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Could social media data aid in disaster response and damage assess-
ment? Countries face both an increasing frequency and intensity of natu-
ral disasters due to climate change. And during such events, citizens are 
turning to social media platforms for disaster-related communication and 
information. Social media improves situational awareness, facilitates 
dissemination of emergency information, enables early warning systems, 
and helps coordinate relief efforts. Additionally, spatiotemporal distribu-
tion of disaster-related messages helps with real-time monitoring and 
assessment of the disaster itself. Here we present a multiscale analysis of 
Twitter activity before, during, and after Hurricane Sandy. We examine the 
online response of 50 metropolitan areas of the United States and find a 
strong relationship between proximity to Sandy’s path and hurricane-
related social media activity. We show that real and perceived threats – 
together with the physical disaster effects – are directly observable 
through the intensity and composition of Twitter’s message stream. We 
demonstrate that per-capita Twitter activity strongly correlates with the 
per-capita economic damage inflicted by the hurricane. Our findings sug-
gest that massive online social networks can be used for rapid assess-
ment (“nowcasting”) of damage caused by a large-scale disaster. 
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Introduction 
Natural disasters are costly. They’re costly in terms of 

property, in terms of political stability, and in terms of 
lives lost [1-3]. Unfortunately – due to climate change – 
natural disasters like hurricanes, floods, and tornadoes are 
also likely to become more common, more intense, and 
subsequently more costly in the future [4-7]. Developing 
rapid response tools to aid in adapting to these coming 
changes is critical [8]. 

As society faces this need, the use of social media on 
platforms like Facebook and Twitter is on the rise. Unlike 
traditional media, these platforms enable data collection 
on an unprecedented scale, documenting public reaction 
to events unfolding in both virtual and physical worlds. 
This makes social media platforms attractive large-scale 
laboratories for social science research [9-11]. Opportuni-
ties provided by social media are utilized in various do-
mains including the economic [12], political, [13-16] and 
social [14, 17-21] sciences, as well as in public health [22, 
23]. 

Because of their potential, the use of massive online 
social networks in disaster management has attracted sig-
nificant public and research interest [24-26]. In particular, 
the micro-blogging platform Twitter has been especially 
useful during emergency events [27-29]. Twitter allows 
its users to share short 140-character messages and follow 
public messages from any other registered user. Such 

openness leads to a network topology characterized by a 
high number of accounts an average user follows, placing 
Twitter somewhere in-between a purely social and a pure-
ly informational network [30]. The information network 
properties of Twitter facilitate and accelerate the global 
spread of information; its social network properties ease 
access to geographically and personally relevant infor-
mation, and the message length limit encourages informa-
tive exchange. These factors combine to make Twitter 
especially well suited for a fast-paced emergency envi-
ronment. 

Existing research on Twitter in emergency context 
studies its role in gathering and disseminating news [31, 
32], the way it contributes to situational awareness [33, 
34], practical aspects of classifying disaster messages, 
detecting events, and identifying messages from crisis 
regions [35-39]. Other research utilizes Twitter’s network 
properties to devise sensor techniques for early awareness 
[40], to gauge the dynamics of societal response [41], and 
to crowdsource relief efforts [42]. 

More recently researchers have begun using social 
media platforms to derive information about disaster 
events themselves. For instance, the number of photo-
graphs uploaded to Flickr was shown to correlate strongly 
with physical variables that characterize natural disasters 
(atmospheric pressure during Hurricane Sandy) [43]. Alt-
hough it is unclear what causes the link – external infor-
mation, network effects, or direct observer effects – the 
correlation suggests that digital traces of a disaster can 
help measure its strength or impact. Based on a similar 
concept, other studies verify the link between the spatio-
temporal distribution of tweets and the physical extent of 
floods [44] and  the link between the prevalence of disas-
ter-related tweets and a distribution of Hurricane Sandy 
damage predicted from modeling [45]. 

Here, we present a hierarchical multiscale analysis of 
disaster-related Twitter activity. We start at the national 
level and progressively employ finer spatial resolution of 
counties, and zip code tabulation areas. First, we examine 
how geographical and socio-cultural differences across 
the United States manifest through Twitter activity during 
a large-scale natural disaster – Hurricane Sandy. We in-
vestigate the response of cities to the hurricane and identi-
fy general features of disaster-related behavior on the 
community level. Second, we study the distribution of 
geo-located messages at the state level within the two 



most affected states (New Jersey and New York) and – 
for the first time – analyze the relationship between Twit-
ter activity and the ex-post assessment of damage inflicted 
by the hurricane. 

