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Algorithm 1 Networked Evolution Strategies
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1
METHODS AND APPARATUS FOR
COMMUNICATION NETWORK

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/591,034 filed Nov. 27, 2017 (the “First
Provisional”) and U.S. Provisional Application No. 62/678,
800 filed May 31, 2018 (the “Second Provisional”). As used
herein, the “Provisionals” means the First Provisional and
the Second Provisional

FIELD OF TECHNOLOGY

The present invention relates generally to networked
communication and to deep reinforcement learning.

COMPUTER PROGRAM LISTING

The following 67 computer program files are incorporated
by reference herein: agent updaters.txt with a size of about
12 KB; dist.txt with a size of about 11 KB; es.txt with a size
of about 33 KB; main.txt with a size of about 6 KB; multi.txt
with a size of about 2 KB; networks.txt with a size of about
1 KB; optimizers.txt with a size of about 2 KB; policies.txt
with a size of about 12 KB; tabular_logger.txt with a size of
about 7 KB; tf util.txt with a size of about 9 KB;
Ant_v1_NeighborhooderdosO_2_num_agents1000_broad-
castp_0_8_threads_120.txt with a size of about 2 KB;
HalfCheetah_v1_NeighborhooderdosO_2num_agents1000_

broadcastp_0_8_threads_120.txt with a size of about 2

KB;

Hopper_v1
Neighborhooderdos0O_2num_agents1000_broadcastp_0_
8_threads_120.txt with a size of about 2 KB;

Humanoid_v1_NeighborhooderdosO_2num_agents1000_
broadcastp_0_8_threads_120.txt with a size of about 2
KB;

HumanoidStandup_v1_NeighborhooderdosO_2num_agents
1000_broadcastp_0_8_threads_120. txt with a size of
about 2 KB;

Swimmer_v1_Neighborhooderdos0_2num_agents1000_
broadcastp_0_8_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_1_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_2_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_3_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_4_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_5_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_6_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_7_threads_120.txt with a size of about 2
KB;
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Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_8_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_9_threads_120.txt with a size of about 2
KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp_0_threads_120.txt with a size of about 2 KB;

Neighborhood_selfloop_pselfloop_num_agents1000_
broadcastp 1_threads_120.txt with a size of about 2 KB;

Ant_v1l_Neighborhoodfully connected num_agents100
broadcastp_0_0_threads_120.txt with a size of about 2
KB;

Ant_v1_Neighborhoodscalefreem4 num_agents100
broadcastp_0_8_threads_120.txt with a size of about 2
KB;

HalfCheetah_v1_Neighborhoodfully connected num_a-
gents100 broadcastp_0_0_threads_120.t xt with a size of
about 2 KB;

HalfCheetah_v1_Neighborhoodscalefreem4 num_a-
gents100 broadcastp_0_8_threads_120.txt with a size of
about 2 KB;

Hopper_v1_Neighborhoodfully_connected_num_agents100
broadcastp_0_0_threads_120.txt with a size of about 2
KB;

Hopper_vl  Neighborhoodscalefreem4 num_agents100
broadcastp_0_8_threads_120.txt with a size of about 2
KB;

Humanoid_v1_Neighborhoodfully_connected_num_
agents 100 broadcastp_0_0_threads_120.txt with a size of
about 2 KB;

Humanoid_v1_Neighborhoodscalefreem4 num_agents100
broadcastp_0_8_threads_120.txt with a size of about 2
KB; wvanilla 1K.txt with a size of about 1 KB;
vanilla_2K.txt with a size of about 1 KB; vanilla_3K txt
with a size of about 1 KB; vanilla_4K.txt with a size of
about 1 KB; vanilla_5K.txt with a size of about 1 KB;
vanilla_6K.txt with a size of about 1 KB; vanilla_7K .txt
with a size of about 1 KB; vanilla_8K.txt with a size of
about 1 KB; vanilla_9K.txt with a size of about 1 KB;

