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The first report of a new infectious disease, later called COVID-
19, appeared on 31 December 20191. As of 15 July 2020, the 
disease has spread to 188 countries, with more than 13.3 mil-

lion confirmed cases, and has killed more than 579,500 people2. 
As the number of confirmed COVID-19 cases increased and the 
expansion of the disease entered into a global exponential growth 
phase, a large number of affected countries were forced to adopt 
non-pharmaceutical interventions at an unprecedented scale. Given 
the absence of specific antiviral prophylaxis, therapeutics or a vac-
cine, non-pharmaceutical interventions ranging from case isolation 
and quarantine of contacts, to the lockdown of entire populations 
have been implemented with the aim of suppressing and mitigat-
ing the epidemic before it could overwhelm the healthcare sys-
tem. Although these aggressive measures appear to be successful 
in reducing the number of deaths and hospitalizations3,4, and in 
reducing the transmission of the SARS-CoV-2 virus, the absence 
of herd immunity after the first wave of the epidemic points to a 
high risk of resurgence when interventions are relaxed and societies 
return to a ‘business as usual’ lifestyle5–7. It is therefore of paramount 
importance to analyse different mitigation and containment strate-
gies aimed at minimizing the risk of potential additional waves of 
the COVID-19 epidemic, while providing an acceptable trade-off 
between economic and public health objectives.

In this study, through the integration of anonymized and 
privacy-enhanced data from mobile devices and census data, we 
build a detailed sample of the synthetic population of the Boston 

metropolitan area (BMA) in the United States (see Fig. 1a,b). 
This synthetic population (Fig. 1a) is used to define a data-driven 
agent-based model of SARS-CoV-2 transmission and to provide 
a quantitative analysis of the evolution of the epidemic and the 
effectiveness of social-distancing interventions. The model allows 
us to explore strategies concerning the lifting of social-distancing 
interventions in conjunction with testing and isolation of cases and 
tracing and quarantine of exposed contacts. Our results indicate 
that, after the abatement of the epidemic through the ‘stay-at-home’ 
orders and halt to all non-essential activities, a proactive policy 
of testing, contact tracing and household quarantine of contacts 
enables the gradual reopening of economic activities and work-
places, with a low COVID-19 incidence in the population and a 
manageable impact on the healthcare system.

To provide a quantitative estimate of the contact patterns for 
the population of agents and to build the synthetic population of 
the BMA, we used detailed mobility and socio-demographic data 
and generated a network that encodes the contact patterns of 
around 85,000 agents in the area during a period of six months (see 
Supplementary Information). Agents are chosen to be representative 
of the different census areas in the Boston area following the meth-
odology used in ref. 8. This defines a weighted multilayer network 
consisting of three layers representing the network of social interac-
tions at (1) workplace and community level, (2) households, and (3) 
schools, as shown in Fig. 1a. Connections between two agents in the 
workplace and community layer are estimated from the data by the 
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probability of both being present in a specific place (for example, 
a restaurant, workplace or shop) weighted according to the time 
they have spent in the same place. A second layer represents the 
households of each anonymous individual. Using the home census 
block group of each anonymous user, we associate each individual 
with a specific household profile on the basis of socio-demographic 
data at US census block group level9. Families are generated by ran-
domly mixing nodes from the community living in the same census 
block group, following the statistical features of family types and 
sizes. Finally, a third layer represents the contacts in schools (that 
is, every node represents one synthetic student and has contacts 
only with other individuals attending the same school). To study the 
evolving dynamics of the infection, we implemented a stochastic, 
discrete-time compartmental model in which individuals transition 
from one state to the other according to key time-to-event inter-
vals (for example, incubation period, serial interval and time from 
symptom onset to hospital admission), as from available data on 
SARS-CoV-2 transmission. The natural history of the disease is cap-
tured by the epidemiological model represented in Fig. 1c, where we 
also show the transition rates among compartments8,10–12. The model 
considers that susceptible individuals (S) become infected through 
contact with any of the infectious categories (infectious symptom-
atic (IS), infectious asymptomatic (IA) and pre-symptomatic (PS)), 
transitioning to latent compartments (LS and LA), where they are 
infected but not yet infectious. Latent individuals branch out in 