Context of the study, data and methods 
Hurricane Sandy was the largest hurricane of the 2012 

season and one of the costliest disasters in the history of 
the United States. Sandy was a late season hurricane that 
formed on 22 October 2012 southwest of Jamaica, peaked 
in strength as a Category 3 hurricane over Cuba, passed 
the Bahamas, and continued to grow in size while moving 
northeast along the United States coast. The hurricane 
made its landfall on the continental United States at 12:00 
UTC on 29 October 2012 near Brigantine, New Jersey 
with winds reaching 70 knots and the storm surge as high 
as 3.85 meters. According to the National Hurricane Cen-
ter [46], Sandy caused 147 direct fatalities and is respon-
sible for damage in excess of $50 billion, including 650 
thousand destroyed or damaged buildings and over 8.5 
million people left without power – some of them for 
weeks. 

Both broadcast and online media extensively covered 
Hurricane Sandy, generating a large dataset of Twitter 
messages that became the basis for this study. The raw 
data comprises two distinct sets of messages. The first 
consists of messages with the hashtag “#sandy” posted 
between 15 October and 12 November 2012. This period 
precedes the formation of the hurricane and extends be-
yond its dissipation. The data includes the text of the mes-
sages and a range of additional information, such as mes-
sage identifiers, user identifiers, followee counts, re-tweet 
statuses, self-reported or automatically detected location, 
timestamps, and sentiment scores. The second dataset has 
a similar structure and was collected within the same 
timeframe; however, instead of a hashtag, it includes all 
messages that contain one or more instances of specific 
keywords, considered to be relevant to the event and its 
consequences (“sandy”, “hurricane”, “storm”, “super-
storm”, “flooding”, “blackout”, “gas”, “power”, “weath-
er”, “climate”, etc. – see supplementary Table S1 for the 
full list). We obtained both datasets through the analytics 
company Topsy Labs [47], and reconstructed relationship 
graphs (list of followees for each user) using Twitter’s 
API. Sentiment scores in raw data are measured by a pro-
prietary algorithm from Topsy, which we additionally 
verify with free alternatives – Linguistic Inquiry and 
Word Count [48] and SentiStrength [49]. In total we have 
52.55 million messages from 13.75 million unique users. 

Since we are interested in a spatiotemporal analysis of 
Twitter activity, we focus exclusively on messages and 
users with known location. Only a fraction of the messag-
es (about 1.2% for the hashtag dataset and 1.5% for the 
keywords dataset) are geo-tagged by Twitter. To expand 
the data, we include messages from users whose profile-
listed address returns a match against the US Census Bu-
reau Topologically Integrated Geographic Encoding and 
Referencing (TIGER) database. The resulting subset of 
geo-coded messages contains 9.7 million tweets from 2.2 
million unique accounts. 

We perform the analysis on the national and state lev-
els. On the national level, we use cities as a natural – in 
terms of spatial extent and population size – basis for ag-

gregation and comparison. Cities are important due to 
their dominant [50, 51] and increasing [52, 53] socio-
economic role in all aspects of human life [54-56], both in 
the real world and online. Additionally, similarities or 
differences in the way cities react to a major natural disas-
ter like Sandy are of interest to social scientists and cli-
mate adaptation policymakers alike [8, 57]. Our analysis 
covers the 50 most populous urban areas according to the 
2010 US Census. On the state level we use a progressive-
ly finer granularity of counties, and finally zip code tabu-
lation areas (ZCTA) to analyze the local distributions of 
Twitter activity and hurricane damage. On every level, we 
aggregate messages that have latitude and longitude fall-
ing within the boundaries of a respective region of interest 
(metropolitan area, county or ZCTA). The boundaries and 
population estimates of all administrative areas are deter-
mined by the 2010 US Census. Finally, for every city, we 
determine the shortest distance to the path of the hurri-
cane [58], as an indication of the proximity to the disaster. 

After aggregating the tweets by location, we use 
timestamps for temporal analysis. We allocate messages 
into non-overlapping bins of either 1- or 24-hour duration. 
Comparison metrics include the total number of active 
users, number of messages posted, classification of these 
messages into original and re-tweeted messages (includ-
ing identification of the source as local or external to a 
particular community), and sentiment. Since the number 
of tweets originating from different urban or zip code 
areas varies greatly, we compare characteristics as nor-
malized by the total count of distinct users for each area, 
active at any time between the start and end of the data 
collection period. 

Results 

Dynamics of Twitter activity across regions and hurricane-
related topics 

The messages studied here cover a range of keywords, 
with varying relevance to Hurricane Sandy. Because of 
this, we deal with three dimensions in our analysis – spa-
tial, temporal and topical. 

Figure 1 illustrates some of the characteristic features 
of Twitter activity. The pattern demonstrated by key-
words strongly related to the hurricane (“sandy”, “storm”, 
“hurricane”, “frankenstorm”, etc.) is shown in Figure 1A 
– the number of messages slowly increases with a strong 
peak on the hurricane’s landfall day, followed by a gradu-
al decline in the tweet activity level. Geographically, the 
trend is similar almost everywhere, but the magnitude of 
the normalized response changes depending on the prox-
imity to the hurricane. 