experiment_generator_small_networks_mujoco_er-
dos_ontheflytopo.txt with a size of about 7 KB; experi-
ment_template.txt with a size of about 2 KB; es_network.
txt with a size of about 2 KB; install_bullet.txt with a size
of about 1 KB; networks_generator.txt with a size of
about 6 KB; redis_local_mirror.txt with a size of about 46
KB; redis_master.txt with a size of about 46 KB; depen-
dency.txt with a size of about 5 KB; ec2ctl.txt with a size
of about 10 KB; launch.txt with a size of about 11 KB;
local_env_setup.txt with a size of about 1 KB; local_run_
exp.txt with a size of about 1 KB; local_run_redis.txt with
a size of about 1 KB; packer.txt with a size of about 1 KB;
viz.txt with a size of about 2 KB; watch_master_pro-
cess.txt with a size of about 2 KB; watch_master_redis.txt
with a size of about 1 KB; watch_worker_process.txt with
a size of about 1 KB; watch_worker_redis.txt with a size
of about 1 KB; deploy.txt with a size of about 11 KB;
request.txt with a size of about 3 KB; start_local.txt with
a size of about 2 KB; and test_local.txt with a size of
about 2 KB. Each of the above 67 computer program files
were created as an ASCII .txt file on Nov. 17, 2018.

SUMMARY

In conventional deep reinforcement learning (DRL), the
communication architecture typically involves all reinforce-
ment learning agents intermittently communicating with



US 10,715,395 B2

3

each other (in a fully connected topology) or with a cen-
tralized server (in a star topology).

In contrast, in illustrative implementations of this inven-
tion, other network topologies are employed, leading to
strong improvements in performance.

In illustrative implementations of this invention, the per-
formance of a group of reinforcement learning agents is
maximized by optimizing the communication topology
between the agents for the communication of gradients,
weights or rewards.

The optimized network topology may achieve faster and
higher decentralized learning with much cheaper communi-
cation costs in networks of reinforcement learning agents,
compared to fully connected networks.

In some cases, the optimized network topology is
employed for massively distributed learning, such as across
entire fleets of autonomous vehicles or mobile phones that
learn from each other, instead of requiring a master to
coordinate learning. Such sparse networks of communica-
tion between autonomous vehicles (or between mobile
phones) may occur naturally due to geographic dispersion of
the vehicles or mobile phones.

In some implementations: (a) a sparse Erdos-Renyi graph
is employed; and (b) the network density is selected in such
a way as to maximize “reachability” and to minimize
“homogeneity”, as those terms are defined herein.

In some implementations, a network is employed that is
both globally and locally sparse. For instance, in some
implementations, a graph is employed that comprises ran-
dom graph clusters, each sparsely connected internally, with
few connections between clusters. For example, an “engi-
neered” graph may be employed that comprises sparsely
connected clusters, where each of the clusters is itself a
sparse Erdos-Renyi graph. In some cases, this “engineered”
graph is generated by random partition graph generation.

In some implementations of this invention, reinforcement
learning agents perform better in sparse network topologies
than in more dense network topologies. In some cases, in
these spare network topologies, the agents are not fully
connected, and are instead connected only to a subset of
neighbors both for local connections and for global (long-
distance) connections.

In illustrative implementations of this invention, learning
agents are arranged in efficient communication topologies
for improved learning. This is desirable, because a common
technique to improve speed and robustness of learning in
DRL and many other machine learning algorithms is to run
multiple learning agents in parallel.

In some implementations, this invention employs what we
call Networked Evolution Communication Strategies
(NetES), which is an improvement over a conventional
Evolution Strategies (ES) paradigm. NetES may be
employed with a wide variety of network topologies. For
instance, in a test: (a) NetES was employed with each of four
different graph families; and (b) one such family (Erdos-
Renyi random graphs) empirically outperformed the other
three graph families, including de facto fully-connected
communication topologies. In a test of this prototype, 1000
reinforcement learning agents: (a) were arranged in a sparse
Erdos-Renyi communication topology; and (b) performed
better than 3000 agents arranged in a de facto fully-con-
nected topology.

In illustrative implementations of this invention, commu-
nication topology between learning agents is improved or
optimized, which in turn causes distributed machine learn-
ing algorithms to learn more efficiently.
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In illustrative implementations, reinforcement learning
agents communicate parameters, experiences, gradients and/
or rewards with one another through a network. Neighbor-
hood and neighbors in the network, and topology of the
network, may be defined by an adjacency matrix.

