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Algorithm 1 Networked Evolution Strategies 

INS 

input Leaming rate ( x , noise standard deviation o , initial policy parameters 0 ( 0 ) where i = 1 , 2 , 
N ( for N workers ) , adjacency matrix A , global broadcast probability Pb 

Initialize : n workers with known random seeds , initial parameters 0,0 ) 
for t = 0 , 1 , 2 , ... do 

for each worker i = 1,2 , ... , Ndo 
Sample € ; ( 7 ) ~ N ( 0,1 ) 
Compute returns R ; = R ( 0 ; ( 1 ) + 0 € ; ( 0 ) Sample BM ) ~ U10,1 ) 

if ( t ) < Pb 
Set @ ( t + 1 ) arg max 0 ; ( 1 ) R ( 0,40 ) + 0 € , 10 ) else 
for each worker i = 1 , 2 , ... , 

Set 2 : { 1 + 1 ) - 0,0 ) + jaije ( R { 0,40 ) + 0 € ; ( 0 ) • ( 0,40 ) + 0 € ; ( 0 ) - 6 ; ( ) ) 
FIG . 2 
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METHODS AND APPARATUS FOR Neighborhood_selfloop_pselfloop_num_agents 1000_ 
COMMUNICATION NETWORK broadcastp_0_8_threads_120.txt with a size of about 2 

KB ; 
RELATED APPLICATIONS Neighborhood_selfloop_pselfloop_num_agents 1000_ 

broadcastp_0_9_threads_120.txt with a size of about 2 
This application claims the benefit of U.S. Provisional 

Application No. 62 / 591,034 filed Nov. 27 , 2017 ( the “ First Neighborhood_selfloop_pselfloop_num_agents 1000_ 
Provisional ” ) and U.S. Provisional Application No. 62/678 , broadcastp_0_threads_120.txt with a size of about 2 KB ; 
800 filed May 31 , 2018 ( the " Second Provisional ” ) . As used Neighborhood_selfloop_pselfloop_num_agents 1000_ 
herein , the “ Provisionals ” means the First Provisional and broadcastp 1_threads_120.txt with a size of about 2 KB ; 
the Second Provisional Ant_v1_Neighborhoodfully connected num_agents 100 

broadcastp_0_0_threads_120.txt with a size of about 2 
FIELD OF TECHNOLOGY KB ; 

Ant_v1_Neighborhoodscalefreem4 num_agents 100 
broadcastp_0_8_threads_120.txt with a size of about 2 The present invention relates generally to networked KB ; communication and to deep reinforcement learning . HalfCheetah_v1_Neighborhoodfully connected num_a 
gents 100 broadcastp_0_0_threads_120.t xt with a size of COMPUTER PROGRAM LISTING about 2 KB ; 

20 HalfCheetah_v1_Neighborhoodscalefreem4 num_a The following 67 computer program files are incorporated gents100 broadcastp_0_8_threads_120.txt with a size of by reference herein : agent updaters.txt with a size of about about 2 KB ; 
12 KB ; dist.txt with a size of about 11 KB ; es.txt with a size Hopper_v1_Neighborhoodfully_connected_num_agents 100 
of about 33 KB ; main.txt with a size of about 6 KB ; multi.txt broadcastp_0_0_threads_120.txt with a size of about 2 
with a size of about 2 KB ; networks.txt with a size of about KB ; 
1 KB ; optimizers.txt with a size of about 2 KB ; policies.txt Hopper_v1 Neighborhoodscalefreem4 num_agents 100 
with a size of about 12 KB ; tabular_logger.txt with a size of broadcastp_0_8_threads_120.txt with a size of about 2 
about 7 KB ; tf_util.txt with a size of about 9 KB ; KB ; 
Ant_v1_Neighborhooderdos0_2_num_agents 1000_broad Humanoid_v1_Neighborhoodfully_connected_num_ 
castp_0_8_threads_120.txt with a size of about 2 KB ; agents 100 broadcastp_0_0_threads_120.txt with a size of 
HalfCheetah_v1_Neighborhooderdos0_2num_agents1000_ about 2 KB ; 

broadcastp_0_8_threads_120.txt with a size of about 2 Humanoid_v1_Neighborhoodscalefreem4 num_agents 100 
KB ; broadcastp_0_8_threads_120.txt with a size of about 2 

Hopper_v1 KB ; vanilla 1K.txt with a size of about 1 KB ; 
NeighborhooderdosO_2num_agents 1000_broadcastp_0_ vanilla_2K.txt with a size of about 1 KB ; vanilla_3K.txt 
8_threads_120.txt with a size of about 2 KB ; with a size of about 1 KB ; vanilla_4K.txt with a size of 

Humanoid_v1_Neighborhooderdoso_2num_agents1000_ about 1 KB ; vanilla_5K.txt with a size of about 1 KB ; 
vanilla_6K.txt with a size of about 1 KB ; vanilla_7K.txt broadcastp_0_8_threads_120.txt with a size of about 2 with a size of about 1 KB ; vanilla_8K.txt with a size of KB ; about 1 KB ; vanilla_9K.txt with a size of about 1 KB ; HumanoidStandup_v1_Neighborhooderdos0_2num_agents experiment generator_small_networks_mujoco_er 1000_broadcastp_0_8_threads_120 . txt with a size of dos_ontheflytopo.txt with a size of about 7 KB ; experi about 2 KB ; ment_template.txt with a size of about 2 KB ; es_network . Swimmer_v1_Neighborhooderdos0_2num_agents 1000_ txt with a size of about 2 KB ; install_bullet.txt with a size broadcastp_0_8_threads_120.txt with a size of about 2 45 of about 1 KB ; networks_generator.txt with a size of 

KB ; about 6 KB ; redis_local_mirror.txt with a size of about 46 Neighborhood_selfloop_pselfloop_num_agents 1000_ KB ; redis_master.txt with a size of about 46 KB ; depen 
broadcastp_0_1_threads_120.txt with a size of about 2 dency.txt with a size of about 5 KB ; ec2ctl.txt with a size 
KB ; of about 10 KB ; launch.txt with a size of about 11 KB ; 

Neighborhood_selfloop_pselfloop_num_agents 1000_ local_env_setup.txt with a size of about 1 KB ; local_run_ 
broadcastp_O_2_threads_120.txt with a size of about 2 exp.txt with a size of about 1 KB ; local_run_redis.txt with 
KB ; a size of about 1 KB ; packer.txt with a size of about 1 KB ; Neighborhood_selfloop_pselfloop_num_agents1000_ viz.txt with a size of about 2 KB ; watch_master_pro 
broadcastp_0_3_threads_120.txt with a size of about 2 cess.txt with a size of about 2 KB ; watch_master_redis.txt 
KB ; with a size of about 1 KB ; watch_worker_process.txt with 

Neighborhood_selfloop_pselfloop_num_agents 1000_ a size of about 1 KB ; watch_worker_redis.txt with a size 
broadcastp_0_4_threads_120.txt with a size of about 2 of about 1 KB ; deploy.txt with a size of about 11 KB ; 
KB ; request.txt with a size of about 3 KB ; start_local.txt with 

Neighborhood_selfloop_pselfloop_num_agents 1000_ a size of about 2 KB ; and test_local.txt with size of 
broadcastp_0_5_threads_120.txt with a size of about 2 60 about 2 KB . Each of the above 67 computer program files 
KB ; were created as an ASCII .txt file on Nov. 17 , 2018 . 

Neighborhood_selfloop_pselfloop_num_agents 1000_ 
broadcastp_0_6_threads_120.txt with a size of about 2 SUMMARY 
KB ; 

Neighborhood_selfloop_pselfloop_num_agents 1000_ In conventional deep reinforcement learning ( DRL ) , the 
broadcastp_0_7_threads_120.txt with a size of about 2 communication architecture typically involves all reinforce 
KB ; ment learning agents intermittently communicating with 
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each other in a fully connected topology ) or with a cen In illustrative implementations , reinforcement learning 
tralized server ( in a star topology ) . agents communicate parameters , experiences , gradients and / 

In contrast , in illustrative implementations of this inven or rewards with one another through a network . Neighbor 
tion , other network topologies are employed , leading to hood and neighbors in the network , and topology of the 
strong improvements in performance . 5 network , may be defined by an adjacency matrix . 

In illustrative implementations of this invention , the per The Summary and Abstract sections and the title of this 
formance of a group of reinforcement learning agents is document : ( a ) do not limit this invention ; ( b ) are intended 
maximized by optimizing the communication topology only to give a general introduction to some illustrative 
between the agents for the communication of gradients , implementations of this invention ; ( c ) do not describe all of 
weights or rewards . 10 the details of this invention ; and ( d ) merely describe non 

The optimized network topology may achieve faster and limiting examples of this invention . This invention may be 
higher decentralized learning with much cheaper communi implemented in many other ways . Likewise , the Field of 
cation costs in networks of reinforcement learning agents , Technology section is not limiting ; instead it identifies , in a 
compared to fully connected networks . general , non - exclusive manner , a field of technology to 

In some cases , the optimized network topology is 15 which some implementations of this invention generally 
relate . employed for massively distributed learning , such as across 

entire fleets of autonomous vehicles or mobile phones that BRIEF DESCRIPTION OF THE DRAWINGS 
learn from each other , instead of requiring a master to 
coordinate learning . Such sparse networks of communica- 20 FIG . 1A shows a conventional star network , in which each 
tion between autonomous vehicles ( or between mobile learning agent communicates with a single hub . 
phones ) may occur naturally due to geographic dispersion of FIG . 1B shows a sparse , decentralized network topology . 
the vehicles or mobile phones . FIG . 1C shows an Erdos - Renyi graph . 

