provided for comparison. AOR adjusted odds ratio, CI confidence interval, FF fast food.
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does not account for fast food accessed via food delivery.
However, this is unlikely to be a major limitation to the methods or
translational value of the findings because food delivery
represents a small fraction of overall food service sales, and a
smaller fraction at the time our data were collected in 2016–17
than currently (2022); specifically an estimated 6.9% of overall
food service sales in 2016, up to a projected 8.9% in 202246,47. The
mobility data we analyze in this study also illustrates the high
prevalence of visits to physical food outlets across this large urban
population, with 22.9% of observed visits to any place outside the
home constituting visits to food outlets.
These limitations notwithstanding, our findings demonstrate

compelling evidence that neighborhood-aggregated measures of
visits to FF outlets passively collected from a diverse, urban
sample of smartphone users provide strong and significant
indicators of FF intake for people living in those neighborhoods.
They also provide strong predictors of diet-related disease that are
comparable to or better than self-reported FF intake, a standard
measure in population nutrition research. Mobility data is
objective and captured passively and continuously over long
periods of time without recall bias, making it a convenient,
information-rich means of gathering population-level food beha-
viors that are notoriously hard to measure. The results of our study
suggest that this data source may represent a valid tool to
complement population survey surveillance efforts for this and
possibly other eating and health behaviors at small-area levels.
More broadly, this study introduces human mobility data as an

untapped but useful resource for future investigations into how
people of diverse backgrounds move around to dynamically use
food environments, including and beyond the home neighborhood,
and how this links to their diet and health. Studies involving mobility
data might include: re-defining notions of “food deserts” and “food
swamps” to account for lived environments beyond the home
neighborhood; investigating routine behaviors that determine
spatio-temporal accessibility to different types of food environments;
using “natural experiments” (e.g., users who change home or food
environments) to identify causal mechanisms linking features of food
environments and eating behaviors; and developing more effective
policies and interventions on food environments that take routine
behaviors beyond the home neighborhood into consideration48.

METHODS
Individual health and demographic data sources and
measures
Individual-level measures of FF intake, diet-related disease, and
sociodemographics, come from the 2011 Los Angeles County
Health Survey (LACHS), a population‐based dual frame (landline
and cellular) telephone survey conducted by Los Angeles County
Department of Public Health (LACDPH). It collects data from
representative samples of adults and children living within LAC, on
topics such as health conditions and behaviors, sociodemo-
graphics, and home residence. Our study uses data from the Adult
Survey module, which includes 8036 LAC residents who are 18
years and over. Detailed study protocols are available from
LACHS17.
All variables analyzed in this study were self-reported to the

LACHS survey-taker, and some were recorded from the measure
coded and shared by LACHS for ease of interpretability (see
Supplementary Note: Recoding LACHS measures). FF intake
frequency was coded as a four-category variable: never, infrequent
(<once per month), moderate (≥once per month to <once per
week), and frequent (≥once per week). Obesity (BMI ≥ 30) and
Diabetes (having a diagnosis), were coded as binary variables (yes/
no). Sociodemographic factors included age group, gender, race
and ethnicity, education level, and household income level.
Respondents’ LACN was derived from their home address.

We excluded participants who: were missing residential
information (n= 2007), lived in areas designated as ‘rural’18

(n= 104), or had missing data for any study variable (n= 478).
The final analytic sample was 5447 participants.

Individual geolocation (mobility) data source and aggregated
measures
Geolocation (i.e., mobility) data were collected by Spectus19, a
location-based services company that maintains anonymized
geospatial datasets on human mobility by aggregating data
across smartphone applications from mobile phone devices, and
shared through their Social Impact Program. The dataset consists
of anonymized records of GPS locations from individual adult (≥18
years) smartphone users who opted in to provide access to their
GPS location data anonymously through a General Data Protection
Regulation and California Consumer Privacy Act-compliant frame-
work. Users across all major smartphone device operating systems
(e.g., iOS, Android, Windows) are represented. The dataset
includes 243,644 users estimated to live within LAC (explained
below) between October 2016–March 2017 (6 months).
The data consists of geolocation “pings” identifying the location

of a given smartphone. The majority of these pings are recorded
every 5–15min, although they can be more or much less frequent
(e.g., if a phone is out of range). Each ping contains the GPS
location of the phone (latitude and longitude), timestamp, an
anonymous (encrypted and hashed) identifier unique for all
smartphone users, and an estimate of its horizontal positioning
accuracy (defined as the radius that provides a 68% (1σ)
confidence that the device is within that radius)49. Median ping
accuracy was 21m (Supplementary Fig. 3). No other individual
information was available to users.
When a user spends significant time in a single location,