The Summary and Abstract sections and the title of this
document: (a) do not limit this invention; (b) are intended
only to give a general introduction to some illustrative
implementations of this invention; (¢) do not describe all of
the details of this invention; and (d) merely describe non-
limiting examples of this invention. This invention may be
implemented in many other ways. Likewise, the Field of
Technology section is not limiting; instead it identifies, in a
general, non-exclusive manner, a field of technology to
which some implementations of this invention generally
relate.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows a conventional star network, in which each
learning agent communicates with a single hub.

FIG. 1B shows a sparse, decentralized network topology.

FIG. 1C shows an Erdos-Renyi graph.

FIG. 2 shows steps in a Networked Evolution Commu-
nication Strategies (NetES) algorithm.

FIG. 3 is a chart that shows performance of different
networks.

FIG. 4 is a chart that shows a percent improvement of
reward, as a function of network density.

FIG. 5 is a chart that shows learning rate as a function of
network density.

FIG. 6A is a chart that shows a percent improved reward
as a function of number of edges.

FIG. 6B is a chart that shows a percent improved reward
as a function of clustering.

FIG. 6C is a chart that shows a percent improved reward
as a function of modularity.

FIG. 7 is a chart that shows percent improved reward as
a function of number of edges, in engineered networks.

FIG. 8 is a chart that shows percent improved reward as
a function of number of edges, in Frdos-Renyi random
networks.

The above Figures are not necessarily drawn to scale. The
above Figures (except FIG. 1A) show illustrative implemen-
tations of this invention, or provide information that relates
to those implementations. The examples shown in the above
Figures do not limit this invention. This invention may be
implemented in many other ways.

DETAILED DESCRIPTION

General

In distributed algorithms there may be an implicit com-
munication network between processing units. This network
may pass information such as data, parameters, or rewards
between processors. In conventional distributed machine
learning, one of the following two network structures is
frequently used: (1) a complete network, in which all
processors communicate with each other; or (2) a star
network, in which all processors communicate with a single
hub server (in effect, a more efficient, centralized implemen-
tation of the complete network).

In illustrative implementations of this invention, other
communication topologies (i.e., other than the complete
network or star network described above) between proces-
sors lead to improved learning performance in the context of
deep reinforcement learning (DRL). In some cases, the
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communication topology between agents is improved (or
optimized) for the learning objective under consideration. In
some cases, certain families of network topologies lead to
strong improvements over fully-connected networks.

Network effects tend to be significant only with large
numbers of agents. Thus, in some implementations, we
employ a novel DRL algorithm that is well-suited for
parallelizability and scalability. We call this novel DRL
algorithm Networked Evolution Communication Strategies
(NetES). NetES is a networked decentralized algorithm that
is a variant of, and improvement on, the original ES (Evo-
Iution Strategies) algorithm. In some implementations, using
the NetES algorithm, we explore how the topology of a
population of processors affects learning performance. In
some cases, NetES is parallelizable and allows for greater
exploration of parameter space than does the original ES
algorithm.

In a test of a prototype of this invention: (1) we ran control
experiments to see whether any improvements were due
exclusively to using alternative topologies; (2) we compared
the learning performance of the topological families of
communication graphs, and observed that one family (Er-
dos-Renyi graphs) did best; and (3) using an optimized
Erdos-Renyi graph, we evaluated NetES on five difficult
DRL benchmarks and found large improvements compared
to using a fully-connected communication topology. In this
test, we observed that a 1000-agent Erdos-Renyi graph can
compete with 3000 fully-connected agents.

In some implementations of this invention, multiple rein-
forcement learning agents run in parallel and are arranged in
more efficient communication topologies for improved
learning. This is in turn may improve both speed and
robustness of learning in DRL.

Many conventional DRL algorithms: (a) run learning
agents in parallel (and sometimes asynchronously; and (b)
learn using non-correlated data collected by several agents
in parallel. However, in these conventional DRL algorithms
(including ES, Gorila, and A3C), agents are organized in a
de facto fully-connected centralized network topology: the
algorithm uses and updates only one global-level parameter
set using information available from all agents at every step.
Evolution Strategies

Before we describe NetES (a novel algorithm employed
in some implementations of this invention) in detail, it is
helpful to consider NetES’ conventional predecessor, Evo-
Iution Strategies (ES) and to consider how ES may be
applied to DRL. Evolution Strategies is a class of techniques
to solve optimization problems by utilizing a derivative-free
parameter update approach. The algorithm proceeds by
selecting a fixed model, initialized with a set of weights 0
(whose distribution p,, is parameterized by ¢), and an
objective (reward) function R(¢). The ES algorithm then
maximizes the average objective value E o_, R(6), which is
optimized with stochastic gradient ascent. The score func-
tion estimator for V E ¢ 0y R(0) is similar to REINFORCE,
given by V,E 4 R(0)= E 04 [R(G)V log pe(6)].