In some implementations : ( a ) a sparse Erdos - Renyi graph FIG . 2 shows steps in a Networked Evolution Commu 
is employed ; and ( b ) the network density is selected in such 25 nication Strategies ( NetES ) algorithm . 
a way as to maximize " reachability ” and to minimize FIG . 3 is a chart that shows performance of different 
“ homogeneity ” , as those terms are defined herein . networks . 

In some implementations , a network is employed that is FIG . 4 is a chart that shows a percent improvement of 
both globally and locally sparse . For instance , in some reward , as a function of network density . 
implementations , a graph is employed that comprises ran- 30 FIG . 5 is a chart that shows learning rate as a function of 
dom graph clusters , each sparsely connected internally , with network density . 
few connections between clusters . For example , an “ engi FIG . 6A is a chart that shows a percent improved reward 
neered " graph may be employed that comprises sparsely as a function of number of edges . 
connected clusters , where each of the clusters is itself a FIG . 6B is a chart that shows a percent improved reward 
sparse Erdos - Renyi graph . In some cases , this “ engineered ” 35 as a function of clustering . 
graph is generated by random partition graph generation . FIG . 6C is a chart that shows a percent improved reward 

In some implementations of this invention , reinforcement as a function of modularity . 
learning agents perform better in sparse network topologies FIG . 7 is a chart that shows percent improved reward as 
than in more dense network topologies . In some cases , in a function of number of edges , in engineered networks . 
these spare network topologies , the agents are not fully 40 FIG . 8 is a chart that shows percent improved reward as 
connected , and are instead connected only to a subset of a function of number of edges , in Erdos - Renyi random 
neighbors both for local connections and for global ( long networks . 
distance ) connections . The above Figures are not necessarily drawn to scale . The 

In illustrative implementations of this invention , learning above Figures ( except FIG . 1A ) show illustrative implemen 
agents are arranged in efficient communication topologies 45 tations of this invention , or provide information that relates 
for improved learning . This is desirable , because a common to those implementations . The examples shown in the above 
technique to improve speed and robustness of learning in Figures do not limit this invention . This invention may be 
DRL and many other machine learning algorithms is to run implemented in many other ways . 
multiple learning agents in parallel . 

In some implementations , this invention employs what we 50 DETAILED DESCRIPTION 
call Networked Evolution Communication Strategies 
( NetES ) , which is an improvement over a conventional General 
Evolution Strategies ( ES ) paradigm . NetES may be In distributed algorithms there may be an implicit com 
employed with a wide variety of network topologies . For munication network between processing units . This network 
instance , in a test : ( a ) NetES was employed with each of four 55 may pass information such as data , parameters , or rewards 
different graph families ; and ( b ) one such family ( Erdos between processors . In conventional distributed machine 
Renyi random graphs ) empirically outperformed the other learning , one of the following two network structures is 
three graph families , including de facto fully - connected frequently used : ( 1 ) a complete network , in which all 
communication topologies . In a test of this prototype , 1000 processors communicate with each other ; or ( 2 ) star 
reinforcement learning agents : ( a ) were arranged in a sparse 60 network , in which all processors communicate with a single 
Erdos - Renyi communication topology ; and ( b ) performed hub server ( in effect , a more efficient , centralized implemen 
better than 3000 agents arranged in a de facto fully - con tation of the complete network ) . 
nected topology . In illustrative implementations of this invention , other 

In illustrative implementations of this invention , commu communication topologies ( i.e. , other than the complete 
nication topology between learning agents is improved or 65 network or star network described above ) between proces 
optimized , which in turn causes distributed machine learn sors lead to improved learning performance in the context of 
ing algorithms to learn more efficiently . deep reinforcement learning ( DRL ) . In some cases , the 
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communication topology between agents is improved ( or at every iteration t , with perturbed versions of 6 ( 1 ) , i.e. 
optimized ) for the learning objective under consideration . In { ( 60 + 0E , 1 ) ) , ... , ( 0 + 0E / ) } where E - N ( 0,1 ) and I is 
some cases , certain families of network topologies lead to the identity matrix . The algorithm then calculates 0 ( t + 1 ) 
strong improvements over fully - connected networks . which is broadcast again to all agents , and the process is 
Network effects tend to be significant only with large repeated . 

numbers of agents . Thus , in some implementations , we Networked Evolution Strategies 
employ a novel DRL algorithm that is well - suited for In some implementations of this invention , we employ a 
parallelizability and scalability . We call this novel DRL novel DRL algorithm that is well - suited for parallelizability 
algorithm Networked Evolution Communication Strategies and scalability . We call this novel DRL algorithm Net 
( NetES ) . NetES is a networked decentralized algorithm that worked Evolution Communication Strategies ( NetES ) . 
is a variant of , and improvement on , the original ES ( Evo NetES is a networked decentralized variant of , and an 
lution Strategies ) algorithm . In some implementations , using improvement over , ES ( Evolution Strategies ) . 
the NetES algorithm , we explore how the topology of a In NetES , to maximize parameter exploration diversity , 
population of processors affects learning performance . In each agent may hold its own parameter 0 ; ) instead of the 
some cases , NetES is parallelizable and allows for greater global ( noised ) parameter 1 given in Equation 1 above . At 
exploration of parameter space than does the original ES each time - step , an agent may look at the rewards and 
algorithm . parameters of its neighbors , which is controlled using matrix 

In a test of a prototype of this invention : ( 1 ) we ran control A = { Qj ; } , where aj = 1 , if agents i and j communicate with 
experiments to see whether any improvements were due 20 each other , and 0 otherwise . A represents the adjacency 
exclusively to using alternative topologies ; ( 2 ) we compared matrix of connectivity if the networks were connected in a 
the learning performance of the topological families of graph - like structure , and therefore characterizes fully the 
communication graphs , and observed that one family ( Er communication topology between agents . Each agent may 
dos - Renyi graphs ) did best ; and ( 3 ) using an optimized then calculate a gradient by computing a weighted average 
Erdos - Renyi graph , we evaluated NetES on five difficult 25 of the difference vector between its parameter and that of 
DRL benchmarks and found large improvements compared each of its neighbors , ( 0 , " + 0 -0 , ) , using its neigh 
to using a fully - connected communication topology . In this bors ’ normalized rewards R ( 0,16 + 0 € , ' ) ) as weights . This 
test , we observed that a 1000 - agent Erdos - Renyi graph can leads to the update rule : 
compete with 3000 fully - connected agents . 

In some implementations of this invention , multiple rein- 30 
forcement learning agents run in parallel and are arranged in ( Eq . 2 ) 
more efficient communication topologies for improved 04 + 1 ) = 0 % " + No ? ?aj ( RCC % * + oe ! ) . ( 0 ) * + Oe ” ! – 0,4 % ) 
learning . This is in turn may improve both speed and 
robustness of learning in DRL . 
Many conventional DRL algorithms : ( a ) run learning 35 Consequently , when agents have the same parameter ( i.e. 

agents in parallel ( and sometimes asynchronously ; and ( b ) 0,0 = 0,9 ) , and the network is fully - connected i.e. Q = 1 ) , this 
learn using non - correlated data collected by several agents update rule reduces to Equation 1 . 
in parallel . However , in these conventional DRL algorithms One may interpret Equation 1 as involving an average of 
( including ES , Gorila , and A3C ) , agents are organized in a the perturbations oe , weighted by reward , such that ES 
de facto fully - connected centralized network topology : the 40 corresponds to a kind of consensus - by - averaging algorithm . 
algorithm uses and updates only one global - level parameter Equation 2 corresponds to the same weighted average , but 
set using information available from all agents at every step . averages the differences between the agent i’s neighbors ’ 
Evolution Strategies perturbed positions , ( 0 , " + 0 € , from the agent i's starting 

Before we describe NetES ( a novel algorithm employed position , 0 , 0. Equation 2 is an update rule employed in 
in some implementations of this invention ) in detail , it is 45 NetES , in some implementations of this invention . 
helpful to consider NetES ' conventional predecessor , Evo In some implementations , the NetES algorithm may 
lution Strategies ( ES ) and to consider how ES may be achieve either a biased or an unbiased gradient estimate , 
applied to DRL . Evolution Strategies is a class of techniques marginalizing over time steps between broadcasts . In some 
to solve optimization problems by utilizing a derivative - free cases , the update rule in Equation 2 is combined with a 
parameter update approach . The algorithm proceeds by 50 periodic parameter broadcast , and every broadcast returns 
selecting a fixed model , initialized with a set of weights the agents to a consensus position . 
( whose distribution Po is parameterized by o ) , and an In some implementations of this invention , the NetES 
objective ( reward ) function R ( * ) . The ES algorithm then algorithm involves a stochastic global broadcast . In this 
maximizes the average objective value E R ( O ) , which is stochastic global broadcast , with probability ß each itera 
optimized with stochastic gradient ascent . The score func- 55 tion , all agents are forced to adopt the highest - performing 
tion estimator for V E R ( O ) is similar to REINFORCE , parameter set from the previous iteration , centering the 
given by VE R ( O ) = E 0 - P [ R ( O ) Volog P ( 0 ) ] network on a current local maximum . Preferably , probability 

The update equation used in this Evolution Strategies B is set at a value that is greater than or equal to 0.5 . For 
algorithm for the parameter o at any iteration t + 1 , for an instance in some cases , probability B = 0.8 . In experiments , 
appropriately chosen learning rate a and noise standard 60 we found that when probability B is set lower than 0.5 , 
deviation o , is a discrete approximation to the gradient : broadcast has minimal effect on both the reward and learning 

rate of the network topologies . The stochastic global broad ( Eq . 1 ) 
Q1 + 1 ) = 0 + ( R ( Oh ) + oem.ce ' ) ) cast may be employed to correct the following problem : 

when nodes search for better parameters in their local 
65 neighborhood only , the effective combination of possible 