An alternative way to summarize the activity is shown 
in the Figure 1B, where the normalized activity is pre-
sented as a two-dimensional heatmap. We rank cities by 
their proximity to the hurricane and words by their mes-
sage count. At the peak of the disaster, event-related key-
words rank higher and activity increases with proximity. 
Consequently, we see that the upper left corner of our 
city/topic matrix shows a high level of activity. In sum-
mary, as the disaster approaches and peaks in intensity, so 
does the normalized local Twitter response. Additionally, 
the content of the message stream changes and keywords 
most associated with the event dominate the agenda. 



 
Figure 1 Example of spatiotemporal evolution of Twitter activity across keywords. Panel A shows the geographical and topical variation of 
normalized activity (the number of daily messages divided by the number of local users active at any stage of the entire observation period). 
The horizontal axis is an offset in hours with respect to the landfall t ime of the hurricane (00:00 UTC on October 30, 2012). Activity on the 
hurricane-related words like “sandy” increases and reaches its peak in the day of landfall, and then gradually falls off. Qualitatively similar 
trends are observed everywhere, with distance to the path of the hurricane affecting the strength of the response (compare magnitudes of 
activity peaks between New York, Chicago and Miami). Different temporal patterns are exhibited by different keywords: “gas”-related discus-
sion peaks with delay corresponding to the post-hurricane fuel shortages, and activity on “storm” has a secondary spike due to November 
“Nor’easter” storm. Panel B summarizes activity depending on both variables – topic and location. The color corresponds to the level of nor-
malized activity (blue is low and red is high). In columns, places are ranked according to their proximity to the path of the hurricane (closest 
on the left, farthest on the right). In rows, words are ranked according to the total number of messages posted on the topic. Evolution of the 
event brings disaster-related words to the top of the agenda, with North East showing highest level of activity. 

 
Figure 2 Characteristic features of Twitter activity across locations (labeled by color according to hurricane proximity – blue is further and red 
closer to disaster). In all panels a primary plot shows results for messages with keyword “sandy”, and an inset for keyword “weather”, to con-
trast behavior between event-related and neutral words. A primary feature is the sharp decline of normalized activity as the distance between 
a location and the path of the hurricane increases (Panel A). After the distance exceeds 1200-1500 km its effect on the strength of response 
disappears. This trend may be caused by a combination of factors, with direct observation of disaster effects and perception of risk both in-
creasing the tweet activity of the East Coast cit ies. Anxiety, anticipation, and risk perception evidently contribute to the magnitude of re-
sponse, since many of the communities fall ing into the decreasing trend were not directly hit or were affected only marginally; while New 
Orleans for example shows significant tweeting level that reflects its historic experiences with damaging hurricanes, l ike Katrina. The re-tweet 
rate (Panel B) is inversely related to activity, with affected areas producing more original content. Popularity of the content created in the 
disaster area is also higher and therefore increases with activity as well (Panel C). None of the features discussed above are present for 
neutral words (see the insets in all panels). 

 
When we aggregate our data over the period between 

20 October and 12 November 2012, we find that tweet 
activity declines with increasing distance from the hurri-
cane path up to 1500 km and is nearly constant for all 
places further away. These features are summarized in 
Figure 2A and supplementary Figure S1 (for all key-
words). This relationship between proximity and activity 
level is a dominant feature, accompanied by two other 
relationships. The first one is an inverse relationship be-
tween content creation and consumption. The areas di-
rectly hit by – or close to – the disaster show a lower ratio 
of re-tweets (more original content) in the stream of mes-
sages generated, as can be seen in Figure 2B and Figure 

S2. The second relationship is between the activity and 
global popularity (count of messages that get re-tweeted, 
normalized by the local user count) of local content (Fig-
ure 2C and Figure S3), with content from affected areas 
attracting attention elsewhere. The activity-popularity 
(and to a lesser degree activity-originality) relationship is 
very strong for the event-related keywords, but virtually 
absent for neutral or more general keywords. We illustrate 
this in Figure 2 by the inset plots for keyword “weather” –
 a general word that is used frequently and is not neces-
sarily associated with extreme weather events, even when 
such events take place. 