The update equatlon used' in thls Evolution Strategies
algorithm for the parameter 6 at any iteration t+1, for an
appropriately chosen learning rate o and noise standard
deviation o, is a discrete approximation to the gradient:

(Eq. D)
gi+h) = Z(R(e‘” +ody.oe)

In the Evolution Strategies algorithm, this update rule is
normally implemented by spawning a collection of N agents

10

15

20

25

30

35

40

45

50

55

60

65

6
at every iteration t, with perturbed versions of 0¥, i..
{0Y+0,®), . . ., (09+0€,?)} where E~ N (0,1) and 1 is
the identity matrix. The algorithm then calculates 6“1
which is broadcast again to all agents, and the process is
repeated.
Networked Evolution Strategies

In some implementations of this invention, we employ a
novel DRL algorithm that is well-suited for parallelizability
and scalability. We call this novel DRL algorithm Net-
worked Evolution Communication Strategies (NetES).
NetES is a networked decentralized variant of, and an
improvement over, ES (Evolution Strategies).

In NetES, to maximize parameter exploration diversity,
each agent may hold its own parameter 0, instead of the
global (noised) parameter 0> given in Equation 1 above. At
each time-step, an agent may look at the rewards and
parameters of its neighbors, which is controlled using matrix
A={a,}, where a,~1, if agents i and j communicate with
each other, and O otherwise. A represents the adjacency
matrix of connectivity if the networks were connected in a
graph-like structure, and therefore characterizes fully the
communication topology between agents. Each agent may
then calculate a gradient by computing a weighted average
of the difference vector between its parameter and that of
each of its neighbors, ((8,”+0€,“)-(8,")), using its neigh-
bors’ normalized rewards R(9, 4 oe =) as weights. This
leads to the update rule:

(Eq. 2)

D _ g0 @ 1) M. (g®
6 =6 +W a;i-(RO;" +o0¢€;)- (0" +

=1

oef — 6

Consequently, when agents have the same parameter (i.e.
6,”=6,"), and the network is fully-connected i.e. a,=1), this
update rule reduces to Equation 1.

One may interpret Equation 1 as involving an average of
the perturbations o€, weighted by reward, such that ES
corresponds to a kind of consensus-by-averaging algorithm.
Equation 2 corresponds to the same weighted average, but
averages the differences between the agent i’s neighbors
perturbed positions, (6; (t)+GE @, from the agent i’s startlng
posmon 0,9, Equatlon 2 is an update rule employed in
NetES, in some implementations of this invention.

In some implementations, the NetES algorithm may
achieve either a biased or an unbiased gradient estimate,
marginalizing over time steps between broadcasts. In some
cases, the update rule in Equation 2 is combined with a
periodic parameter broadcast, and every broadcast returns
the agents to a consensus position.

In some implementations of this invention, the NetES
algorithm involves a stochastic global broadcast. In this
stochastic global broadcast, with probability f§ each itera-
tion, all agents are forced to adopt the highest-performing
parameter set from the previous iteration, centering the
network on a current local maximum. Preferably, probability
[ is set at a value that is greater than or equal to 0.5. For
instance in some cases, probability $=0.8. In experiments,
we found that when probability § is set lower than 0.5,
broadcast has minimal effect on both the reward and learning
rate of the network topologies. The stochastic global broad-
cast may be employed to correct the following problem:
when nodes search for better parameters in their local
neighborhood only, the effective combination of possible
parameters around any parameter decreases significantly,
scaling with the size of a node’s neighborhood.
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In some implementations, parameter broadcast in NetES
is implemented as follows: (a) at every iteration, with a
probability p,, all agents’ current parameters are replaced
with the best agent’s performing weight; and (b) then
training (as per Equation 2) continues. In some cases,
broadcast probability p, is treated as a hyperparameter. For
instance, in some cases, probability p, is a constant equal to
0.8.