two paths, according to whether the infection will be symptomatic 
or not. We also consider that symptomatic individuals experience 
a pre-symptomatic phase and that once they develop symptoms, 
they can experience diverse degrees of illness severity, from mild 
symptoms to hospitalization (H) or in need of an intensive care unit 
(ICU)13. Finally, individuals transition in the removed compartment 
(identifying recovered or dead individuals). The model assumes a 
basic reproductive number, R0 = 2.5, which together with the other 
parameters (Supplementary Table 1) yields a generation time 
Tg = 6.6 d. We consider a 25% fraction of asymptomatic individuals. 
We report the full set of parameters used in the model and an exten-
sive sensitivity analysis in the Supplementary Information. The 
model is not calibrated to account for the specific evolution of the 
COVID-19 epidemic in Boston, as it is aimed at showing the effect 
of different non-pharmaceutical interventions rather than provid-
ing a forensic analysis of the outbreak in the BMA. Furthermore, 
current data on the detailed reopening policies in the BMA during 
the summer are still under evaluation pending the future evaluation 
of the epidemic trajectory. Details on the generation of the synthetic 
population network and the infection-transmission model are pro-
vided in the Supplementary Information.

results
To provide a baseline of the impact of COVID-19 in the BMA, 
we have first investigated an unmitigated scenario in which no  
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Fig. 1 | Model components. a, Schematic illustration of the weighted multilayer synthetic population built from mobility data in the metropolitan 
area of Boston. The agent-based system comprises around 64,000 adults and 21,000 children. b, Geographical distribution of the agents in a. MA, 
Massachusetts. Nodes in a are connected by more than five million weighted edges. Community layers (which include workplaces), are further classified 
into categories according to Foursquare’s taxonomy of places. c, The compartmental model used to describe the natural history of the disease and the 
transition rates (represented alongside the connecting arrows, and described in Methods, “Stochastic simulations of COVID-19 dynamics”) between 
the different states. Specifically, we consider susceptible (S), latent asymptomatic (LA), latent symptomatic (LS), presymptomatic (PS), infectious 
asymptomatic (IA), infectious symptomatic (IS), hospitalized (H), hospitalized in intensive care (ICU) and recovered (R) individuals. More details of the 
model and the transitions between compartments are provided in Methods and the Supplementary Information.
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interventions are implemented. Results for the unmitigated sce-
nario are shown in Fig. 2a–c. An unmitigated COVID-19 would 
have a peak of daily incidence of 25.2 (95% confidence interval (CI): 
23.8–26.4) newly infected individuals per 1,000 people. The epi-
demic follows a typical trajectory; namely, when the effective repro-
duction number Rt as a function of time (Fig. 2c) becomes smaller 

than 1, the transmission dynamics slow down and eventually vanish 
after having infected about 75% of the population (Fig. 2b). Figure 
3a shows the evolution of the estimated number of new severely 
affected individuals who require hospitalization and admission into 
ICUs. At the peak of the unmitigated epidemic, the number of ICU 
beds needed exceeds the available capacity (dashed horizontal line 
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Fig. 2 | Impact of COVID-19 under different scenarios. a–i, Evolution of the number of new cases (a,d,g), the outbreak size (b,e,h) and the effective 
reproductive number (c,f,i) as a function of time in each situation studied. Results for the SARS-CoV-2 transmission dynamics are shown for the 
unmitigated scenario (a–c) and the two social-distancing interventions considered: LIFT (d–f) and LET (g,h) scenarios. In both LIFT and LET scenarios, we 
considered the closure of schools and non-essential places for eight weeks. This is the strictest lockdown period, which is followed by a partial lifting of the 
stay-at-home policy, the duration of which is set to four weeks. During the partial lifting, all places in the community layer are open except mass-gathering 
locations (such as restaurants, theatres, and others; see Supplementary Information). Finally, a full reopening takes place after the period of partial lifting 
ends (relevant events are marked with vertical lines). In d–f, no other measures are adopted concurrently to the lifting of the restrictions, whereas in g–i, 
the reopening is accompanied by an active policy consisting of testing the symptomatic individuals, home isolating them and quarantining (Q.) their 
household and the households of a fraction of their contacts, as indicated. Note that the vertical scales of graphs in a,d,g are not the same and that both the 
number of new cases and total cases are per 1,000 inhabitants. x-axes show dates in 2020. Feb, February; Mar, March; Apr, April; Jun, June; Jul, July; Aug, 
August; Sep, September; Oct, October; Nov, November; Dec, December. In all panels, the solid line represents the average over 10,000 simulations and the 
shaded region represents the 95% CI.
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in Fig. 3a) by a factor of more than 10, indicating that the healthcare 
system would suffer large service disruptions, resulting in additional 
deaths due to hospitals overcrowded with patients with COVID-19 
(https://www.ahd.com/data_sources.html). It is worth noting that 
current estimated fatality rates consider the general availability of 
ICU beds and critical care capacity. If this is not possible, the fatality 
rate may increase substantially. We do not report fatality estimates 
here, as this goes beyond the scope of our analysis and should con-
sider specific data for the BMA, as well as changing medical treat-
ment and therapeutics in future months.