Direct relationship between online activity and prox-
imity to the hurricane naturally raises the question of fac-
tors that stimulate such an activity. Is it extensive media 
coverage, or perception of risk, or witnessing hurricane’s 
meteorological effects (winds, precipitation, storm surge) 
and damage (power and fuel shortages, flooding, loss of 
personal property, casualties)? The latter, especially the 
extent to which quantifiable properties of online activity – 
recorded during and shortly after disaster – reflect the 
severity of disaster-related damage, is especially interest-
ing from the disaster management point of view. Real-
time analysis of online activity as a predictor of damage 
would be a valuable tool in optimizing allocation of lim-
ited emergency and recovery resources, and may com-
plement other predictive models used in the joint assess-
ment and recovery of damaged infrastructures [59]. 
Therefore, we investigate if the damage to property across 
the most severely hurricane-affected regions correlates 
with the recorded Twitter activity. 

Damage 
Since the hurricane damage was mostly confined to 

several states, we perform damage analysis at finer spatial 
granularity by looking at counties and ZCTAs. We exam-
ine both aggregation levels to determine the limits of spa-
tial resolution achievable in such a “nowcasting” tech-
nique. 

Two primary sources of data contribute to our esti-
mate of damage. The first is data on FEMA Household 
Assistance grants to homeowners and renters [60]. These 
grants are provided to relieve the hardship of households 
exposed to disaster and to enable bringing the original 
property back to a habitable condition. The second source 
is data on insurance claims associated with Hurricane 
Sandy [61, 62], including National Flood Insurance, resi-
dential, commercial, vehicle and marine insurance claims. 
We use these indicators as both are expressed in monetary 
terms and are reported by individuals, rather than admin-
istrative entities like municipalities. A more holistic index 
of community hardship could be developed, like the one 
in [63] taking into account other metrics: the number of 
people served at shelters, effects of power loss (using the 
number of days schools were closed as a proxy), gas 
shortages (through the number of calls to State Emergen-
cy Hotline from gas stations) and FEMA Public Assis-
tance grants to help with municipal infrastructure. Alt-
hough such methodology gives a broader picture of the 
hardship on the ground, the metrics involved do not have 
a standard way of measurement and do not share a com-
mon unit to be integrated together, which leaves certain 
freedom to assign arbitrary weights to each contributing 
factor. To avoid this ambiguity, we only include the data 
reported by individuals and measured directly as mone-
tary loss. 

We analyze the damage estimates, aggregated within 
either counties or zip code tabulation areas, against Twit-
ter activity in the same boundaries. The data available on 
damage allows us to look at several aspects, including the 
total damage claimed, the total damage covered by FEMA 
and insurance, the number of applications and successful 
applications, and severity categories based on the cost. 

We look at the relationship between normalized quantities 
– per-capita Twitter message count and per-capita damage 
– to avoid correlations artificially induced by population 
counts (more populous areas produce higher message 
counts and experience higher damage). To estimate 
whether activity quantitatively reflects the severity of the 
disaster, we test the independence of two distributions: 
activity versus damage. We consider activity on the core 
set of messages strongly associated with the hurricane 
(see supplementary Table S2 for the rankings and Table 
S3 for the results across all keywords). 

The estimate of damage is a snapshot from November 
2014, while activity varies significantly over the data col-
lection period. Both in the interest of capturing predictive 
capacity and in a practical attempt to determine the best 
analysis window to get the strongest predictive effect, we 
calculate the correlations on a daily basis between the 
22nd of October and the 12th of November. In addition to 
examining the activity-to-damage correlation, we also 
check the sentiment-to-damage correlation. Previous stud-
ies [40] suggest that a drop of the average sentiment in an 
area may indicate an emergency, and we aim to verify 
whether the sentiment also serves as a quantitative predic-
tor of damage. 

The correlation coefficient dynamics is presented in 
Figure 3. Because we discard inactive areas – ZCTAs 
with no messages posted during an analysis period  – the 
length of vectors subject to an independence test varies 
over time, and we choose to ignore correlation coeffi-
cients earlier than October 22 and later than November 
11. Within this period, we consistently have more than 
200 active ZCTAs, see Figure 3A. Figure 3B shows that 
the rank correlation coefficients are moderately positive, 
indicating a weak correlation. 

The correlation is present for several days before the 
landfall, which might reflect a-priori knowledge of local 
hurricane vulnerability based on historical experience 
within particular areas and obvious risk factors like prox-
imity to the shoreline. This positive correlation decreases 
on the day of landfall across all correlation measures. 
Despite the highest total count of messages, the peak of 
the disaster has the weakest damage-predictive power. 
However, in the following two days, the activity-to-
damage correlation steadily increases. From the third day 
onwards, it fluctuates around a moderate level (0.25 Ken-
dall τ and 0.35 Spearman’s ρ). We examined these trends 
both combining all data as well as for different keywords 
separately, without much of a difference in pattern or 
magnitude of coefficients.  