In the Evolution Strategies algorithm , this update rule is parameters around any parameter decreases significantly , 
normally implemented by spawning a collection of N agents scaling with the size of a node's neighborhood . 

j = 1 

?-- p 

? 0-24 
0-2 + 

N 
a Š No2 
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In some implementations , parameter broadcast in NetES employed for DRL : ( a ) the gradient and slowly changing 
is implemented as follows : ( a ) at every iteration , with a network parameters of each agent are shared and constructed 
probability Pb , all agents ' current parameters are replaced only using that agent's neighbors ; and ( b ) whatever is done 
with the best agent's performing weight ; and ( b ) then at the global level in the original A3C algorithm is instead 
training ( as per Equation 2 ) continues . In some cases , 5 done at the node level . 
broadcast probability Pb is treated as a hyperparameter . For In some implementations of this invention , other update 
instance , in some cases , probability Po is a constant equal to rules ( i.e. , update rules other than those set forth in Equa 
0.8 . tions 1 and 2 ) are employed . In some cases , sparser networks 
As noted above , in NetES , each agent may hold its own are better as long as the distributed strategy is to find and 

parameter set 0 , ) instead of a global ( noised ) parameter 060 ) . 10 aggregate the parameters with the highest reward ( as 
In NetES , independent , networked agents may be opposed to , for example , finding the most common param 

employed . Each agent may have its own individual param eters many agents hold ) . In some implementations of this 
eter set 0,0 ) and may perform updates separately . ( This is in invention , regardless of which update rule is employed , the 
contrast to conventional Evolution Strategies , which runs a choice of network topology affects deep reinforcement 
number of episodes , each with a noised version of the 15 learning . 
parameter ) . In some implementations of this invention , other DRL 

In some implementations of this invention , NetES may be algorithms may be employed , instead of NetES . For 
implemented as follows . Each agent may run an episode instance , is some cases , a dynamic network is employed . In 
with a different parameter . The agents maybe arranged in an this dynamic network , edges between nodes may be changed 
undirected , unweighted network structure with each agent i 20 at each iteration . Likewise , in some cases , a gradient - based 
corresponding to a node v ; in the network . On each iteration DRL algorithm is employed . 
t , the parameter set 0,9 of agent i may be perturbed by a Network Topologies 
Gaussian noise vector E , sampled in the same way as in the In illustrative implementations of this invention , a wide 
conventional Evolution Strategies algorithm . In an optimi variety of network topologies may be employed for DRL . 
zation step , each agent may perform its own independent 25 Here are some non - limiting examples : 
update . Each agent i may use the same rank - centered ( 1 ) Erdos - Renyi Network : In some implementations of 
weighting function as in the conventional ES , but may use this invention , an Erdos - Renyi ( ER ) network is employed 
only a closed set of its neighborhood N [ i ] to perform the for DRL . For instance , the NetES algorithm may run on an 
update . This set of nodes may include node i itself . Different ER network and may perform DRL . In an ER network , each 
agents may have different parameters , and the difference in 30 edge between any two nodes has a fixed independent prob 
parameters between 0 ; " and each perturbed parameter set of ability of being present . Erdos - Renyi random graphs are 
other agents in N [ i ] may be calculated . Each difference may constructed by connecting each pair of possible nodes at 
be weighted with its reported reward , instead of calculating random with probability p . In some implementations : ( a ) an 
a gradient by computing a weighted average over the ER random network is employed ; and ( b ) the probability p 
perturbations applied to each neighbor's parameter set ( as in 35 ( i.e. , the probability that any given pair of nodes in the ER 
the Evolution Strategies algorithm ) . random graph is be connected by an edge ) is any value 

In NetES , the parameter sets of different nodes ( agents ) greater than 0 and less than or equal to 1. For instance , in 
may diverge after the first update . In NetES , the update step some cases , the probability p is 0.04 . 
may have each node effectively solving for its neighbor ( 2 ) Engineered : In some implementations of this inven 
hood's average objective , rather than the global average 40 tion , an “ engineered ” network topology may be employed 
objective as in ES . In the case of a fully - connected network : for DRL . For instance , the NetES algorithm may be 
( a ) each agent's neighborhood N [ i ] is equal to the full set employed with an " engineered " network for DRL . 
of vertices ; and ( b ) the update is equal to the case of the In some cases , the “ engineered ” network topology may be 
original ES algorithm . created by random partition graph generation , a generaliza 

In some cases , the divergent objective functions in NetES 45 tion of the planted - 1 - partition scheme , which allows us to 
may result in a greater diversity of policies being explored . vary statistics such as clustering and centrality , while keep 
In some cases , the neighborhood - only constraint on node ing modularity constant . First , the graph may be split into k 
parameter updating does not add any penalty term to the sub - communities , and each node may be assigned to a 
update step sub - community with uniform probability , similar to an 

In some cases , when running an NetES algorithm : ( a ) any 50 Erdos - Renyi graph . The following routine may then be run 
arbitrary number of parameters may be explored ; ( b ) 4 % to for a set number of iterations : first , sample a source node ng 
10 % of the agents are employed for updating an agent's from the network , then , with probability Pin , sample a 
parameter set ; ( c ) stochastic parameter broadcast is second target node n , from the same cluster nk that both ng 
employed ; and ( d ) any arbitrary type of network topology and n , belong to . Otherwise , with probability Pin , sample the 
may be employed . In contrast , in conventional ES : ( a ) one 55 node n , from all nodes not in the same cluster nze , and 
parameter is explored ; ( b ) 100 percent of the agents are construct an edge between n , and n , ( in between clusters ) . All 
employed for updating an agent's parameter set ; ( c ) stochas sampling may performed with replacement , resulting in 
tic parameter broadcast is not employed ; and ( d ) an effec graphs with differing numbers of edges . In effect , the result 
tively fully - connected network topology is employed . ing engineered graph may comprise a number of smaller 

FIG . 2 shows an example of an algorithm for NetES , in an 60 Erdos - Renyi clusters connected to each other . For instance , 
illustrative implementation of this invention . an " engineered ” graph may comprise sparsely connected 
Other Algorithms clusters , where each of the clusters is itself a sparse Erdos 

This invention is not limited to NetES . In some imple Renyi graph . 
mentations of this invention , any other distributed DRL ( 3 ) Other Networks : In some cases , other types of network 
algorithm or other distributed machine learning algorithm 65 topologies ( e.g. , scale - free networks or small - world net 
may be employed . For instance , in some implementations of works ) may be employed for DRL . For instance , the NetES 
this invention , an A3C algorithm is modified as follows , and algorithm may be run on a scale - free network or a small 
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world network and may be employed for DRL . The degree In a NetES update iteration t for a system with N agents 
distribution of scale - free networks follows a power law . In with parameters O = { 0,0 ) , 0 " } , agent communication 
small - world networks , most nodes may be reached through matrix A = { @ } , agent - wise perturbations E = { E , " ) , ... , 
a small number of neighbors . Ex ' } , and parameter update 

In some implementations , a graph is employed that is both 5 
globally and locally sparse . For instance , in some imple 
mentations , a graph is employed that consists of random 
graph clusters , each sparsely connected internally , with few No Xa ; . ( RCO ! ? ! + 0e !! ) . ( 60 % " + ot % ! ) - ( 0.9 ) ) ) 
connections between clusters . 

FIG . 1A shows a conventional star network 110 , in which 
each DRL learning agent communicates with a single hub as per Equation 2 , the following relation holds : 
( the global master ) . In the conventional star network in FIG . 
1A , learning agents obtain their parameters from and share 

( Eq . 3 ) their data with a global master . Because they share all Var ; [ u ] 
Not information via a global master , the network topology of 

communication between agents may effectively be fully || A2 || minAil 
f ( 0,8 ) connected . ( miny | AL ] ) 2 maxi | A 

FIG . 1B shows a network 130 with a sparse , decentralized 
network topology , in an illustrative implementation of this 20 
invention . In FIG . 1B , learning agents act as their own local In Equation 3 , 
master , obtaining their parameters from and sharing their 
data with one another . In FIG . 1B , the learning agents share 
information only via one another and thus the network | All rajta 
topology of communication is sparse . 

FIG . 1C shows a network 100 that is an Erdos - Renyi 
graph , in an illustrative implementation of this invention . In 
the example shown in FIG . 1C , the network includes nodes and || AP | F is the Frobenius norm of A² , and 
( e.g. , 101 , 103 ) and edges ( e.g. , 105 , 107 ) . 
Optimizing Network Topology - General 

In some implementations of this invention , the perfor 
mance of a group of reinforcement learning agents is maxi f ( 0 , E ) = ( cena + 0 – 00h ) . ( Ok ! + Orel – 10 % ? ) ? 
mized by optimizing the communication topology between 
the agents for the communication of gradients , weights or 
rewards . The variance Var ; [ u , ( O ] in Equation 3 is not the variance Likewise , in some implementations of this invention , the of the value function gradient , which is typically minimized performance of a group of reinforcement learning agents is 
improved by improving the communication topology in reinforcement learning . Instead , Vary [ u , " ] in Equation 3 is 
between the agents for the communication of gradients , the variance in the positions in parameter space of the agents 
weights or rewards . after a step of the NetES algorithm . This quantity is akin to 

In some implementations of this invention , a large number a radius of exploration for a distributed search procedure . In 
of different network topologies are tested , and the network some cases , the search radius of positions in parameter space 
topology which results in the best DRL learning perfor is maximized to find high - performing parameters . 
mance is then employed for DRL . By Equation 3 , we see that the diversity of exploration in 

Optimizing Network Topology - Maximizing Reachabil- 45 the parameter updates across agents is affected by two 
ity and Minimizing Homogeneity quantities that involve the connectivity matrix A : reachabil 

In some implementations : ( a ) a sparse Erdos - Renyi graph ity and homogeneity . As used herein , the “ reachability ” of a 
is employed ; and ( b ) the network density is selected in such network means ( || AP | F ( min , | A , 1 ) ) ? ( using the same math 
a way as to maximize “ reachability ” and to minimize notation with the same meaning as in Equation 3 ) . As used 
“ homogeneity ” , as those terms are defined herein . 50 herein , the “ homogeneity ” of a network means ( min , | A ; l / 

This approach is well - suited for running an NetES algo max , | A , 1 ) ( using the same math notation with the same 
rithm using an Erdos - Renyi network . meaning as in Equation 3 ) . 