As noted above, in NetES, each agent may hold its own
parameter set 0, instead of a global (noised) parameter 6.

In NetES, independent, networked agents may be
employed. Each agent may have its own individual param-
eter set 0, and may perform updates separately. (This is in
contrast to conventional Evolution Strategies, which runs a
number of episodes, each with a noised version of the
parameter).

In some implementations of this invention, NetES may be
implemented as follows. Each agent may run an episode
with a different parameter. The agents maybe arranged in an
undirected, unweighted network structure with each agent i
corresponding to a node v, in the network. On each iteration
t, the parameter set 0, of agent i may be perturbed by a
Gaussian noise vector €, sampled in the same way as in the
conventional Evolution Strategies algorithm. In an optimi-
zation step, each agent may perform its own independent
update. Each agent i may use the same rank-centered
weighting function as in the conventional ES, but may use
only a closed set of its neighborhood N [i] to perform the
update. This set of nodes may include node i itself. Different
agents may have different parameters, and the difference in
parameters between 0, and each perturbed parameter set of
other agents in N [i] may be calculated. Each difference may
be weighted with its reported reward, instead of calculating
a gradient by computing a weighted average over the
perturbations applied to each neighbor’s parameter set (as in
the Evolution Strategies algorithm).

In NetES, the parameter sets of different nodes (agents)
may diverge after the first update. In NetES, the update step
may have each node effectively solving for its neighbor-
hood’s average objective, rather than the global average
objective as in ES. In the case of a fully-connected network:
(a) each agent’s neighborhood N [i] is equal to the full set
of vertices; and (b) the update is equal to the case of the
original ES algorithm.

In some cases, the divergent objective functions in NetES
may result in a greater diversity of policies being explored.
In some cases, the neighborhood-only constraint on node
parameter updating does not add any penalty term to the
update step.

In some cases, when running an NetES algorithm: (a) any
arbitrary number of parameters may be explored; (b) 4% to
10% of the agents are employed for updating an agent’s
parameter set; (c) stochastic parameter broadcast is
employed; and (d) any arbitrary type of network topology
may be employed. In contrast, in conventional ES: (a) one
parameter is explored; (b) 100 percent of the agents are
employed for updating an agent’s parameter set; (¢) stochas-
tic parameter broadcast is not employed; and (d) an effec-
tively fully-connected network topology is employed.

FIG. 2 shows an example of an algorithm for NetES, in an
illustrative implementation of this invention.

Other Algorithms

This invention is not limited to NetES. In some imple-
mentations of this invention, any other distributed DRL
algorithm or other distributed machine learning algorithm
may be employed. For instance, in some implementations of
this invention, an A3C algorithm is modified as follows, and
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employed for DRL: (a) the gradient and slowly changing
network parameters of each agent are shared and constructed
only using that agent’s neighbors; and (b) whatever is done
at the global level in the original A3C algorithm is instead
done at the node level.

In some implementations of this invention, other update
rules (i.e., update rules other than those set forth in Equa-
tions 1 and 2) are employed. In some cases, sparser networks
are better as long as the distributed strategy is to find and
aggregate the parameters with the highest reward (as
opposed to, for example, finding the most common param-
eters many agents hold). In some implementations of this
invention, regardless of which update rule is employed, the
choice of network topology affects deep reinforcement
learning.

In some implementations of this invention, other DRL
algorithms may be employed, instead of NetES. For
instance, is some cases, a dynamic network is employed. In
this dynamic network, edges between nodes may be changed
at each iteration. Likewise, in some cases, a gradient-based
DRL algorithm is employed.

Network Topologies

In illustrative implementations of this invention, a wide
variety of network topologies may be employed for DRL.
Here are some non-limiting examples:

(1) Erdos-Renyi Network: In some implementations of
this invention, an Erdos-Renyi (ER) network is employed
for DRL. For instance, the NetES algorithm may run on an
ER network and may perform DRL. In an ER network, each
edge between any two nodes has a fixed independent prob-
ability of being present. Erdos-Renyi random graphs are
constructed by connecting each pair of possible nodes at
random with probability p. In some implementations: (a) an
ER random network is employed; and (b) the probability p
(i.e., the probability that any given pair of nodes in the ER
random graph is be connected by an edge) is any value
greater than O and less than or equal to 1. For instance, in
some cases, the probability p is 0.04.