Arguably, this trend – a drop on the day of the hurri-
cane followed by a steady increase in the relationship 
between activity and damage – could be explained by the 
universally high tweet activity on the day of hurricane 
landfall, fuelled not only by the severity of the storm, but 
also by widespread coverage of the hurricane in all forms 
of the media. In places that were spared significant con-
sequences of the hurricane, the interest of the public 
quickly diminishes. But in affected areas, the topic persis-
tently remains at the top of the agenda and makes post-
event activity an indicator of the damage caused by the 
hurricane.

 



 
Figure 3 The predictive capacity of Hurricane Sandy’s digital traces. The horizontal axis is an offset in hours with respect to the landfall t ime 
of the hurricane (00:00 UTC on October 30, 2012). Panel A shows the number of messages as a function of t ime (labeled on the secondary y-
axis on the right) and the number of “active” – with at least one message posted – zipcode tabulation areas (labeled on the primary y-axis on 
the left). Panel B shows evolution of the rank correlation coefficients between the normalized per-capita activity (number of the original mes-
sages divided by the population of a corresponding ZTCA) and per-capita damage (comprised of FEMA Individual Assistance grants and 
Sandy-related insurance claims). Additionally, the dashed trend shows Kendall rank correlations between average sentiment and per-capita 
damage. The correlation rises from pre-landfall to post-landfall stage of the hurricane, with a drop on the landfall day. We conclude that the 
post-disaster stage, or persistent activity on the topic in the immediate aftermath of an event, is a good predictor of damage infl icted locally. 
Strength of the average sentiment of tweets does not seem to be a good predictor, at least at this level of spatial granularity (ZCTA resolu-
tion). 

 
Figure 4 Spatial distributions and mutual correlations between Hurricane Sandy damage, Twitter activity, and average sentiment of tweets. 
Correlations between per capita Twitter activity and damage are i l lustrated on ZCTA-level (Panel A) and county level (Panel B). In this nor-
malized form both variables follow a quasi log-normal distribution (see the histograms along the axes of scatter plot in Panel A). There is a 
moderately strong positive correlation between post-landfall activity and damage, with rank coefficients approximately equal at either level of 
resolution (see inset tables in scatter plots in panels A and B for exact statistics and P-values). ZCTA analysis covers only the state of New 
Jersey and spatial distribution shows that both activity and damage reach highest levels along the coast and in a densely populated metropol-
itan area around New York City. There is no correlation between sentiment and damage at the level of ZCTA granularity (Kendall-tau rank 
coefficient is -2.52 10-3). County-level analysis in Panel B shows that the strength of the activity-to-damage correlation holds, and there is 
also weakly negative correlation between sentiment and damage. 



Focusing on the period where the relationship between 
activity and damage is the strongest – between October 31 
and November 12 – we measure rank correlation coeffi-
cients for all ZCTAs in New Jersey and for selected coun-
ties in New Jersey and New York. Results are summa-
rized in Figure 4 and Figure S4. ZCTA-based distribu-
tions of per-capita activity and per-capita damage are ap-
proximately log-normal, with histograms shown in Figure 
4A. The Kendall rank correlation reaches 0.32, the 
Spearman rank correlation 0.46, and the Pearson correla-
tion coefficient approaches 0.5. Analysis on the basis of 
counties (Figure 4B) reveals similar results: Kendall 
τ = 0.34, Spearman ρ = 0.5 and Pearson ρ = 0.47 for 34 
counties across New Jersey and New York. All measures 
are statistically significant with P-values below 0.05 and 
indicate a moderate positive correlation between damage 
and tweet activity. Spatial distributions confirm the rela-
tionship, with pronounced concentration of both damage 
and normalized activity along the coastline of New Jer-
sey. Alternative normalization (by Twitter user count in-
stead of actual population) does not alter the strength of 
the correlation – see supplementary Table S4. 

Following Guan and Chen [45], we also analyze the 
relationship between Twitter activity and damage esti-
mates produced by the FEMA Modeling Task Force 
(based on the Hazus-MH model of hurricane wind and 
storm surge damage to housing and infrastructure). This 
approach results in correlations of similar strength (Ken-
dall τ = 0.34, Spearman ρ = 0.51 and Pearson ρ = 0.41). 
Comparison of the alternative damage estimates and their 
negligible effect on the strength of the observed activity-
damage correlation is summarized in the supplementary 
tables S5 and S6. 

Our previous study [40] suggested that the negative 
average sentiment may indicate an emergency situation, 
based on the fact that the sentiment experiences a drop for 
a sustained period of time before and after the landfall of 
Hurricane Sandy. Here, we re-examine the sentiment-
damage relationship and find that daily ranking correla-
tion coefficients oscillate around zero for the entire ob-
servation period (see Figure 3B). Within the most favora-
ble prediction window (October 31 to November 12) 
Kendall τ = -0.029 (P = 0.31), suggesting independence 
of the underlying distributions, or that analysis at ZCTA-
resolution is under-powered. Change of spatial resolution 
from ZCTAs to counties results in a more definitive rela-
tionship with τ = -0.19 (P = 0.11), and normalization by 
Twitter user count yields more significant results yet – 
τ = -0.23 (P = 0.06) – confirming our previous findings 
and making sentiment weakly predictive of damage (see 
supplementary Table S7 for the summary of results). 