The following discussion provides insights into : ( a ) why In some implementations of this invention , the perfor 
a sparse network topology may perform better than a fully mance of a group of reinforcement learning agents is maxi 
connected topology ; ( b ) why Erdos - Renyi networks may 55 mized by maximizing reachability and by minimizing homo 
outperform other network families ; and ( c ) why perfor geneity . In some implementations , it is desirable to minimize 
mance of a network ( e.g. , a sparse ER topology ) may be homogeneity in order to maximize the diversity of parameter 
optimized ( or improved ) by maximizing the reachability of updates across agents . In some implementations of this 
the network and the minimizing the homogeneity of the invention , reachability and homogeneity are not independent 
network . 60 and are statistics of the degree distribution of a graph . 

A reason for employing sparse connectivity and having Reachability is the squared ratio of the total number of 
each agent hold their own parameters ( as per Equation 2 ) is paths of length 2 in A to the minimum number of links of all 
to search the parameter space more effectively . One possible nodes of A. The sparser a network , the larger the reachabil 
heuristic for measuring the capacity to explore the parameter ity . For Erdos - Renyi graphs , ( | AW ( min , | A , D ) - ( PN ) -1/2 , 
space is the diversity of parameter updates during each 65 where p is the average density of the network ( the inverse of 
iteration , which can be measured by the variance of param sparsity ) , the probability that any two nodes being con 
eter updates : nected . 
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Homogeneity is the squared ratio of the minimum to network . This increase in efficiency may due to the vastly 
maximum connectivity of all nodes of A : the higher this larger parameter space being explored by each local neigh 
value , the more homogeneously connected the graph is . The borhood . 
sparser a network is , the lower is the homogeneity of a The distribution of reward ( in FIG . 4 ) and learning rate ( in 
network . In the case of Erdos - Renyi networks , ( min , | A _ // 5 FIG . 5 ) over several repeated runs of the NetES algorithm 
max , | A , D ) 2-1-8V ( 1 - p ) / ( Np ) . varied strongly with the density of Erdos - Renyi networks . In 

In some cases , out of four network families ( Erdos - Renyi , FIG . 4 , reward is calculated as the improvement from 
scale - free , small - world , and fully - connected ) : ( 1 ) Erdos baseline . In FIG . 5 , learning rate is calculated as the number 
Renyi networks maximize reachability and minimize homo of iterations ahead of the fully - connected network to reach 
geneity , which means that they maximize the diversity of 10 baseline reward . 
parameter exploration ; and ( 2 ) fully - connected networks FIG . 4 shows a percent improvement of reward , as a 
( which are the de facto communication network used for function of network density , as observed in the early tests . 
distributed learning ) are the worst network in terms of As shown in FIG . 4 , Erdos - Renyi networks achieved up to 
exploration diversity ( they minimize reachability and maxi a 26 % increase from the baseline reward . As the networks 
mize homogeneity , the opposite of what would be required 15 became denser , the average improvement compared to base 
for maximizing parameter exploration ) . line decreases , approaching zero as networks become close 
Early Tests to fully - connected . A random graph with an average density 

The following twenty paragraphs describe early tests of of 0.9 still does 5 % better than a baseline network ( which 
prototypes of this invention . has a density of 1.0 ) . 

In these early tests : ( a ) a variety of network topologies 20 FIG . 5 shows learning rate as a function of network 
were tested ; and ( b ) DRL agents performed better in sparse density , as observed in the early tests . Fully - connected 
network topologies than in more dense network topologies . networks took about 320 iterations to reach their asymptotic 

These early tests used OpenAI’s Roboschool 3D Human maximum result ; whereas our fastest network reached that 
oid Walker ( specifically , RoboschoolHumanoid - v1 , shown value in only 220 iterations ( and kept learning ) , an improve 
in FIG . 1 ) , an open - source implementation of MuJoCo . 25 ment of 32 % . 

To run the early tests , we generated a large set of In the early tests , we observed that denser networks tend 
canonical network topologies , as well as a set of engineered to learn faster , but the relationship is not monotonic : as the 
topologies that were designed to isolate various network network approaches being fully connected , the distribution 
statistics . We fixed the number of nodes ( agents ) to be 1000 . flattens and the average learning rate decreases . This 
We generated a population of Erdos - Renyi random graphs 30 increase in speed may be due to the fact that the separate 
by varying the routine's main parameter , p . Erdos - Renyi network neighborhoods of agents are able to visit a larger 
random graphs are constructed by connecting each pair of number of parameters in parallel , and hence can find higher 
possible nodes at random with probability p . We ensured that maxima faster . Because the NetES algorithm also imple 
the network consisted of only one component ( i.e. that there ments a probabilistic broadcast , which may set the param 
are no disconnected nodes or components in the network ) . 35 eters of all agents to those of the highest - performing agent 

In these early tests , we employed random partition graph with probability B at the end of each iteration , the NetES 
generation ( as described above ) to generate engineered algorithm may ensure that the network tends to converge to 
graphs . Each of these engineered graphs comprised a num better - performing parameters . In the NetES algorithm , net 
ber of smaller Erdos - Renyi clusters connected to each other . worked decentralization strikes a balance between increased 

In these early tests , we created a baseline by running 40 parameter exploration diversity and global communication . 
fully - connected networks of 1000 agents using OpenAI's In some of the early tests , we calculated network metrics 
original ES code ten times . We then fitted each run using a across all 1000 nodes in each Erdos - Renyi network . We 
logistic growth function . We used the higher asymptote as a found strong correlations between these network metrics and 
measure of maximum reward for each run , and then used the reward , as shown in FIGS . 6A , 6B and 6C . Specifically , we 
average of these maximum asymptotic rewards as a measure 45 found that as the number of edges ( communication between 
of performance , henceforth referred to as the baseline . agents ) increases , the reward decreases ( FIG . 6A ) . This 

In these early tests , we then ran the NetES algorithm with decline may be because , as communication increases , the 
a variety of different network topologies , and compared the local neighborhoods become less isolated from one another 
resulting performance to the baseline . and the diversity of parameters being explored decreases . 

In these early tests , we then ran all our network variants 50 This , in turn , may lead to lower rewards ( closer to baseline ) . 
( both in terms of topology and attributes ) and similarly Clustering is a measure of how many of the neighbors of 
obtained a measure of the mean asymptotic reward . We each node form a closed triangle , and is therefore a super 
computed these asymptotes over the same number of itera local measure of connectedness . We find that as clustering 
tions to maintain comparability of results , and we also increases , rewards decrease ( FIG . 6B ) . Modularity , a mea 
ensured that rewards stabilized over time to an asymptote in 55 sure of inter - neighborhood global connectedness , also cor 
order to get an accurate observation of maximum achieved relates with higher rewards ( FIG . 6C ) . 
reward . FIG . 6A shows that in Erdos - Renyi networks , perfor 

FIGS . 3 , 4 , 5 , 6 , 7 and 8 summarize results of the early mance increases as the number of edges of the of network 
tests . decreases . FIG . 6B shows that in Erdos - Renyi networks , 

FIG . 3 shows performance of different network topolo- 60 performance improves as the clustering of the network 
gies . Specifically , FIG . 3 shows that 1000 agents arranged in decreases . FIG . 6C shows that in Erdos - Renyi networks , 
an engineered network ( using a NetES algorithm ) performed performance improves as the modularity of the network 
better than up to 4000 agents arranged in a conventional increases . In FIGS . 6A , 6B and 6C , performance is mea 
fully - connected ES network . As can be seen in FIG . 3 , an sured as percent improved reward from the baseline ( de 
engineered network with 1000 agents not only beat fully- 65 scribed above ) . 
connected networks with a similar number of agents ( pro FIGS . 6A , 6B and 6C show that , in Erdos - Renyi net 
cessors ) , but beat 4000 agents arranged in a fully - connected works , sparsity at both the local neighborhood level and at 
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a global inter - cluster level may lead to higher rewards . In the In these later tests , the NetES algorithm was evaluated on 
early tests , we observed that sparser networks at both the a series of popular benchmarks for deep reinforcement 
local and global level— learn faster and achieve higher learning tasks , selected from two frameworks : ( a ) the open 
rewards than baseline , and with less communication cost source Roboschool benchmark , and ( b ) the MuJoCo frame 
( less dense networks have less edges , and hence lower 5 work . The five benchmark tasks used for evaluation were : 
communication between nodes ) . Humanoid - v1 ( Roboschool and Mujoco ) , HalfCheetah - v1 

FIG . 7 shows percent improved reward from baseline , as ( MuJoCo ) , Hopper - v1 ( MuJoCo ) and Ant - v1 ( MuJoCo ) . 
a function of number of edges , in engineered networks , as In these later tests , we used a standard evaluation metric 
observed in the early tests . of collecting the total reward agents collect in an episode , 