(2) Engineered: In some implementations of this inven-
tion, an “engineered” network topology may be employed
for DRL. For instance, the NetES algorithm may be
employed with an “engineered” network for DRL.

In some cases, the “engineered” network topology may be
created by random partition graph generation, a generaliza-
tion of the planted-1-partition scheme, which allows us to
vary statistics such as clustering and centrality, while keep-
ing modularity constant. First, the graph may be split into k
sub-communities, and each node may be assigned to a
sub-community with uniform probability, similar to an
Erdos-Renyi graph. The following routine may then be run
for a set number of iterations: first, sample a source node n,
from the network, then, with probability p,, sample a
second target node n, from the same cluster n, that both n;
and n, belong to. Otherwise, with probability p,,, sample the
node n, from all nodes not in the same cluster n,, and
construct an edge between n, and n, (in between clusters). All
sampling may performed with replacement, resulting in
graphs with differing numbers of edges. In effect, the result-
ing engineered graph may comprise a number of smaller
Erdos-Renyi clusters connected to each other. For instance,
an “engineered” graph may comprise sparsely connected
clusters, where each of the clusters is itself a sparse Erdos-
Renyi graph.

(3) Other Networks: In some cases, other types of network
topologies (e.g., scale-free networks or small-world net-
works) may be employed for DRL. For instance, the NetES
algorithm may be run on a scale-free network or a small-
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world network and may be employed for DRL. The degree
distribution of scale-free networks follows a power law. In
small-world networks, most nodes may be reached through
a small number of neighbors.

In some implementations, a graph is employed that is both
globally and locally sparse. For instance, in some imple-
mentations, a graph is employed that consists of random
graph clusters, each sparsely connected internally, with few
connections between clusters.

FIG. 1A shows a conventional star network 110, in which
each DRL learning agent communicates with a single hub
(the global master). In the conventional star network in FIG.
1A, learning agents obtain their parameters from and share
their data with a global master. Because they share all
information via a global master, the network topology of
communication between agents may effectively be fully
connected.

FIG. 1B shows a network 130 with a sparse, decentralized
network topology, in an illustrative implementation of this
invention. In FIG. 1B, learning agents act as their own local
master, obtaining their parameters from and sharing their
data with one another. In FIG. 1B, the learning agents share
information only via one another and thus the network
topology of communication is sparse.

FIG. 1C shows a network 100 that is an FErdos-Renyi
graph, in an illustrative implementation of this invention. In
the example shown in FIG. 1C, the network includes nodes
(e.g., 101, 103) and edges (e.g., 105, 107).

Optimizing Network Topology—General

In some implementations of this invention, the perfor-
mance of a group of reinforcement learning agents is maxi-
mized by optimizing the communication topology between
the agents for the communication of gradients, weights or
rewards.

Likewise, in some implementations of this invention, the
performance of a group of reinforcement learning agents is
improved by improving the communication topology
between the agents for the communication of gradients,
weights or rewards.

In some implementations of this invention, a large number
of different network topologies are tested, and the network
topology which results in the best DRL learning perfor-
mance is then employed for DRL.

Optimizing Network Topology—Maximizing Reachabil-
ity and Minimizing Homogeneity

In some implementations: (a) a sparse Erdos-Renyi graph
is employed; and (b) the network density is selected in such
a way as to maximize “reachability” and to minimize
“homogeneity”, as those terms are defined herein.

This approach is well-suited for running an NetES algo-
rithm using an Erdos-Renyi network.

The following discussion provides insights into: (a) why
a sparse network topology may perform better than a fully-
connected topology; (b) why Erdos-Renyi networks may
outperform other network families; and (c¢) why perfor-
mance of a network (e.g., a sparse ER topology) may be
optimized (or improved) by maximizing the reachability of
the network and the minimizing the homogeneity of the
network.