Discussion and conclusions 
We found that Twitter activity during a large-scale 

natural disaster – in this instance Hurricane Sandy – is 
related to the proximity of the region to the path of the 
hurricane. Activity drops as the distance from the hurri-
cane increases and, after a distance of approximately 1200 
– 1500 km, the influence of proximity disappears. Addi-
tionally, the areas close to the disaster have a lower frac-
tion of re-tweets (more original content) and generate 
more interest by producing content popular elsewhere – 
the findings confirmed by other studies [37]. 

In the first study of its kind based on the actual ex-post 
damage assessments, we demonstrated that the per-capita 
number of Twitter messages corresponds directly to disas-
ter-inflicted monetary damage. The correlation is espe-
cially pronounced for persistent post-disaster activity and 
is weakest at the peak of the disaster. We established that 
per-capita activity and per-capita damage both have ap-
proximately log-normal distribution and Pearson correla-
tion coefficient between the two can reach 0.5 for a care-
fully selected observation period in the aftermath of the 
landfall. This makes social media a viable platform for 
preliminary rapid damage assessment in the chaotic time 
immediately after disaster. Our results suggest that, dur-
ing a disaster, officials should pay attention to the normal-
ized activity levels, rates of original content creation, and 
rates of content rebroadcast to identify in real time the 
hardest hit areas. Immediately after a disaster they should 
focus on persistence in activity levels to assess which 
areas are likely to need the most assistance. 

The role of proximity as the primary factor that ex-
plains activity suggests that individuals realistically assess 
danger based on personal experiences [64], and their level 
of interest is moderated accordingly. The cutoff in the 
activity-to-distance relationship is on the same order of 
magnitude as the footprint of a large atmospheric system, 
indicating that once people feel safe where they are, the 
level of engagement is uniform and most likely depends 
on the intensity of media coverage. Activity within the 
zone of the disaster sharply rises with proximity to its 
epicenter, probably due to a combination of factors in-
cluding heightened anxiety, sense of direct relevance, and 
observation of the associated effects (wind and precipita-
tion, physical damage). Our findings echo other studies, 
like the correlation of the number of Flickr photos tagged 
“#sandy” with atmospheric pressure over New Jersey, 
emphasizing that online activity is increasing with the 
intensity of the event [43]. What is striking however, with 
all the different factors that motivate people to tweet, is 
that a simple normalized measure of this activity – per-
capita number of messages – serves as an efficient as-
sessment tool for the physical damage caused by the dis-
aster. 

Damage forecasts issued by FEMA’s Modeling Task 
Force rely on the sophisticated multi-hazard modeling. 
Although these forecasts are timely (generated before or 
immediately after a disaster), their verification with aerial 
imagery and physical site inspections is resource and 
time-consuming. Social media nowcasting provides addi-
tional low-cost tool in the arsenal of authorities to expe-
dite the allocation of relief funds. In the long term, the 
technique can be used to check the integrity of damage 
assessment process itself, especially in light of protracted 
settlement timeframes and allegations of irregularities that 
recently prompted a blanket review of all insurance 
claims by FEMA [65]. It can be used to inform stochastic 
optimization algorithms for the joint assessment and re-
pair of complex infrastructures such as power systems 
[59]. 

The correlation we observed is not definitive in its 
strength, and care should be taken in the attempt to devise 
practical applications, however we believe there is poten-
tial to fine-tune the method. More robust estimates of 
damage through other data sources – for instance an in-



clusion of municipal losses and non-monetary indicators 
like power losses and emergency shelters statistics [63] - 
may reinforce the relationship. Composite metrics that 
combine per-capita activity with other properties of Twit-
ter message stream, e.g. fraction of disaster related tweets 
[45] and sentiment (provided that activity is high and the 
volume of data is sufficient for sentiment to be predic-
tive), may prove even more sensitive to damage. More 
broadly, our study suggests that the distribution of per-
capita online activity on a specific topic has potential to 
describe and quantify other natural, economic or cultural 
phenomena. 
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Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and intensity of natural disasters 
due to climate change. And during such events, citizens are turning to social media platforms for disaster-related communication and information. Social 
media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief 
efforts. Additionally, spatiotemporal distribution of disaster-related messages helps with real-time monitoring and assessment of the disaster itself. Here 
we present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of 
the United States and find a strong relationship between proximity to Sandy’s path and hurricane-related social media activity. We show that real and 
perceived threats – together with the physical disaster effects – are directly observable through the intensity and composition of Twitter’s message 
stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. Our findings 
suggest that massive online social networks can be used for rapid assessment (“nowcasting”) of damage caused by a large-scale disaster. 