To avoid the harmful effects of an unmitigated COVID-19 epi-
demic, governments and policy makers across the world have relied 
on the introduction of aggressive social-distancing measures. In the 
United States, as of April 15 2020, it was estimated that more than 
95% of the population was under a stay-at-home or ‘shelter-in-place’ 
order14,15. To model the social-distancing policies implemented in 
the whole BMA, we have considered March 17 2020 as the average 
starting date of social-distancing policies that include school clo-
sures, the shut down of all non-essential work activities as well as 
mobility restrictions (details in Supplementary Information). This 
scenario mimics the social-distancing intervention implemented in 
most of the high income countries, in Europe and across states in the 
United States. Such extreme social-distancing policies come with 
very large economic costs and social disruption effects16, prompting 
the question of what exit strategy can be devised to restart economic 
activities and normal societal functions17. For this reason, we explore 
two different scenarios for lifting social-distancing interventions:

•	 Lift scenario (LIFT): the stay-at-home order is lifted after eight 
weeks by reopening all work and community places, except for 
mass-gathering locations such as restaurants, theatres and simi-
lar locations (see Supplementary Information). The latter partial 
reopening is enforced for another four weeks, which is followed 
by a full lifting of all the remaining restrictions. We consider 
that schools will remain closed, given the impending summer 
break in July and August 2020. Indeed, some school systems, 
such as the Boston public schools, have announced that they 
will remain closed for the rest of the 2019–2020 school year.

•	 Lift and enhanced tracing (LET) scenario: The stay-at-home 
order is lifted as in the previous scenario. Once partial reopening 
is implemented, we assume that 50% of symptomatic COVID-
19 cases can be diagnosed with SARS-CoV-2 infection, on aver-
age, within 2 d after the onset of symptoms and that they are 
isolated at home and their household members are quarantined 
successfully for 2 weeks (a sensitivity analysis for lower rates 
of isolation and quarantine is presented in the Supplementary 
Information). Although COVID-19 tests are highly specific, our 

50% detection rate also accounts for imperfect testing. We also 
assume that a fraction of the non-household contacts (we show 
results for 20% and 40%) of the symptomatic infections can be 
traced and quarantined along with their household—note that 
we consider that the contacts are identified with a rate propor-
tional to the duration of the interaction with the symptomatic 
individual.

The above scenarios are mechanistically simulated on the multi-
layer network of Fig. 1a by allowing different interactions (between 
effective contacts) according to the simulated strategy. As a result, 
the average number of interactions in the workplace and com-
munity layer changes from 10.86 (95% CI: 1.51–42.39) under the 
unmitigated scenario, to 4.10 (95% CI: 0–23.79) for the partial lock-
down and 0.89 (95% CI: 0–8.39) contacts for the stay-at-home pol-
icy (further details in Methods and Supplementary Information). 
This result is in agreement with previously published work18 and 
recent reports in the New York City area19. It is worth remarking that 
the fluctuations in the number of contacts under the stay-at-home 
policy is due to a large extent to contacts that take place in grocery 
stores and other public venues.

The numerical results show that the LIFT scenario, while able 
to temporarily abate the epidemic incidence, does not prevent the 
resurgence of the epidemic and a second COVID-19 wave when the 
social-distancing measures are relaxed. In Fig. 2d, we show that fol-
lowing the lifting of social-distancing, the infection incidence starts 
to increase again, and the effective reproductive number, which 
dropped by around 75% and reached values below 1 with the inter-
vention, increases to values up to 2.05 (95%CI: 1.73–2.47) (Fig. 2f). 
Indeed, at the time of lifting the social-distancing intervention, the 
population has not achieved the level of herd immunity that would 
protect it from a resurgence of the epidemic. It is important to stress 
that here we do not consider additional mitigation measures such as 
behavioural changes in the population, such as mask wearing and 
similar measures (see the Supplementary Information). We also 
estimate that a second wave of the epidemic still has the potential to 
infect a large fraction of the population (Fig. 2e) and to overwhelm 
the healthcare system, as shown in Fig. 3b. The number of ICU beds 
needed, although it half of the number of the unmitigated scenario, 
still far exceeds the estimated availability, as pointed out in simi-
lar scenario analysis5–7,20. This suggests that lifting social distancing 
without the support of additional containment strategies is not a 
viable option.