measurement uncertainty will cause a number of pings to be
scattered around the actual location. To map these events to a
single “stay” with an accurate time and location, we use the
Infostop algorithm50, which clusters consecutive events together if
the maximum distance from their centroid, computed as the
median of the pings’ latitudes and longitudes, is less than some
roaming distance, droam. The first and last ping mark the start and
end time of the stay. At least two subsequent events need to be
observed within droam to be considered a stay. We use
droam= 50m, and set the minimum duration of a stay to 5 min.
We excluded users if they had fewer than two stays at any location
over the 6 months, resulting in an analytic sample of 234,995 users
with over 63 million observed stays.
Visits to food and FF outlets were identified by linking stays to

the Foursquare POI database21 obtained in 2017, which provides
the names and geolocations of 239,509 POI in LAC. We attributed
each stay to the closest POI in our dataset, calculated from the
centroid of the user’s stay to the centroid of the spatial polygon of
the POI, which is a validated approach for inferring visited POI
from passively collected smartphone mobility data51. We choose
only the closest POI within a radius of a thresholding maximum
distance, dmax, which we set at 200 m. Robustness tests demon-
strated that calculated mobility variables and study findings were
robust to the choice of dmax. See Supplementary Note: Mobility
Data Processing for further details on attributing stays to POI and
robustness tests. Methods for defining how Food and FF outlets
were measured are provided in Results, with further details found
in Supplementary Note: Detecting Food and Fast Food Outlets.
Aggregation to an area level was necessary because privacy

protections set out in the IRB protocols did not allow reporting of
individual mobility user behavior, and because this was the only
way to link to the LACHS health data. The LAC Neighborhoods24

(LACN) level was chosen because (i) we show that the variability in
mobility variables calculated across users within each LACN was
low (see “Results”); (ii) the LACN was the smallest administrative
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area we could demonstrate that our mobility user sample
achieved broad geographic representation of the underlying
population, evaluated through comparison with U.S. Census data
(Supplementary Note: Neighborhood-level aggregation of
mobility-derived variables); and (iii) because the area has social-
cultural meaning: LACNs were designed via a community-sourced
project, led by the Los Angeles Times, with the goal of mapping
LAC communities “with more similar groups of people”24

(Supplementary Note: Background on LACN). The median
population size in a LACN was 27,499 (IQR, 12,961–53,124), while
the median number of smartphone users was 468 (IQR, 243–914).
We estimated the home LACN for each user as that in which the

majority of their activity between 10:00 pm–6:00 am occurred. We
calculated the mobility measures for FF visits/time, FF visits/food,
and trips/day for each user over the 6-month observation period,
as summarized in “Results” and described in formal detail in
Supplementary Note: Constructing Mobility Variables. These three
measures were averaged over all individual users with an
estimated home residence within a LACN, and rescaled from
0–10 to enable comparison of effect sizes in regression analyses.
All study protocols were approved by the Institutional Review

Boards (IRB) of the LACDPH, the University of Southern California,
and the Massachusetts Institute of Technology. Where applicable,
this study followed the Strengthening the Reporting of Observa-
tional Studies in Epidemiology (STROBE) reporting guidelines.

Statistical analysis
Mobility variables for LACN were linked as contextual variables to
the analytic sample of LACHS survey respondents (n= 5447)

based on their estimated residential LACN (n= 247 unique LACN
across the analytic sample) (Fig. 3). Descriptive characteristics of
the analytic sample with linked mobility variables were computed
and compared to those in the full sample (n= 8036) using χ2 tests.
Logistic regression models at the individual LACHS respondent

level with linked LACN level mobility variables (n= 5447) were
generated to test the study objectives. For the first objective,
unadjusted and adjusted multinomial logistic regression models
were used to estimate the odds ratios (ORs) and adjusted ORs
(AORs) for the association between the two FF outlet visit variables
(IV), and self-reported FF intake frequency as the dependent
variable (DV) in separate models for each IV. The multivariable
models were adjusted for individual-level sociodemographic risk
factors (see Supplementary Note: Equations for Regression
Models).
For the second objective, multivariable logistic regression

models tested whether (i) FF visits/time (IV), (ii) FF visits/food
(IV), and (iii) self-reported FF intake (IV) were associated with
obesity (DV), and in separate models, with diabetes (DV). All
models were adjusted for sociodemographic factors. Odds ratios
for the categorical variable (FF intake frequency) and the
continuous variables (FF visits/time and FF visits/food) cannot be
directly compared. The non-nested models were therefore
compared on the basis of Akaike weights, and transformations
from raw AIC values to facilitate the interpretation of AIC model
comparisons30. A model’s Akaike weight is interpreted as its
probability of being the best out of a set of candidate models.
A two-sided P < 0.05 was considered statistically significant.

Meaningful presence of confounding was evaluated as changes in

Fig. 3 Visualization of process for linking the individual-level health survey data and the mobility-derived fast food outlet visit variables.
LACHS Los Angeles County Health Survey, LAC Los Angeles County. a shows an example of three variables and a respondent ID from the
individual-level LACHS dataset. b shows an example of three LAC Neighborhood-aggregated variables calculated from the individual-level
Spectus mobility dataset and LAC Neighborhood ID. c shows an example of the LAC neighborhood-level variables linked as contextual
variables to the individual-level LACHS dataset.
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estimated effect sizes of >10%. Mobility data were analyzed in
Python; LACHS data and statistical analyses were conducted using
R software, version 3.6.3.