A reason for employing sparse connectivity and having
each agent hold their own parameters (as per Equation 2) is
to search the parameter space more effectively. One possible
heuristic for measuring the capacity to explore the parameter
space is the diversity of parameter updates during each
iteration, which can be measured by the variance of param-
eter updates:
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In a NetES update iteration t for a system with N agents
with parameters ©={0,9, ..., 0,©}, agent communication
matrix A={a,}, agent-wise perturbations &={€,?, . . .,
€,0}, and parameter update

[e2

voz D (RO + o) (@ + oef’) - @)

1=

4

5

as per Equation 2, the following relation holds:

max® R(+) (Eq. 3)

No*

A% - min |A] \? o2
{((mint |Al|)2].f(®’ 6)_(max,|A,|) W(Z

E?)Ey)]}
J

Var; [uf] <

In Equation 3,

|Al = Z aj,

J

and ||A?|| is the Frobenius norm of A%, and

10,8 = \/ (Z (O + el =68y (@07 + e — i) .

Jkom

The variance Var,[u,"’] in Equation 3 is not the variance
of the value function gradient, which is typically minimized
in reinforcement learning. Instead, Var,[u,*”] in Equation 3 is
the variance in the positions in parameter space of the agents
after a step of the NetES algorithm. This quantity is akin to
a radius of exploration for a distributed search procedure. In
some cases, the search radius of positions in parameter space
is maximized to find high-performing parameters.

By Equation 3, we see that the diversity of exploration in
the parameter updates across agents is affected by two
quantities that involve the connectivity matrix A: reachabil-
ity and homogeneity. As used herein, the “reachability” of a
network means (|JA%|- /(min,lA,))* (using the same math
notation with the same meaning as in Equation 3). As used
herein, the “homogeneity” of a network means (min,|A;l/
max,|A;1)* (using the same math notation with the same
meaning as in Equation 3).

In some implementations of this invention, the perfor-
mance of a group of reinforcement learning agents is maxi-
mized by maximizing reachability and by minimizing homo-
geneity. In some implementations, it is desirable to minimize
homogeneity in order to maximize the diversity of parameter
updates across agents. In some implementations of this
invention, reachability and homogeneity are not independent
and are statistics of the degree distribution of a graph.

Reachability is the squared ratio of the total number of
paths of length 2 in A to the minimum number of links of all
nodes of A. The sparser a network, the larger the reachabil-
ity. For Erdos-Renyi graphs, (JJA%||/(min,l A,))*~(pN)~"2,
where p is the average density of the network (the inverse of
sparsity), the probability that any two nodes being con-
nected.



US 10,715,395 B2

11

Homogeneity is the squared ratio of the minimum to
maximum connectivity of all nodes of A: the higher this
value, the more homogeneously connected the graph is. The
sparser a network is, the lower is the homogeneity of a
network. In the case of Erdos-Renyi networks, (min,IA;l/
max,|A|=1-8V({T=p)(Np).

In some cases, out of four network families (Erdos-Renyi,
scale-free, small-world, and fully-connected): (1) Erdos-
Renyi networks maximize reachability and minimize homo-
geneity, which means that they maximize the diversity of
parameter exploration; and (2) fully-connected networks
(which are the de facto communication network used for
distributed learning) are the worst network in terms of
exploration diversity (they minimize reachability and maxi-
mize homogeneity, the opposite of what would be required
for maximizing parameter exploration).

Early Tests

The following twenty paragraphs describe early tests of
prototypes of this invention.

In these early tests: (a) a variety of network topologies
were tested; and (b) DRL agents performed better in sparse
network topologies than in more dense network topologies.

These early tests used OpenAl’s Roboschool 3D Human-
oid Walker (specifically, RoboschoolHumanoid-v1, shown
in FIG. 1), an open-source implementation of MuJoCo.

To run the early tests, we generated a large set of
canonical network topologies, as well as a set of engineered
topologies that were designed to isolate various network
statistics. We fixed the number of nodes (agents) to be 1000.
We generated a population of Erdos-Renyi random graphs
by varying the routine’s main parameter, p. Erdos-Renyi
random graphs are constructed by connecting each pair of
possible nodes at random with probability p. We ensured that
the network consisted of only one component (i.e. that there
are no disconnected nodes or components in the network).

In these early tests, we employed random partition graph
generation (as described above) to generate engineered
graphs. Each of these engineered graphs comprised a num-
ber of smaller Erdos-Renyi clusters connected to each other.

In these early tests, we created a baseline by running
fully-connected networks of 1000 agents using OpenAl’s
original ES code ten times. We then fitted each run using a
logistic growth function. We used the higher asymptote as a
measure of maximum reward for each run, and then used the
average of these maximum asymptotic rewards as a measure
of performance, henceforth referred to as the baseline.