In the case of the LET scenario, the lifting of the social-distancing 
intervention is accompanied by a substantial amount of contact trac-
ing and precautionary quarantine of potentially exposed individu-
als. The quarantine is not limited to the contacts of the identified 
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Fig. 3 | Impact on the Boston healthcare system. a–c, Estimated number of individuals per 1,000 inhabitants who would need hospitalization (H) or 
intensive care (ICU) for the unmitigated situation (a), the LIFT scenario (b) and the LET scenario (c). The horizontal dashed lines represent the ICU basal 
capacity of the Boston healthcare system; the dotted line in c indicates 30% of the ICU basal capacity. The x-axes show dates in 2020.
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symptomatic COVID-19 sufferer, but extends to their households. 
This strategy amounts to a simplified tracing of contacts of contacts, 
which would not require extensive investigations. In other words, 
this strategy does not require the tracking of a large number of sin-
gle contacts, but instead leverages the contacts’ households as the 
basic unit21. Households could, however, be monitored with daily 
calls or messages to determine the onset of symptomatic infections 
and provide medical support as needed.

Figure 2g shows results obtained for different levels of trac-
ing (no tracing, and 20% and 40% tracing) of the contacts of the 
symptomatic isolated COVID-19 cases. By comparing Fig. 2d with 
Fig. 2g (for no tracing), we find that quarantining households of 
symptomatic individuals alone is not sufficient to substantially 
change the course of the epidemic and the conclusions reached for 
the first of these scenarios. When 40% or more of the contacts of 
the detected symptomatic infections are traced and they and their 
households are quarantined, the ensuing reduction in transmission 
leads to a noticeable flattening of the epidemic curve and appears to 
effectively limit the possible resurgence of a second epidemic wave. 
It is also worth noticing that we assume the absence of other addi-
tional and minimally disruptive social-distancing policies such as 
crowd control, smart working, wearing of masks, and others that 
could lead to a further reduction of the transmissibility of the virus 
with respect to our estimates. In the Supplementary Information, 
we investigate the positive synergistic effect of the combination of 
the LET strategy in the presence of different levels of transmissi-
bility reduction due to additional mitigation policies. It is impor-
tant to stress that the contact tracing proposed here works at the 
level of household unit, simplifying the monitoring and follow up 
process, by contacting only one member of the household to moni-
tor the onset of symptoms among all members (we further explore 
other isolation and quarantine strategies in the Supplementary 
Information). Figure 3c and Table 1 show the burden on hospital-
ization and ICU demand in the unmitigated situation and the two 
mitigation scenarios. The LET scenario allows relaxation of the 
social-distancing interventions while maintaining the hospital and 
ICU demand at levels close to the healthcare availability and surge 
capacity. For the sake of completeness, the SM file includes analy-
sis of a LIFT scenario including schools and universities reopening 
in the autumn. The results show that in the absence of additional 
containment policies, the tracing effort would need to be raised to 
about 50% to cope with the increased number of infections.

Discussion
The efforts in the suppression and mitigation of COVID-19 are pur-
suing the objectives of protecting the healthcare system from disrup-
tive failures due to overwhelming stress imposed by the large number 
of severe cases and of minimizing the morbidity and mortality 