Sensitivity analysis
Relating measures of mobility to food outlets in 2016/17 with
responses from a 2011 health survey represents a possible source
of error in our approach. We investigated the sensitivity of study
findings to this time gap. Previous research by Chetty et al.
(2020)31 on a U.S.-wide individual-level longitudinal sample has
demonstrated that the power of neighborhood-level features
measured at the one-time point to predict behavioral outcomes
for individuals living in those neighborhoods at different time
points is stable (relative to models of predictors and outcomes
measured at the same time) if neighborhood population
characteristics most predictive of the outcomes are stable over
the intervening time period31. Generalizing these findings to our
study: if we find that (i) population characteristics were relatively
stable over the intervening time period and (ii) regression effect
estimates were not meaningfully different if models were refit
after only neighborhoods with stable population characteristics
were included, this would suggest that our regression results are
similar to those produced from models using data measured at
the same time period. We used this approach to evaluate the
stability of our findings over the time period between the health
survey and mobility data collection by (A) evaluating the stability
of neighborhood-level characteristics highly predictive of FF
intake (relating to ethnicity and income) in Census tracts within
the LAC study region between 2011–17, and (B) re-estimating
regression models after removing the LACHS study participants
from the Census tracts demonstrating the greatest change.
The approach for part (A) used data from the 5-Year American

Community Survey20 to evaluate the stability of three variables
representing ethnicity and income, which are strong predictors of
FF intake frequency: the percentage of the population in the
Census tract living above 200% of the FPL, that is Hispanic or
Latino, and that is Black or African American alone. The
percentage of the population living above 200% of the FPL was
used as a measure of income because it accounts for inflation and
corresponds to the income measure available for LACHS study
respondents.
We measured the distribution of differences in each of these

three percentage-based measures between 2011 and 2017. We
then identified LAC Census tracts that demonstrated the greatest
amount of change (individually for each demographic variable) by
two methods for outlier identification: (1) the Tukey approach,
which defines outliers as values more than 1.5 times the
interquartile range from each of the quartiles (Method 1); and
(2) the distribution above and below two standard deviations of
the mean (Method 2). Stability was analyzed by evaluating the
absolute percentage change demonstrated by 95% of the Census
tracts, i.e., identifying Z in P(|Xi| < z) = 0.95, where Xi represents
each of the three demographic characteristics analyzed.
The approach for part (B) involved re-estimating regression

models after removing the LACHS study participants from the
Census tracts demonstrating the greatest change and comparing
to results on the full analytic sample. For each outlier identification
method, we first removed the union of outlier Census tracts across
the three measures and the LACHS respondents linked to these
Census tracts. For Method 1 (Tukey method), 11.0% of Census
tracts were removed, accounting for 12.4% of LACHS respondents;
for Method 2 (2 standard deviations from the mean), 6.7% of
Census tracts were removed as outliers accounting for 12.0% of
LACHS respondents (Supplementary Table 3).
We then re-estimated the regression models presented in the

main text after removing the linked LACHS study participants from
these Census tracts. Regression analyses were rerun for six models

representing the primary results analyzed in this study after
removing LACHS respondents in the outlier Census tracts. These
models examined the association between each of the two FF
outlet visit measures observed from the mobility data, FF visits/
time, and FF visits/food, and each of the three outcome measures
analyzed, FF intake frequency, obesity, and diabetes. We adjusted
for risk factors in the obesity and diabetes outcome models. We
evaluated the percentage change in the regression odds ratios
produced by fitting to the full analytic sample and the sample
after subtracting out outlier census tracts according to the two
methods. Percentage changes above 10% were considered
meaningfully different.
Separately, we included sensitivity analyses to examine whether

the observed relationships between visits to FF outlets and FF
intake and diet-related disease are uniquely due to FF outlet visits,
and not general mobility behavior irrespective of FF visits.
Analyses were included to evaluate models that control for an
indicator of general mobility behavior, trips/day.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Mobility data were shared by Spectus through their Social Impact. Conditions,
limitations, and information on how to request data access can be found at https://
spectus.ai/social-impact. The LACHS health survey data are available to investigators
upon request and pending eligibility to access data governed by the Los Angeles
County Department of Public Health Institutional Review Board. Other data used
come from the 2017 5-Year American Community Survey, available at https://
www.census.gov/programs-surveys/acs.

CODE AVAILABILITY
The underlying code for this manuscript is not publicly available due to the
protection of the study data. Code may be made available upon reasonable request
from the corresponding author, contingent upon eligibility to access study data as
determined by the Los Angeles County Department of Public Health Institutional
Review Board and mobility data from Spectus as noted in the Data Availability
section.
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