 

Table S1 List of keywords included in 
the analysis, with their corresponding 
message counts. 

Keyword Count 
power 4 825 717 
sandy 4 745 099 
hurricane 4 680 290 
weather 3 333 025 
storm 2 555 196 
gas 1 991 524 
Governor 498 135 
stay safe 484 732 
recovery 431 591 
climate 420 217 
FEMA 329 789 
flooding 264 132 
no power 261 998 
climate change 236 009 
wall st 233 411 
blackout 213 520 
mta 206 504 
frankenstorm 205 467 
Cuomo 92 014 
prayforusa 91 293 

 



 

Figure S1 Normalized local activity on the topic as a function of distance to the hurricane path. For the words 
strongly related to Hurricane Sandy (top row) activity decreases with distance, and after the distance of 10-15 de-
grees (1200 – 1500 km) proximity does not affect the level of activity. Because if this, and also because for some 
words (“gas”, “power”, etc.) trends for East and West coasts differ, we use rank correlation for East coast cities as a 
measure of relevance. The values of these correlation coefficients between activity and distance are shown in insets. 



 
Figure S2 Originality of the content, expressed through the fraction of re-tweets in the stream of messages. Most of 
the words show the inverse relationship between normalized activity and re-tweet rate; however, in the event-related 
keywords this trend is more pronounced (compare “sandy” or “frankenstorm” with “weather” or “climate”). 



 
Figure S3 Global popularity of local content. Words are sorted, as in Figure S1, according to relevance based on the 
strength of activity-distance correlation for East Coast cities. Event-related keywords show a strong linear relation-
ship between activity and global popularity of messages generated locally. As relevance of the word to the disaster 
weakens, so does the correlation between activity and popularity. 
  



Table S2 Ranking of the keywords included into analysis according 
to strength of the correlation between the distance and activity for 
East Coast cities. Event- and effect-related words on the top are 
used for further analysis of activity, including its relationship to dam-
age. 

 Kendall rank Spearman rank 
keyword τ P-value ρ P-value 
hurricane -0.690 1.07 10-9 -0.851 1.28 10-11 
storm -0.644 1.23 10-8 -0.8240 2.02 10-10 
sandy -0.596 1.38 10-7 -0.778 9.26 10-9 
power -0.548 1.29 10-6 -0.735 1.5 10-7 
flooding -0.548 1.29 10-6 -0.731 1.84 10-7 
frankenstorm -0.533 2.42 10-6 -0.71 5.82 10-7 
no power -0.519 4.46 10-6 -0.673 3.74 10-6 
Governor -0.477 2.54 10-4 -0.651 9.46 10-6 
blackout -0.343 0.002 -0.470 0.003 
weather -0.272 0.016 -0.382 0.018 
mta -0.231 0.042 -0.365 0.024 
FEMA -0.215 0.058 -0.306 0.062 
Cuomo -0.179 0.113 -0.284 0.084 
climate change -0.084 0.458 -0.089 0.596 
gas -0.081 0.474 -0.134 0.422 
stay safe -0.081 0.474 -0.122 0.467 
climate -0.081 0.474 -0.101 0.545 
prayforusa -0.05 0.66 -0.091 0.585 
wall st 0.044 0.697 0.087 0.604 
recovery -0.038 0.734 -0.038 0.822 

 
 
Table S3 Activity-damage correlations across keywords, in order of decreasing strength. Note that event-related 
keywords (on the basis of activity-distance relationship) are most predictive of damage. For the final analysis we use 
the following selection: “sandy”, ”hurricane”, ”storm”, ”power”, and “flooding” (“mta” is excluded because of insuffi-
cient number of active ZCTAs) 

  Kendall rank Spearman rank Pearson 
keyword active ZCTAs τ P-value ρS P-value ρP P-value 
sandy 517 0.33 4.3 10-29 0.47 2.2 10-29 0.5 2.4 10-34 
flooding 169 0.27 1.3 10-7 0.4 7. 10-8 0.37 5.5 10-7 
power 532 0.26 8.1 10-20 0.38 1.2 10-19 0.42 5.2 10-24 
hurricane 494 0.26 6.2 10-18 0.37 1.3 10-17 0.38 1. 10-18 
mta 65 0.24 5.3 10-3 0.34 5.1 10-3 0.36 3.7 10-3 
no power 450 0.21 2.3 10-11 0.3 4.7 10-11 0.31 9.3 10-12 
storm 478 0.21 1.4 10-11 0.3 1.6 10-11 0.31 3.5 10-12 
gas 505 0.18 6.2 10-10 0.28 2.3 10-10 0.32 9. 10-14 
blackout 207 0.18 7.9 10-5 0.27 1. 10-4 0.31 6.5 10-6 
climate 