FIG . 8 shows percent improved reward from baseline , as 10 which we computed periodically during training . Specifi 
a function of number of edges , in Erdos - Renyi random cally , with a probability of 0.08 , we paused training , took the 
networks , as observed in the early tests . FIG . 8 indicates parameters of the best agent and ran this parameter ( without 
that , in Erdos - Renyi random networks , lower communica added noise perturbation ) for 1000 episodes , and took the 
tion ( edge counts ) lead to higher reward . average total reward over all episodes . After evaluation , 

In the early tests , we tested engineered network topolo- 15 training was resumed with the same pre - evaluation param 
gies ( that are the subject of FIG . 7 ) that each have an even eters ( i.e. evaluation did not change training parameters ) . 
smaller number of edges than the number of edges of the When training eventually stabilized to a maximum “ flat ” 
Erdos - Renyi networks ( that are the subject of FIG . 8 ) . We line , we recorded the maximum of evaluation performance 
found that ( in the networks whose performance is summa values ( averaged over all episodes ) during this “ flat ” period 
rized in FIGS . 7 and 8 ) engineered networks show increased 20 as our recorded performance for this particular experimental 
rewards : 26 % for the highest Erdos - Renyi network com 
pared to 33.5 % for the best engineered graph . Interestingly , In these later tests , we then repeated the former evaluation 
the relationship was non - monotonic : the trends in rewards procedure for different instances of the same network topol 
with respect to the number of edges in Erdos - Renyi and ogy ( by varying the random seed of network generation , we 
engineered networks are opposite to one another . This may , 25 can create , at the start of each experiment , a different 
perhaps , be because under a certain threshold number of network topology with the same global properties ) with the 
edges , agents are no longer able to communicate efficiently same average density p ( i.e. the same average number of 
within their thinned neighborhood and good gradients are links ) and the same number of nodes N. Since each node 
not being communicated to neighbors who end up relying runs the same number of episode time steps per iteration , 
more on their very few neighbors ' rewards , which in turn 30 different networks with the same p can be fairly compared . 
leads to ineffective search . We then report the average performance over 6 runs with 

In the early tests , we found the same non - monotonic 5-95 % confidence intervals . 
behavior for average path length , clustering ( local connect In these later tests , we employed the following neural 
edness ) , and modularity ( global sparsity ) . In the early test , network architecture : multilayer perceptrons with two 
although the best engineered networks still do better than 35 64 - unit hidden layers separated by tanh nonlinearities . In 
Erdos - Renyi graphs , rewards decrease if network connect these later tests , we also : ( 1 ) trained for one complete 
edness decreases too much . In such cases , even extremely episode for each iteration ; ( 2 ) employed antithetic or mir 
high broadcast probabilities do not allow such overly rored sampling , also known as mirrored sampling , where we 
thinned networks to learn . In the early tests , the larger explored EO , -E O for every sample EON ( 0,1 ) ; ( 3 ) 
scattering variance in the generated network rewards may 40 employed fitness shaping by applying a rank transformation 
due to the fact that we ran each engineered network only to the returns before computing each parameter update , and 
once ( to allow for our greater exploration of engineered ( 4 ) employed weight decay in the parameters for regular 
topologies ) , instead of running repeated experiments for ization . In these later tests , we also employed the same 
each topology , which we do for Erdos - Renyi and fully hyperparameters as an original OpenAI ( fully - connected 
connected networks . 45 and centralized ) implementation , varying only the network 
Later Tests topology for our experiments . 

The following 19 paragraphs describe later tests of pro In these later tests , the NetES algorithm using alternative 
totypes of this invention . network topologies took approximately the same wall - clock 

In these later tests , the NetES algorithm was employed time as when using a fully - connected network ( baseline ES ) : 
with each of four families of network topologies ( in addition 50 although each iteration using NetES took longer because of 
to a conventional fully - connected de facto topology ) : ( 1 ) increased communication ( about 60 seconds for NetES 
Erdos - Renyi ( ER ) networks ; ( 2 ) scale - free networks ; ( 3 ) versus 50 seconds for ES with 1000 agents each ) , NetES is 
small - world networks ; and ( 4 ) fully - connected networks still superior because the 1000 NetES agents learned at the 
( where every node is connected to every other node ) . Each roughly the same ( higher ) performance level as 3000 ES 
of these network families may be parametrized by the 55 agents ( which took more than 2 minutes ) . 
number of nodes N , and their degree distribution . Erdos In these later tests , we use an average network density of 
Renyi networks , for example , are parametrized by their 0.2 for all network families and sizes of networks because it 
average density p ranging from 0 to 1 , where 0 would lead is sparse enough to provide good learning performance , and 
to a completely disconnected graph ( no nodes are con consistent ( not noisy ) empirical results . 
nected ) , and 1.0 would lead back to a fully - connected graph . 60 In these later tests , using the MuJoCo Ant - v1 benchmark 
The lower p is , the sparser a network is . Similarly , the degree task ( because it runs the fastest ) , we ran a series of experi 
distribution of scale - free networks is defined by the expo ments on four different network families : Erdos - Renyi , 
nent of the power distribution . Because each graph is scale - free , small - world and the conventional fully - con 
generated randomly , two graphs with the same parameters nected network . In these later tests , for a given average 
will be different if they have different random seeds , even 65 density , all networks from all topological families had the 
though , on average , they will have the same average degree same approximate number of links ( and nodes ) and only the 
( and therefore the same number of links ) . distribution of links ( degree distribution ) varied . Because 



Task Erdos % 

MuJoCo 1571 
1506 
762 
364 

4938 
7014 
3811 
6847 
429 

9.8 
346.3 
153.1 
798.6 
17.9 
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these later tests were exploratory experiments , we chose to learn from their own parameter update ( they do not see the 
run on smaller networks ( number of agents , N = 100 ) . rewards and parameters of any other agents ) and from 

In these later tests , Erdos - Renyi outperformed all other broadcast with our Erdos - Renyi network and fully - con 
network families , and fully - connected networks ( the de nected networks of 1000 agents on the Roboschool Human 
facto traditional network ) performed worst . 5 oid - v1 task . We observed that very little learning happens 

In these later tests , using Erdos - Renyi networks , we ran with just broadcast . This indicates that , in the later experi 
larger networks of 1000 agents on all 5 benchmark results . ments , broadcast did not drive the learning performance 
Table 1 shows a summary of improvements for Erdos - Renyi improvement we observed when using alternative topolo 
networks with 1000 nodes compared to fully - connected gies . In the later experiments , broadcast was treated as a 
networks . 10 hyperparameter and fixed as 0.8 . 
As can be seen in Table 1 , the Erdos - Renyi networks As noted above , in NetES , each agent may hold its own 

outperformed fully - connected networks on all benchmark parameter set 0 , instead of a global ( noised ) parameter 60 ) . 
tasks , resulting in improvements ranging from MuJoCo In some of the later experiments , we created the following 

4 control baselines for fully - connected ES with 100 agent 9.8 % on Ant - v1 to 798 % on MuJoCo Humanoid - v1 . All 
results are statistically significant ( based on 5-95 % confi- 15 running : ( 1 ) same global parameter , no broadcast ; ( 2 ) same 
dence intervals ) . global parameter , with broadcast ; ( 3 ) different parameters , 

with broadcast ; ( 4 ) different parameters , no broadcast . We 
then compared these four control baselines to NetES running TABLE 1 an Erdos - Renyi network . NetES did better than all 4 other 

Improvement 20 control baselines on MuJoCo Ant - v1 . 
Type Fully - connected In some of these later tests , we generated large instances 

of networks ( using N = 100 ) from different families of net MuJoCo Ant - v1 4496 
HalfCheetah - v1 works ( fully connected , Erdos - Renyi , scale - free , and small 

MuJoCo Hopper - v1 world ) , and observed that Erdos - Renyi graphs maximize the 
MuJoCo Humanoid - v1 25 diversity of parameter updates . We observed that Erdos 
Roboschool Humanoid - v1 Renyi networks perform best , followed by scale - free net 

works , while fully - connected networks do worse . 
In these later tests , the difference in performance between Practical Applications : 

Erdos - Renyi and fully - connected networks was higher for In some implementations , this invention may be 
smaller networks compared to larger networks ) for the same 30 employed in any sparse , decentralized network . 
benchmark — and we observed this behavior across different This invention may achieve faster and higher decentral 
benchmarks . This may be because NetES is able to achieve ized learning with much cheaper communication costs in 
higher performance with fewer agents due to its efficiency of practical networks of Al ( artificial intelligence ) agents . 
exploration . In some cases , this invention may be employed for 
So far , in the discussion of the later tests , we have 35 massively distributed learning , such as across entire fleets of 

compared alternative network topologies with fully - con autonomous vehicles or mobile phones that learn from each 
nected networks containing the same number of agents . other instead of requiring a master to coordinate learning . 