related to the epidemic. The aggressive social-distancing interven-
tions implemented by many countries in response to the COVID-19 
pandemic appear to have achieved the interruption of transmission 
and the abatement of the epidemic, but this has been at the price 
of huge societal disruption and economic costs. In such a context, 
the identification of ‘exit strategies’ that allow restarting economic 
and social activities while still protecting healthcare systems and 
minimizing the burden of the epidemic is of primary importance. 
Several modelling studies have already pointed out that resuming 
economic activities and social life is likely to lead to a resurgence of 
the COVID-19 epidemic, and combined social-distancing interven-
tions of different degrees and intensity have been proposed to sub-
stantially delay and mitigate the epidemic16,20. These interventions 
still generate economic loss and widespread disruption to social life. 
Here we show how testing, contact-tracing strategies at scale, based 
on home isolation of symptomatic individuals with COVID-19, and 
the quarantine of a fraction of their households’ contacts, have the 
potential to provide a viable course of action to manage and miti-
gate the epidemic when social-distancing interventions are progres-
sively lifted22,23. These strategies present us with logistic challenges 
that include large-scale and rapid diagnostic capacity, and a large 
surge in the number of contact tracers. We have investigated what 
fraction of the population would be isolated or quarantined under 
the proposed contact-tracing and isolation strategy. Figure 4a shows 
the fraction of households that needs to be quarantined. Assuming 
the identification of 50% of the symptomatic infections, and trac-
ing of 40% of their contacts and households, only about 9% of the 
population would be quarantined at any time. While this is certainly 
a relevant fraction of the population, it is a much better option com-
pared with massive social-distancing policies affecting the entire 
population that last for many months.

In Table 1, we report the number of symptomatic infections for 
which the contact-tracing investigation should be performed in the 
basic scenarios. This number provides an estimate of the number 
of contact tracers per 1,000 people. It is important to note that the 
more effective the contact tracing starting from each individual 
is, the smaller the number of generally traced households will be, 
because the epidemic has lower incidence rates. In addition, as 
illustrated in Fig. 4b, the health status of the vast majority of quar-
antined individuals is unknown, as contact tracing does not imply 
testing. The curves in Fig. 4a constitute the upper bounds for each 
simulated case. If we assume that the capacity to do massive testing 
will probably ramp up in the near future, then it is expected that 
the actual number of people in quarantine could be significantly 
lowered by testing the quarantined household. This would also alle-
viate the burden on household members that were unable to go to 
work and increase compliance of quarantine for the positive cases. 
It is also worth remarking that many of the logistic challenges faced 

Table 1 | Mean (and 95% CI) of the number of normal hospitalizations, ICu hospitalizations and symptomatic individuals identified 
or traced (when applicable) at the peak of the epidemic per 1,000 people. the estimated availability of ICu beds is 0.21 beds per 
1,000 people

Scenario Hospitalization ICu Individuals traced

unmitigated 4.57 (4.10–5.03) 2.56 (2.21–2.91) -

LIFt 3.22 (2.80–3.67) 1.87 (1.55–2.20) -

No Tracing 2.70 (2.29–3.12) 1.58 (1.27–1.88) -

LEt Detection 30% Tracing 20% 0.86 (0.65–1.10) 0.55 (0.39–0.72) 0.52 (0.36–0.69)

Tracing 60% 0.35 (0.21–0.50) 0.22 (0.12–0.34) 0.17 (0.08–0.27)

No Tracing 2.35 (1.97–2.75) 1.39 (1.11–1.68) -

LEt Detection 50% Tracing 20% 0.44 (0.28–0.62) 0.28 (0.16–0.42) 0.39 (0.23–0.55)

Tracing 40% 0.29 (0.18–0.43) 0.15 (0.08–0.26) 0.14 (0.05–0.23)
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with massive contact tracing might be eased by digital technologies 
that are currently being investigated across the world, following 
the examples of COVID-19 response in Asian countries23. Also, it 
may be difficult to quarantine the entire household of individuals 
who are potentially exposed, since this is a hardship suffered with 
high uncertainty about their risk of infection. Offering other logis-
tic quarantine solutions (quarantine centres or hotel rooms) might 
substantially increase the rate of compliance.

These results were obtained under several assumptions. There are 
very large uncertainties around the transmission of SARS-CoV-2; 
in particular, about the fraction of subclinical and asymptom-
atic cases and their transmission. Estimates of age-specific sever-
ity are informed by the analysis on individual-level data from 
China and other countries, and subject to change as more US data 
become available. We also do not include specific co-morbidities 
or pre-existing conditions of the specific BMA population. For this 
reason, we perform an extensive sensitivity analysis showing that the 
modelling results discussed here are robust to the plausible range of 
parameter values for the key time-to-event intervals of COVID-19 
(for example, incubation period, serial interval, time from symptom 
onset to hospital admission, among other) as well as the fraction of 
pre-symptomatic and asymptomatic transmission (Supplementary 
Information). We are also not considering here potential changes to 
the virus transmissibility due to environmental factors; in particu-
lar, seasonal drivers such as temperature and humidity. The model-
ling does not consider possible reintroduction of SARS-CoV-2 in 
the population from infected travellers. Strategies based on testing, 
isolation and contact tracing might be hampered by the importation 
through travel of a large number of infections, thus travel restric-
tions and screening may need to be introduced to and from places 
that show sustained local transmission. Finally, we report in the 
Supplementary Information the effect of the widespread use in the 
population of masks or other personal protective equipment that 
lead to a reduction of the transmissibility of SARS-Cov-2. These 
active protection measures improve the effectiveness of the exit 
strategies modelled here.