In these early tests, we then ran the NetES algorithm with
a variety of different network topologies, and compared the
resulting performance to the baseline.

In these early tests, we then ran all our network variants
(both in terms of topology and attributes) and similarly
obtained a measure of the mean asymptotic reward. We
computed these asymptotes over the same number of itera-
tions to maintain comparability of results, and we also
ensured that rewards stabilized over time to an asymptote in
order to get an accurate observation of maximum achieved
reward.

FIGS. 3, 4, 5, 6, 7 and 8 summarize results of the early
tests.

FIG. 3 shows performance of different network topolo-
gies. Specifically, FIG. 3 shows that 1000 agents arranged in
an engineered network (using a NetES algorithm) performed
better than up to 4000 agents arranged in a conventional
fully-connected ES network. As can be seen in FIG. 3, an
engineered network with 1000 agents not only beat fully-
connected networks with a similar number of agents (pro-
cessors), but beat 4000 agents arranged in a fully-connected
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network. This increase in efficiency may due to the vastly
larger parameter space being explored by each local neigh-
borhood.

The distribution of reward (in FIG. 4) and learning rate (in
FIG. 5) over several repeated runs of the NetES algorithm
varied strongly with the density of Erdos-Renyi networks. In
FIG. 4, reward is calculated as the improvement from
baseline. In FIG. 5, learning rate is calculated as the number
of iterations ahead of the fully-connected network to reach
baseline reward.

FIG. 4 shows a percent improvement of reward, as a
function of network density, as observed in the early tests.
As shown in FIG. 4, Erdos-Renyi networks achieved up to
a 26% increase from the baseline reward. As the networks
became denser, the average improvement compared to base-
line decreases, approaching zero as networks become close
to fully-connected. A random graph with an average density
of 0.9 still does 5% better than a baseline network (which
has a density of 1.0).

FIG. 5 shows learning rate as a function of network
density, as observed in the early tests. Fully-connected
networks took about 320 iterations to reach their asymptotic
maximum result; whereas our fastest network reached that
value in only 220 iterations (and kept learning), an improve-
ment of 32%.

In the early tests, we observed that denser networks tend
to learn faster, but the relationship is not monotonic: as the
network approaches being fully connected, the distribution
flattens and the average learning rate decreases. This
increase in speed may be due to the fact that the separate
network neighborhoods of agents are able to visit a larger
number of parameters in parallel, and hence can find higher
maxima faster. Because the NetES algorithm also imple-
ments a probabilistic broadcast, which may set the param-
eters of all agents to those of the highest-performing agent
with probability [ at the end of each iteration, the NetES
algorithm may ensure that the network tends to converge to
better-performing parameters. In the NetES algorithm, net-
worked decentralization strikes a balance between increased
parameter exploration diversity and global communication.

In some of the early tests, we calculated network metrics
across all 1000 nodes in each Erdos-Renyi network. We
found strong correlations between these network metrics and
reward, as shown in FIGS. 6A, 6B and 6C. Specifically, we
found that as the number of edges (communication between
agents) increases, the reward decreases (FIG. 6A). This
decline may be because, as communication increases, the
local neighborhoods become less isolated from one another
and the diversity of parameters being explored decreases.
This, in turn, may lead to lower rewards (closer to baseline).
Clustering is a measure of how many of the neighbors of
each node form a closed triangle, and is therefore a super-
local measure of connectedness. We find that as clustering
increases, rewards decrease (FIG. 6B). Modularity, a mea-
sure of inter-neighborhood global connectedness, also cor-
relates with higher rewards (FIG. 6C).

FIG. 6A shows that in Erdos-Renyi networks, perfor-
mance increases as the number of edges of the of network
decreases. FIG. 6B shows that in Erdos-Renyi networks,
performance improves as the clustering of the network
decreases. FIG. 6C shows that in Erdos-Renyi networks,
performance improves as the modularity of the network
increases. In FIGS. 6A, 6B and 6C, performance is mea-
sured as percent improved reward from the baseline (de-
scribed above).

FIGS. 6A, 6B and 6C show that, in Erdos-Renyi net-
works, sparsity at both the local neighborhood level and at