In the later tests , we also investigated whether smaller Because of geographic location , such sparse networks of 
Erdos - Renyi networks can outperform larger fully - con communication between autonomous vehicles and mobile 
nected networks . To do this , we chose one of the bench- 40 phones may occur naturally . 
marks that has the lowest improvement for 1000 agents , For instance , in some implementations of this invention , 
Roboschool Humanoid - vl . We observed that an Erdos each vehicle in a fleet of autonomous vehicles may include 
Renyi network with 1000 agents provides comparable per a processor that is a DRL agent . Each of these processors 
formance to 3000 agents arranged in a fully - connected may be a node in a sparse , decentralized network of DRL 
network . This shows that , in some of the later tests , networks 45 agents . The fleet of autonomous vehicles may perform 
with alternative topologies not only provided improvements massively distributed DRL ( or another Al algorithm ) . 
over fully - connected networks , but also had a multiplicative For instance , in some implementations of this invention , 
effect on performance . cellphones may be nodes in a network and the local learning 

As noted above , the NetES is an improvement over the ES update may be communicated within a local neighborhood 
algorithm . NetES may be used with a wide variety of 50 via Bluetooth® with occasional global broadcast via long 
network topologies that ES cannot use . range data communication ( 3G , 4G , Edge® , etc. ) . The 
As noted above , NetES differs from the ES algorithm in network of cellphones may perform massively distributed 

certain features , such as stochastic broadcast and each agent DRL ( or another Al algorithm ) 
having its own parameter set . In some of the later tests , we In contrast , using a fully - connected architecture requiring 
evaluated whether these features were causing improve- 55 a master in such a naturally decentralized application ( e.g. , 
ments in performance instead of just the use of alternative a fleet of autonomous vehicles , or a network of cell phones ) 
network topologies . We ran control experiments on two of would be both impractically costly , and would lead to slower 
these features , namely : ( a ) the use of broadcast , ( b ) the fact and lower learning . 
that each agent / node has a different parameter set . Agents 

Net ES may implement parameter broadcast as follows : at 60 In some implementations of this invention , parallel com 
every iteration , with a probability Pb , all agents ' current putations perform deep reinforcement learning ( e.g. , per 
parameters are replaced with the best agent's performing form a NetES algorithm ) . 
weights , and then training continues after that ( as per In some implementations of this invention , the computa 
Equation 2 ) . In some of the later tests , we evaluated whether tions for the learning agents are performed by multiple 
broadcast ( over different probabilities ranging from 0.0 to 65 processors or computing cores in a decentralized network . In 
1.0 ) contributes significantly to learning . Specifically , we some cases , each individual processor or core in the network 
compared “ disconnected ” networks where agents can only performs computations for a single reinforcement learning 
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agent . In some cases , the multiple cores or processors in the phrase “ Neighborhoodfully_connected ” may ( each that itap 
network are each housed in a separate device , such as in a pears in the names of the following files ) be replaced with 
cellphone , mobile phone , smartphone , autonomous vehicle , the following phrase " Neighborhoodfully - connected " : 
drone , or robot . In some cases , the multiple cores or pro Ant_v1_Neighborhooderdos0_2num_agents 1000_broad 
cessors in the network are components of one or more castp_0_8_threads_120.txt ; 
multi - core processors . In some cases , the multiple cores or HalfCheetah_v1_Neighborhooderdos0_2num_agents1000_ 
processors in the network are components in one or more ( a ) broadcastp_0_8_threads_120.txt ; 
clusters of computers , ( b ) distributed computers ( e.g. , dis Hopper_v1 tributed memory multiprocessors ) , ( c ) MPPs ( massively Neighborhooderdos0_2num_agents 1000_broadcastp_0_ parallel processors ) , or ( d ) SMPs ( symmetric multi - proces- 10 8_threads_120.txt ; sors ) . In some cases , each core or processor in the network 
is housed in a separate computer . In some cases , memory in Humanoid_v1_Neighborhooderdos0_2num_agents1000_ 

broadcastp_0_8_threads_120.txt ; the network is physically distributed , such as in a NUMA 
( non - uniform memory access ) network . HumanoidStandup_v1_NeighborhooderdosO_2num_ 

In some implementations of this invention : ( a ) the nodes 15 agents 1000_broadcastp_0_8_threads_120.txt ; 
of the decentralized network are processors or cores that Swimmer_v1_Neighborhooderdos0_2num_agents 1000_ 
each perform computations for a DRL agent ; and ( b ) the broadcastp_0_8_threads_120.txt ; 
nodes are communicatively linked to each other via one or Neighborhood_selfloop_pselfloop_num_agents 1000_ 
more wired , wireless or fiber optic communication links broadcastp_0_1_threads_120.txt ; 
( e.g. , via the Internet , or via wireless communication , or via 20 Neighborhood_selfloop_pselfloop_num_agents1000_ 
fiber optic communication ) . broadcastp_0_2_threads_120.txt ; 

In some implementations , each reinforcement learning Neighborhood_selfloop_pselfloop_num_agents 1000_ 
agent is a node in the network . For instance , each learning broadcastp_0_3_threads_120.txt ; 
agent in FIG . 1B may be a node in a decentralized network . Neighborhood_selfloop_pselfloop_num_agents 1000_ 
Likewise , each node ( e.g. , 101 and 103 ) in FIG . 1C may be 25 broadcastp_0_4_threads_120.txt ; 
a node in a decentralized network . Neighborhood_selfloop_pselfloop_num_agents 1000_ 
Computer Readable Media , Etc. broadcastp_0_5_threads_120.txt ; 

In some implementations , this invention comprises one or Neighborhood_selfloop_pselfloop_num_agents 1000_ more computer that are programmed to perform one or more broadcastp_0_6_threads_120.txt ; of the Computer Tasks ( as defined herein ) . Neighborhood_selfloop_pselfloop_num_agents1000_ In some implementations , this invention comprises one or broadcastp_0_7_threads_120.txt ; 
more machine readable media , with instructions encoded Neighborhood_selfloop_pselfloop_num_agents 1000_ thereon for one or more computers to perform one or more 
of the Computer Tasks . broadcastp_0_8_threads_120.txt ; 

In some implementations , this invention comprises par- 35 Neighborhood_selfloop_pselfloop_num_agents 1000_ 
ticipating in a download of software , where the software broadcastp_0_9_threads_120.txt ; 
comprises instructions for one or more computers to perform Neighborhood_selfloop_pselfloop_num_agents 1000_ 
one or more of the Computer Tasks . For instance , the broadcastp_0_threads_120.txt ; 
participating may comprise ( a ) a computer providing the Neighborhood_selfloop_pselfloop_num_agents 1000_ 
software during the download , or ( b ) a computer receiving 40 broadcastp 1_threads_120.txt ; 
the software during the download . Ant_v1_Neighborhoodfully_connected_num_agents 100 
Software broadcastp_0_0_threads_120.txt ; 

In the Computer Program Listing above , 67 computer Ant_v1_Neighborhoodscalefreem4 num_agents 100 
files are listed . These 67 computer files comprise software broadcastp_0_8_threads_120.txt ; 
employed in a prototype of this invention . 45 HalfCheetah_v1_Neighborhoodfully connected num_ 

In order to comply with requirements for uploading agents 100 broadcastp_0_0_threads_120.t xt ; 
computer program files to the USPTO web site , changes HalfCheetah_v1_Neighborhoodscalefreem4 
were made to the file extensions of each of the 67 computer agents 100 broadcastp_0_8_threads_120.txt ; 
files and to the names of some of the files . Hopper_v1_Neighborhoodfully_connected_num_ 

These changes may be reversed , in order to use these 50 agents 100 broadcastp_0_0_threads_120.txt ; 
computer files . Specifically : Hopper_v1_Neighborhoodscalefreem4 num__ 

( 1 ) In order to run the following computer program files , agents 100 broadcastp_0_8_threads_120.txt ; 
their file extensions may be changed from “ .txt ” to “ .py " : Humanoid_v1_Neighborhoodfully_connected_num_ 
agent_updaters.txt ; dist.txt ; es.txt ; main.txt ; multi.txt ; net agents 100 broadcastp_0_0_threads_120.txt ; 
works.txt ; optimizers.txt ; policies.txt ; tabular_logger.txt ; 55 Humanoid_v1_Neighborhoodscalefreem4 num_agents 100 
tf_util.txt ; experiment_generator_small_networks_mujoco_ broadcastp_0_8_threads_120.txt ; vanilla_1K.txt ; 
erdos_ontheflytopo.txt ; networks_generator.txt ; launch.txt ; vanilla_2K.txt ; vanilla_3K.txt ; vanilla_4K.txt ; 
viz.txt ; watch_master_process.txt ; deploy.txt ; and request . vanilla_5K.txt ; vanilla_6K.txt ; vanilla_7K.txt ; 
txt . vanilla_8K.txt ; vanilla_9K.txt ; experiment_template.txt ; 

( 2 ) In order to employ the following files : ( a ) their file 60 and packer.txt . 
extensions may be changed from “ .txt ” to “ .json ” ; ( b ) the ( 3 ) In order to run the following programs , their file 
characters “ vl ” may ( each that they appear in the names of extensions may be changed from “ .txt ” to “ .sh ” : install_bul 
the following files ) be replaced with “ -vl ” ; ( c ) the charac let.txt ; dependency.txt ; local_env_setup.txt ; local_run_ 
ters “ O_1 ” , “ O_2 " , 0_3 ” , “ O_4 ” , “ O_5 ” , “ O_6 ” , “ O_7 ” , “ O_8 " exp.txt ; local_run_redis.txt ; watch_master_redis.txt ; watch_ 
and “ O_9 ” may ( each that they appear in the names of the 65 worker_process.txt ; watch_worker_redis.txt ; start_local.txt ; 
following files ) be replaced with " 0.1 " , " 0.2 " , 0.3 " , " 0.4 ” , and test_local.txt . Furthermore , the in install bullet.txt 
“ 0.5 ” , “ 0.6 ” , “ 0.7 ” , “ 0.8 ” and “ 0.9 ” , respectively ; and ( d ) the may be replaced with “ _ ” . 
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( 4 ) In order to employ the following configuration files , ( b ) an auxiliary memory storage device . For example , in 
their file extensions may be changed from “ .txt ” to “ .confº : some cases , a control unit in a computer fetches the instruc 
redis_local_mirror.txt ; and redis_master.txt . tions from memory . 

( 5 ) In order to employ the following file , its file extension In illustrative implementations , one or more computers 
may be changed from “ .txt " to “ .yml ” and the “ _ ” in its name execute programs according to instructions encoded in one 
may be changed to “ - ” : es_network.txt . or more tangible , non - transitory , computer - readable media . 