The modelling of the impact of testing, contact tracing and isola-
tion on second-wave scenarios of the COVID-19 epidemic could 
be instrumental for national and international agencies for public 
health response planning. While we show that contact tracing and 
household quarantine at scale may be effective, even assuming a 
complete lifting of the social-distancing measures, future decisions 
on when and for how long to relax policies will need to be informed 

by ongoing surveillance. For instance, smart working from home 
for people who can adhere to it without serious disruptions should 
be encouraged. This, as well as other minimally disturbing policies, 
together with efficient and large-scale testing, contact tracing and 
monitoring of the epidemic, should be considered in the definition 
of exit strategies from large-scale social-distancing policies.

Methods
Weighted synthetic population. Our synthetic population constitutes around 
85,000 nodes, of which 64,000 are adults and 21,000 are children (defined as 
individuals aged 17 or less), as shown in Fig. 1b. The total number of interactions 
among these individuals before social distancing is given by more than five million 
edges, see Supplementary Information for a more detailed description.

Community-weighted contact network. The community network is approximated 
using six months of data observation in the Boston area from anonymized users 
who have opted-in to provide access to their location data anonymously through 
a GDPR-compliant framework provided by Cuebiq. Individuals performing the 
analysis were legally required to never single out identifiable individuals and 
not make attempts to link these data to third-party data about an individual. 
In this layer, each agent in our synthetic population represents an anonymous 
individual of the real population. The data allow us to understand how infection 
can propagate in each layer by estimating colocation of two individuals in the 
same setting. We use a large database of 83,000 places from Foursquare application 
programming interface in the BMA. Specifically, the weight, ωCij

I
, of a link between 

individuals i and j within the workplace plus community layer is computed 
according to the expression:

ωCij ¼
Xn

p

Tip

Ti

Tjp

Tj
; 8i; j

where Tip is the total time that individual i was observed at place p and Ti is 
the total time that individual i has been observed at any place set within the 
workplace plus community layer. Note that while the mobility dataset we use is 
large, colocation events between individuals are still quite sparse. Because of this 
sparsity, and to protect individual privacy in our analysis, we have adopted this 
probabilistic approach to measure co-presence in all locations mapped in the 
dataset. Since agents are representative of the different census areas and groups of 
the Boston area, our probabilistic approach is a good proxy for the real probability 
of co-presence between those groups and areas when networks are scaled up to the 
total population of the Boston area, which is approximately 4,628,910 inhabitants. 
Finally, for robustness and computational reasons, we have included only links for 
which ωCij >0:01

I
.

Household-weighted contact network. We first localize individuals’ approximate 
home place according to the US census block group. Then we assign a type of 
household based on Table B11016: Household Type by Household Size from US 
Census 2018 (ref. 9), and mix individuals that live in the same block according to 
statistics of household type and size. Finally, children are assigned to households 
(see the Supplementary Information for a more detailed description). We also 
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Fig. 4 | Affordability of the best way-out scenario. a–c, LET strategy with 50% detection and 40% tracing. a, Fraction of the population that needs to be 
put under quarantine as a function of time and percentage of contact tracing. b, Health status of the individuals that are quarantined for a contact-tracing 
level of 40%. Note that only symptomatic individuals are tested, which implies that a large fraction of the quarantined population is of unknown status. 
This fraction of individuals quarantined with unknown health conditions could be reduced if the capacity to test increases. The pandemic might span 
over several months depending on the level of contact tracing. c, Number of individuals whose contacts are traced each day, per 1,000 people. Relevant 
intervention actions are signalled by vertical dashed lines in all panels. x-axes show dates in 2020 (20) and 2021 (21). Jan, January.
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assign individuals to an age group, on the basis of Table B01001: Sex and age 
from the US Census 2018. To assign weights, we assume that the probability of 
interaction within a household is proportional to the number of people living in 
the same household (well-mixing). Therefore, the weight, ωHij

I
, of a link between 

individuals i and j within the same household is given by:

ωHij ¼
1

ðnh � 1Þ

where nh is the number of household members. This fraction is assumed to be the 
same for all individuals in the population.