change 

97 0.19 6. 10-3 0.27 8.6 10-3 0.28 6.2 10-3 
Governor 282 0.17 3.1 10-5 0.25 2.9 10-5 0.29 8. 10-7 
FEMA 272 0.16 6.5 10-5 0.23 9.5 10-5 0.24 8.4 10-5 
prayforusa 4 0. 1. 0.2 8. 10-1 0.52 4.8 10-1 
frankenstorm 52 0.13 1.7 10-1 0.2 1.6 10-1 0.094 5.1 10-1 
climate 128 0.13 2.6 10-2 0.19 2.9 10-2 0.2 2. 10-2 
recovery 255 0.12 3.3 10-3 0.18 3.6 10-3 0.2 1.1 10-3 
stay safe 209 0.097 3.7 10-2 0.15 3.6 10-2 0.16 1.7 10-2 
Cuomo 71 0.071 3.8 10-1 0.13 2.9 10-1 0.32 5.7 10-3 
weather 476 0.067 2.8 10-2 0.1 2.7 10-2 0.17 1.8 10-4 
wall st 83 0.067 3.7 10-1 0.096 3.9 10-1 0.08 4.7 10-1 
 



 

 

Figure S4 Comparison of predictive capacity of activity and sentiment. The figure maps all zipcode tabulation areas 
shaded by color, with saturation reflecting discrepancy of the area’s rank in two corresponding distributions. For in-
stance, if a particular zipcode is 5th in the ranking of activity, but 100th in the ranking of damage the discrepancy is 
equal to 95. Discrepancies are normalized by the maximum observed deviation. The stronger the correlation is be-
tween the distributions the more uniform and light the map would be, as is the case for activity-vs.-damage map on 
the left. 
 

 

Table S4 Effect of normalization variable choice on the strength of activity-damage relationship 
(ZCTA-resolution) 

 Variables normalized by … 
 … Census population … “Twitter population” 

Correlation measure statistic P-value statistic P-value 
Kendall τK 0.32 2.58 10-29 0.32 8.35 10-29 

Spearman ρS 0.46 1.92 10-29 0.45 2.92 10-29 
Pearson ρP 0.49 8.18 10-34 0.49 6.7 10-34 

 

 
 
  



Table S5 County level estimates of damage: modeling (Hazus-MH) and ex-post data on insurance and FEMA Indi-
vidual Assistance grants. 

    Damage estimates 
County Population Tweets Users ex-post, $M Hazus-MH, $M 
Atlantic 275422 1580 574 954 1630 
Bergen 918888 9516 2727 729 1070 
Burlington 451336 1684 670 54.6 164 
Camden 513539 1004 588 147 103 
Cape May 96304 997 331 29.3 740 
Cumberland 157785 521 265 12.7 128 
Essex 787744 8260 1908 844 375 
Gloucester 289586 1106 470 6.29 151 
Hudson 652302 9322 2140 314 3600 
Middlesex 823041 8070 2102 406 776 
Monmouth 629384 8246 1865 919 1930 
Ocean 580470 4404 1052 587 3240 
Passaic 502885 3840 1237 41.8 34.2 
Salem 65774 122 92 18.6 167 
Union 543976 5946 1360 87.2 395 
Bronx 1408473 2459 944 50.6 635 
Kings 2565635 10040 3111 660 5470 
Nassau 1349233 9085 2363 1590 6860 
New York 1619090 50767 15558 252 4820 
Orange 374512 1310 608 39.2 22.7 
Putnam 99607 568 218 0.2 0.405 
Queens 2272771 9453 2662 832 3650 
Richmond 470728 3538 699 353 1880 
Rockland 317757 2046 509 83.3 86.8 
Suffolk 1499273 11851 3119 569 2720 
Ulster 181791 400 233 0.524 8.03 
Westchester 961670 6347 2234 237 1320 

 

Table S6 Strength of activity-damage correlations for different damage estimates 

 Damage is estimated … 
 … by modeling (Hazus-MH) … from insurance and FEMA claims 
Correlation measure statistic P-value statistic P-value 
Kendall τK 0.29 0.035 0.34 0.013 
Spearman ρS 0.45 0.020 0.50 0.007 
Pearson ρP 0.37 0.056 0.40 0.036 

 

  



Table S7 Predictive power of sentiment, analyzed at different spatial resolutions and normalized either by 
the area Census population or local Twitter user count (“Twitter population”) 

 Kendall τ for sentiment-damage relationship 
 ZCTA County 

Normalization statistic P-value statistic P-value 
Census population -0.029 0.31 -0.19 0.11 
Twitter users count -0.07 0.014 -0.23 0.06 

 
 
 