( 6 ) In order to employ the following file , the “ .txt ” file For example , in some cases , these instructions comprise 
extension may be deleted : ec2ctl.txt . instructions for a computer to perform any calculation , 

In some cases , all or part of the above 67 computer files computation , program , algorithm , or computer function 
are software for running and deploying NetES . In some described or implied herein . For example , in some cases , 
cases : ( a ) a conda environment may be created using the instructions encoded in a tangible , non - transitory , computer 
following command on remote instances " conda env create - f accessible medium comprise instructions for a computer to 
es - network.yml " ; ( b ) AWS instances may be requested using perform the Computer Tasks . 
" python request.py NUM INSTANCES ” ; ( c ) JSON experi Network Communication 
ments may be deployed to AWS instances using " python In illustrative implementations of this invention , elec 
deploy.py configurations_DIR — aws_request_dir aws_re tronic devices ( e.g. , ( e.g. , the learning agents in FIG . 1A or 
quests_DIR ” ; and ( d ) network graph files may be created 1B , or nodes 101 and 103 in FIG . 1C ) are each configured 
either on - the - fly using the appropriate JSON configs or ( for for wireless or wired communication with other devices in 
static testing ) using network networks_generator.py . 20 a network . 

This invention is not limited to the software set forth in For example , in some cases , one or more of these elec 
the above 67 computer files . Other software may be tronic devices each include a wireless module for wireless 
employed . Depending on the particular implementation , the communication with other devices in a network . Each wire 
software used in this invention may vary . less module include ( a ) one or more antennas , ( b ) one or 
Computers 25 more wireless transceivers , transmitters or receivers , and ( c ) 

In illustrative implementations of this invention , one or signal processing circuitry . Each wireless module may 
more computers ( e.g. , servers , network hosts , client com receive and transmit data in accordance with one or more 
puters , integrated circuits , microcontrollers , controllers , wireless standards . 
field - programmable - gate arrays , personal computers , digital In some cases , one or more of the following hardware 
computers , driver circuits , or analog computers ) are pro components are used for network communication : a com 
grammed or specially adapted to perform one or more of the puter bus , a computer port , network connection , network 
following tasks : ( 1 ) to perform deep reinforcement learning interface device , host adapter , wireless module , wireless 
( such as by performing the NetES algorithm , ES algorithm , card , signal processor , modem , router , cables or wiring . 
Gorila algorithm or A3C algorithm ) or to perform any other In some cases , one or more computers ( e.g. , the learning 
machine learning ; ( 2 ) to calculate a network topology ; ( 3 ) to agents in FIG . 1A or 1B , or nodes 101 and 103 in FIG . 1C ) 
maximize or improve the performance of a group of rein are programmed for communication over a network . For 
forcement learning agents by optimizing or improving a example , in some cases , one or more computers are pro 
communication topology between the agents for the com grammed for network communication : ( a ) in accordance 
munication of gradients , weights or rewards ; ( 4 ) to receive 40 with the Internet Protocol Suite , or ( b ) in accordance with 
data from , control , or interface with one or more sensors ; ( 5 ) any other industry standard for communication , including 
to perform any other calculation , computation , program , any USB standard , ethernet standard ( e.g. , IEEE 802.3 ) , 
algorithm , or computer function described or implied herein ; token ring standard ( e.g. , IEEE 802.5 ) , wireless standard 
( 6 ) to receive signals indicative of human input ; ( 7 ) to output ( including IEEE 802.11 ( Wi - Fi® ) , IEEE 802.15 ( Blu 
signals for controlling transducers for outputting informa- 45 etooth® / Zigbee® ) , IEEE 802.16 , IEEE 802.20 and includ 
tion in human perceivable format ; ( 8 ) to process data , to ing any mobile phone standard , including GSM ( global 
perform computations , and to execute any algorithm or system for mobile communications ) , UMTS ( universal 
software ; and ( 9 ) to control the read or write of data to and mobile telecommunication system ) , CDMA ( code division 
from memory devices ( tasks 1-9 of this sentence referred to multiple access , including IS - 95 , IS - 2000 , and WCDMA ) , 
herein as the “ Computer Tasks " ) . The one or more comput- 50 or LTE ( long term evolution ) ) , or other IEEE communica 
ers ( e.g. , the learning agents in FIG . 1A or 1B , or nodes 101 tion standard . 
and 103 in FIG . 1C ) may , in some cases , communicate with Definitions 
each other or with other devices : ( a ) wirelessly , ( b ) by wired The terms “ a ” and “ an ” , when modifying a noun , do not 
connection , ( c ) by fiber - optic link , or ( d ) by a combination imply that only one of the noun exists . For example , a 
of wired , wireless or fiber optic links . 55 statement that “ an apple is hanging from a branch ” : ( i ) does 

In exemplary implementations , one or more computers not imply that only one apple is hanging from the branch ; ( ii ) 
are programmed to perform any and all calculations , com is true if one apple is hanging from the branch ; and ( iii ) is 
putations , programs , algorithms , computer functions and true if multiple apples are hanging from the branch . 
computer tasks described or implied herein . For example , in To say that a calculation is “ according to ” a first equation 
some cases : ( a ) a machine - accessible medium has instruc- 60 means that the calculation includes ( a ) solving the first 
tions encoded thereon that specify steps in a software equation ; or ( b ) solving a second equation , where the second 
program ; and ( b ) the computer accesses the instructions equation is derived from the first equation . Non - limiting 
encoded on the machine - accessible medium , in order to examples of " solving " an equation include solving the 
determine steps to execute in the program . In exemplary equation in closed form or by numerical approximation or 
implementations , the machine - accessible medium may com- 65 by optimization . 
prise a tangible non - transitory medium . In some cases , the To compute “ based on ” specified data means to perform 
machine - accessible medium comprises ( a ) a memory unit or a computation that takes the specified data as an input . 
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The term “ comprise ” ( and grammatical variations or both A and B are true . Also , for example , a calculation of 
thereof ) shall be construed as if followed by " without A or B means a calculation of A , or a calculation of B , or a 
limitation ” . If A comprises B , then A includes B and may calculation of A and B. 
include other things . A parenthesis is simply to make text easier to read , by 

A digital computer is a non - limiting example of a “ com 5 indicating a grouping of words . A parenthesis does not mean 
puter ” . An analog computer is a non - limiting example of a that the parenthetical material is optional or may be ignored . 
" computer " . A computer that performs both analog and “ Reachability ” is defined above . 
digital computations is a non - limiting example of a " com As used herein , the term “ set ” does not include a group 
puter ” . However , a human is not a “ computer ” , as that term with no elements . 
is used herein . Unless the context clearly indicates otherwise , “ some ” 

" Computer Tasks ” is defined above . 
“ Defined Term ” means a term or phrase that is set forth in As used herein , a “ subset of a set consists of less than all 

quotation marks in this Definitions section . of the elements of the set . 
“ DRL ” means deep reinforcement learning . The term “ such as ” means for example . 
For an event to occur “ during " a time period , it is not 15 To say that a machine - readable medium is “ transitory ” 

necessary that the event occur throughout the entire time means that the medium is a transitory signal , such as an 
period . For example , an event that occurs during only a electromagnetic wave . 
portion of a given time period occurs “ during ” the given Except to the extent that the context clearly requires 
time period . otherwise , if steps in a method are described herein , then the 

The term “ e.g. ” means for example . 20 method includes variations in which : ( 1 ) steps in the method 
Each equation above may be referred to herein by the occur in any order or sequence , including any order or 

equation number set forth to the right of the equation . sequence different than that described herein ; ( 2 ) any step or 
Non - limiting examples of an “ equation ” , as that term is used steps in the method occur more than once ; ( 3 ) any two steps 
herein , include : ( a ) an equation that states an equality ; ( b ) an occur the same number of times or a different number of 
inequation that states an inequality ( e.g. , that a first item is 25 times during the method ; ( 4 ) any combination of steps in the 
greater than or less than a second item ) ; ( c ) a mathematical method is done in parallel or serially ; ( 5 ) any step in the 
statement of proportionality or inverse proportionality ; and method is performed iteratively ; ( 6 ) a given step in the 
( d ) a system of equations . method is applied to the same thing each time that the given 

“ ES ” means Evolution Strategies . step occurs or is applied to different things each time that the 
The fact that an “ example ” or multiple examples of 30 given step occurs ; ( 7 ) one or more steps occur simultane 

something are given does not imply that they are the only ously , or ( 8 ) the method includes other steps , in addition to 
instances of that thing . An example ( or a group of examples ) the steps described herein . 
is merely a non - exhaustive and non - limiting illustration . Headings are included herein merely to facilitate a read 
Unless the context clearly indicates otherwise : ( 1 ) a er's navigation of this document . A heading for a section 

phrase that includes “ a first ” thing and “ a second ” thing does 35 does not affect the meaning or scope of that section . 
not imply an order of the two things ( or that there are only This Definitions section shall , in all cases , control over 
two of the things ) ; and ( 2 ) such a phrase is simply a way of and override any other definition of the Defined Terms . The 
identifying the two things , respectively , so that they each Applicant or Applicants are acting as his , her , its or their own 
may be referred to later with specificity ( e.g. , by referring to lexicographer with respect to the Defined Terms . For 
" the first thing and “ the second ” thing later ) . For example , 40 example , the definitions of Defined Terms set forth in this 
unless the context clearly indicates otherwise , if an equation Definitions section override common usage and any external 
has a first term and a second term , then the equation may ( or dictionary . If a given term is explicitly or implicitly defined 
may not ) have more than two terms , and the first term may in this document , then that definition shall be controlling , 
occur before or after the second term in the equation . A and shall override any definition of the given term arising 
phrase that includes a “ third ” thing , a “ fourth ” thing and so 45 from any source ( e.g. , a dictionary or common usage ) that is 
on shall be construed in like manner . external to this document . If this document provides clari 