School-weighted contact network. To calculate the weights of the links at the school 
layer, we mix together all children that live in the same school catchment area. 
Interactions are considered well-mixed; hence, the probability of interaction at a 
school is proportional to the number of children at the same school. Therefore, the 
weight, ωSij

I
, of a link between children i and j within the same school is given by:

ωSij ¼
1

ðns � 1Þ

where ns is the number of school members.

Calibration of intra-layer links. Within each connected component of the 
network in each layer (for example, a household or a school), the links between 
nodes are weighted to account for the effective daily number of contacts. For 
example, if we consider a school, while a student can potentially contact all her 
or his schoolmates, she or he only meet a relatively small fraction of them on a 
daily basis, as estimated in empirical studies on mixing patterns24,25. To account for 
this, we calibrate the weight of the links in each layer of the synthetic network26 
so that the mean number of daily contacts matches the estimation provided in 
Mistry et al.27 (details in Supplementary Information). On the basis of the analysis 
of contact survey data from 9 countries24,25,28,29, this study estimated the mean 
number of daily contacts at 10.86, 4.11 and 11.41 in the community and workplace, 
household and school layers, respectively.

Stochastic simulations of COVID-19 dynamics. We describe the SARS-CoV-2 
transmission process using a discrete-time susceptible–latent–infected–removed 
(SLIR) stochastic model, with some additional compartments to incorporate the 
special characteristics of SARS-CoV-2 infection (Fig. 1c). In particular, at each 
time-step t (1 d), the infectious asymptomatic (IA), infectious symptomatic  
(IS) and pre-symptomatic (PS) individuals can transmit the disease to susceptible 
(S) individuals with probability rβ, β and βS, respectively. If the transmission is 
successful, the susceptible node will move to the latent asymptomatic state  
(LA) with probability p or to the latent symptomatic state (LS) with probability 
(1 − p). A latent asymptomatic individual becomes infectious asymptomatic 
after a period (ϵʹ)−1, whereas latent symptomatic individuals transition, after a 
period ϵ−1, to the pre-symptomatic (PS) compartment. The average period to 
develop the disease and move to the infectious symptomatic state is γ−1. Infectious 
asymptomatic nodes are removed (R) after an average of μ steps. Conversely, 
infectious symptomatic nodes can either recover after that period with 
probability (1 − α) or, with probability α, these nodes will need hospitalization. 
It is considered that due to their symptoms they will self-isolate at home after an 
average period of μ−1. Then, depending on the severity of the symptoms, after a 
period δ−1 the individual will end in hospitalization with probability (1 − χ) or 
require hospitalization and ICU care with probability χ. Finally, individuals that 
are either hospitalized or in ICU become removed with probability μH or μICU, 
respectively. We initialize the model in the city of Boston by selecting an attack 
rate on 17 March 2020 of 1.5% (a sensitivity analysis of this quantity is provided 
in the Supplementary Information).

Social-distancing strategies. To simulate social-distancing measures, we modify 
the synthetic population such that:
•	 School closures are simulated by removing all the schools from the system 

simultaneously.
•	 Partial ‘stay-at-home’ assumes that all places are open except restaurants, 

nightlife and cultural places. Closures of these places are simulated by 
removing the interactions that occur in any place that falls into that category 
according to Foursquare’s taxonomy of places. This is the situation after the 
first reopening.

•	 Full lockdown and confinement assume that schools and all non-essential 
workplaces are closed. Here we close all workplaces except essential ones 
and remove interactions that occur there. Essential workplaces are: hospitals, 
salons, barbershops, grocery stores, dispensaries, supermarkets, pet stores, 
pharmacies, urgent care centres, dry cleaners, drugstores, maternity clinics, 
medical supplies and petrol stations.

The connectivity distributions for each of the scenarios simulated as 
well as other statistics related to the effects of the lockdown are shown in the 
Supplementary Information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from Cuebiq through 
their Data for Good programme, but restrictions apply to the availability of these 
data, which were used under licence for the current study, and so are not publicly 
available. Aggregated data used in the models are however available from the 
authors upon reasonable request and permission of Cuebiq. Other data used comes 
from the American Community Survey (5-year) from the Census, which is  
publicly available.

Code availability
Custom code that supports the findings of this study is available from the 
corresponding author upon request.
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