“ For instance ” means for example . fication regarding the meaning of a particular term , then that 
To say a " given " X is simply a way of identifying the X , clarification shall , to the extent applicable , override any 

such that the X may be referred to later with specificity . To definition of the given term arising from any source ( e.g. , a 
say a “ given ” X does not create any implication regarding X. 50 dictionary or common usage ) that is external to this docu 
For example , to say a " given ” X does not create any ment . Unless the context clearly indicates otherwise , any 
implication that X is a gift , assumption , or known fact . definition or clarification herein of a term or phrase applies 
As used herein , " graph ” means a network . to any grammatical variation of the term or phrase , taking 
“ Herein ” means in this document , including text , speci into account the difference in grammatical form . For 

fication , claims , abstract , and drawings . 55 example , the grammatical variations include noun , verb , 
“ Homogeneity ” is defined above . participle , adjective , and possessive forms , and different 
As used herein : ( 1 ) “ implementation ” means an imple declensions , and different tenses . 

mentation of this invention ; ( 2 ) “ embodiment " means an Variations 
embodiment of this invention ; ( 3 ) “ case ” means an imple This invention may be implemented in many different 
mentation of this invention ; and ( 4 ) “ use scenario ” means a 60 ways . Here are some non - limiting examples : 
use scenario of this invention . In some implementations , this invention is a method 

The term “ include ” ( and grammatical variations thereof ) comprising maximizing performance of a network of rein 
shall be construed as if followed by “ without limitation ” . forcement learning agents by optimizing communication 

“ NetES ” means Networked Evolution Communication topology between the agents for communication of gradi 
Strategies . 65 ents , weights or rewards . In some cases , the network is a 
Unless the context clearly indicates otherwise , “ or ” means random Erdos - Renyi graph . In some cases , the network is a 

and / or . For example , A or B is true if A is true , or B is true , random Erdos - Renyi network ; and ( b ) the optimizing com 
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prises minimizing homogeneity of the network and maxi ing agent is a processor or computational core ; and ( b ) each 
mizing reachability of the network . In some cases , the reinforcement learning agent is housed in a device that is 
network is not fully connected . Each of the cases described separate from that for any other reinforcement learning 
above in this paragraph is an example of the method agent . In some cases : ( a ) each reinforcement learning agent 
described in the first sentence of this paragraph , and is also 5 is a processor or computational core ; ( b ) each reinforcement 
an example of an embodiment of this invention that may be learning agent is housed in a device that is separate from that 
combined with other embodiments of this invention . for any other reinforcement learning agent ; and ( c ) the 

In some implementations , this invention is a method device is a vehicle or a cellular phone . Each of the cases 
comprising improving performance of a network of rein described above in this paragraph is an example of the 
forcement learning agents by improving communication 10 method described in the first sentence of this paragraph , and 
topology between the agents for communication of gradi is also an example of an embodiment of this invention that 
ents , weights or rewards . In some cases , the network is a may be combined with other embodiments of this invention . 
random Erdos - Renyi graph . In some cases : ( a ) the network Each description herein ( or in the Provisional ) of any 
is a random Erdos - Renyi network ; and ( b ) the improving of method , apparatus or system of this invention describes a 
the communication topology comprises reducing homoge- 15 non - limiting example of this invention . This invention is not 
neity of the network and increasing reachability of the limited to those examples , and may be implemented in other 
network . In some cases , the improving topology comprises : ways . 
( a ) evaluating performance , in one or more reinforcement Each description herein ( or in the Provisional ) of any 
learning tasks , of each network topology in a set of multiple prototype of this invention describes a non - limiting example 
different network topologies ; ( b ) based on the evaluating , 20 of this invention . This invention is not limited to those 
selecting a specific network topology in the set ; and ( c ) then examples , and may be implemented in other ways . 
using the specific network topology to perform a reinforce Each description herein ( or in the Provisional ) of any 
ment learning algorithm . In some cases , the network is not implementation , embodiment or case of this invention ( or 
fully connected . Each of the cases described above in this any use scenario for this invention ) describes a non - limiting 
paragraph is an example of the method described in the first 25 example of this invention . This invention is not limited to 
sentence of this paragraph , and is also an example of an those examples , and may be implemented in other ways . 
embodiment of this invention that may be combined with Each Figure herein ( or in the Provisional ) that illustrates 
other embodiments of this invention . any feature of this invention shows a non - limiting example 

In some implementations , this invention is a method of this invention . This invention is not limited to those 
comprising performing a reinforcement learning algorithm 30 examples , and may be implemented in other ways . 
on a network wherein : ( a ) the network includes multiple The above description ( including without limitation any 
nodes , each node being a reinforcement learning agent ; ( b ) attached drawings and figures ) describes illustrative imple 
each agent has its own parameter set ; and ( c ) in each specific mentations of the invention . However , the invention may be 
iteration in a set of iterations of the reinforcement learning implemented in other ways . The methods and apparatus 
algorithm , each specific agent in the network performs an 35 which are described herein are merely illustrative applica 
update of the specific agent’s parameter set in such a way tions of the principles of the invention . Other arrangements , 
that ( i ) the update is based on information regarding only a methods , modifications , and substitutions by one of ordinary 
subset of the nodes in the network , which subset consists of skill in the art are also within the scope of the present 
less than 15 % of the nodes in the network , and ( ii ) the update invention . Numerous modifications may be made by those 
is performed separately from that for any other node in the 40 skilled in the art without departing from the scope of the 
network . In some cases , the subset consists of less than 10 % invention . Also , this invention includes without limitation 
of the nodes in the network . In some cases , the subset each combination and permutation of one or more of the 
consists of less than 5 % of the nodes in the network . In some items ( including hardware , hardware components , methods , 
cases , the method further includes performing with a fixed processes , steps , software , algorithms , features , or technol 
probability , in each specific iteration in a set of iterations of 45 ogy ) that are described herein . 
the reinforcement learning algorithm , a broadcast of a What is claimed : 
parameter set ( “ broadcast parameter set ” ) in such a way that 1. A method comprising performing a reinforcement 
each specific agent in the network updates the specific learning algorithm on a network wherein : 
agent’s parameter set with the broadcast parameter set . In ( a ) the network includes multiple nodes , each node being 
some cases : ( a ) the method further includes performing with 50 a reinforcement learning agent ; 
a fixed probability , in each specific iteration in a set of ( b ) each agent has its own parameter set ; and 
iterations of the reinforcement learning algorithm , a broad ( c ) in each specific iteration in a set of iterations of the 
cast of a parameter set ( “ broadcast parameter set ” ) in such reinforcement learning algorithm , each specific agent 
a way that each specific agent in the network updates the in the network performs an update of the specific 
specific agent's parameter set with the broadcast parameter 55 agent’s parameter set in such a way that 
set ; and ( b ) the probability is greater than or equal to 0.5 . In ( i ) the update is based on information regarding only a 
some cases , the network is a random Erdos - Renyi graph . In subset of the nodes in the network , which subset 
some cases : ( a ) the network is a random Erdos - Renyi graph ; consists of less than 15 % of the nodes in the network , 
( b ) each specific pair of nodes in the graph has a fixed and 
probability of being connected by an edge of the graph , 60 ( ii ) the update is performed separately from that for any 
which edge connects a node in the specific pair with another other node in the network . 
node in the specific pair ; and ( c ) the probability is less than 2. The method of claim 1 , wherein the subset consists of 
0.6 . In some cases , the network is not fully connected . In less than 10 % of the nodes in the network . 
some cases : ( a ) the network comprises a multiple clusters of 3. The method of claim 1 , wherein the subset consists of 
nodes ; and ( b ) some but not all nodes in each specific cluster 65 less than 5 % of the nodes in the network . 
are connected by an edge to a node in another cluster in the 4. The method of claim 1 , wherein the method further 
set of clusters . In some cases : ( a ) each reinforcement learn includes performing with a fixed probability , in each specific 



5 

US 10,715,395 B2 
25 26 

iteration in a set of iterations of the reinforcement learning 8. The method of claim 1 , wherein the network is not fully 
algorithm , a broadcast of a parameter set ( " broadcast param connected . 
eter set ” ) in such a way that each specific agent in the 9. The method of claim 1 , wherein : 
network updates the specific agent's parameter set with the ( a ) the network comprises a multiple clusters of nodes ; 
broadcast parameter set . and 

5. The method of claim 1 , wherein : ( b ) some but not all nodes in each specific cluster are 
( a ) the method further includes performing with a fixed connected by an edge to a node in another cluster in the probability , in each specific iteration in a set of itera set of clusters . 

tions of the reinforcement learning algorithm , a broad 10. The method of claim 1 , wherein : cast of a parameter set ( “ broadcast parameter set ” ) in 10 ( a ) each reinforcement learning agent is a processor or such a way that each specific agent in the network 
updates the specific agent's parameter set with the computational core ; and 
broadcast parameter set ; and ( b ) each reinforcement learning agent is housed in a 

( b ) the probability is greater than or equal to 0.5 . device that is separate from that for any other rein 
forcement learning agent . 6. The method of claim 1 , wherein the network is a 15 

random Erdos - Renyi graph . 11. The method of claim 1 , wherein : 
( a ) each reinforcement learning agent is a processor or 7. The method of claim 1 , wherein : 

( a ) the network is a random Erdos - Renyi graph ; computational core ; 
( b ) each specific pair of nodes in the graph has a fixed ( b ) each reinforcement learning agent is housed in a 

probability of being connected by an edge of the graph , 20 device that is separate from that for any other rein 
which edge connects a node in the specific pair with forcement learning agent ; and 
another node in the specific pair ; and ( c ) the device is a vehicle or a cellular phone . 

( c ) the probability is less than 0.6 . 


