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We utilize high-resolution mobile phone data with geolocation information and propose a novel technical

framework to study how social influence propagates within a phone communication network and affects the

offline decision to attend a performance event. Our fine-grained data is based on the universe of phone calls

made in a European country between January and July 2016. We isolate social influence from observed and

latent homophily by taking advantage of the rich spatial-temporal information and the social interactions

available from the longitudinal behavioral data. We find that influence stemming from phone communication

is significant and persists up to four degrees of separation in the communication network. Building on this

finding, we introduce a new “influence” centrality measure that captures the empirical pattern of influence

decay over successive connections. A validation test shows that the average influence centrality of the adopters

at the beginning of each observational period can strongly predict the number of eventual adopters and has

a stronger predictive power than other prevailing centrality measures such as the eigenvector centrality and

state-of-the-art measures such as diffusion centrality. Our centrality measure can be used to improve optimal

seeding strategies in contexts with influence over phone calls, such as targeted or viral marketing campaigns.

Finally, we quantitatively demonstrate how raising the communication probability over each connection, as

well as the number of initial seeds, can significantly amplify the expected adoption in the network and raise

net revenue after taking into account the cost of these interventions.
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1. Introduction

Social influence, mediated through various communication channels, plays an important role in

influencing consumer behavior (Sundararajan et al. 2013, Mobius and Rosenblat 2014, Banerjee

1
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et al. 2013). According to the media richness theory, different communication media vary in their

ability to enable communication and information exchange and also in their ease of use (Dennis

and Kinney 1998). Phone calls are an especially important communication channel through which

social influence takes place; it offers a comparably high level of media richness as offline channels—

thereby facilitating information flows and social influence—while also maintaining high ease of use

(i.e., low cost) as online channels (see Table 1).

Table 1 Comparison of three communication channels in terms of media richness and ease of use.

Phone Offline Online

Media richness
(Dennis and Kinney 1998)

Intimacy of relationship High High Low
Non-verbal cues (e.g., emotion) Yes Yes No
Synchronicity Yes Yes No

Ease of use
Time cost Low High Low
Location constraint No Yes No
Penetration rate High N/A Medium

Despite phone communication’s prevalence and importance, there exists limited studies in the

information systems (IS) and the social influence literature that studies explicitly how phone com-

munications mediate social influence1. A quantitative framework that credibly obtains estimates

on social influence from phone communications is important in business and management settings

because it can inform personalized mobile targeting (Ghose et al. 2019, Zhang et al. 2019) and viral

marketing (Aral and Walker 2011) applications, which are increasingly commonly used in practice.

We fill this gap in the literature by developing a novel framework to quantitatively estimate

the pattern of social influence via phone communications. First, we utilize high-resolution mobile

phone data with geolocation information (call detail records, or CDRs) and propose a technical

framework to study how social influence propagates within a phone communication network and

affects the offline decision to attend a performance event. Our fine-grained data is based on the

universe of phone calls made in a European country between January and July 2016. Our data

contain the entire history of each mobile phone user’s phone calls and geolocations (registered by

the nearest cell towers). We measure network connections based on phone calls: two individuals are

connected if there have been calls between them; additionally, we exploit the temporal dimension

of phone calls to construct the sequence of dynamic communications over time—what we refer

1 While studies have investigated the role of mobile phones in information exchange and the emergence of multiplex
communication networks (Matous et al. 2014), they have not specifically examined the role of phone communication
in social influence. In contrast, several studies investigate social influence through phone call data as a proxy for
social connections (e.g., de Matos et al. (2014), Hu et al. (2019), Belo and Ferreira (2022)) or exposure to ring-back
tones they hear (e.g., Ma et al. (2015), Zhang et al. (2018)), but these studies do not directly analyze social influence
that is mediated through phone calls.
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to as communication cascades. We measure adoption behavior using geolocation information—

specifically, attending an offline performance event that occurred recurrently during July 2016.

Social influence in our context is defined as the process by which a user, who has attended the

event, influences another user to subsequently attend the same event via direct phone calls or

indirectly through more than one degree of phone call separation in the communication cascades.

We exploit the twenty-two occurrences of the performance: after each performance, we measure the

impact of past attendees’ phone calls on subsequent attendance by individuals receiving the call.

By exploiting the temporal variation in the phone communication network and the repeated event

occurrence, we construct a rolling window of “treated” individuals—those who have received calls

from past attendees—and we estimate social influence based on comparing the behavior of these

treated individuals and other non-treated individuals.

A key difficulty for credibly estimating social influence based on behavioral and network data is

to control for homophily: two connected individuals may have correlated behaviors either because

they have correlated preferences (homophily) or because one’s behavior affects the other’s (influ-

ence). The presence of homophily implies that the assignment of treatment is non-random. In this

work, we introduce a novel technical framework to address this key challenge, by utilizing the

rich mobility and network information in phone communication data. For observed homophily, we

follow Eckles and Bakshy (2020) to adjust for behaviors highly relevant to the decision of interest

using individuals’ revealed preferences (i.e., mobility history). While observed homophily can be

controlled for, latent homophily is driven by unobserved factors and is generally difficult to purge.

We address this in two ways. First, we follow McFowland III and Shalizi (2021) and exploit the

information contained in a historical social network (different from communication cascades) that

captures the user’s past network connection history, i.e., two individuals are connected in this net-

work if reciprocal calls2 exist between them in the month prior to the event. To the extent that any

user-level characteristics simultaneously affect behavior and predict network connections—even if

these characteristics are not observed—we can utilize the historical social network to control for

such characteristics and thereby control for latent homophily and isolate social influence. Because

network data is high-dimensional, to operationalize this strategy, we extract from the network data

a low-dimensional, latent-feature representation of each individual using an efficient network rep-

resentation learning approach, node2vec (Grover and Leskovec 2016), based on the user’s historical

social network. We then use the latent positions of each user as covariates to control for latent

homophily. Second, we follow Belo and Ferreira (2022) to use the eventual adoption decisions of

one’s connections as a proxy for the focal individual’s unobserved preferences toward the adoption

decision. Controlling for such information, therefore, also helps control latent homophily.

2 Reciprocity helps to reduce the possibility of including spam calls.
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We use observed and latent homophily to create a matched control unit for each treated user,

and we implement a matching-based difference-in-differences strategy to estimate social influence.

We find that the influence stemming from phone communication is significant: a direct phone call

with a past attendee raises the likelihood of future performance attendance by 87.61%, relative

to the base adoption likelihood of 0.0098. The effect transmits over the network to second-degree

neighbors of the past attendees and increases their likelihood of future attendance by 68.65%.

Overall, we find that the effect persists up to four degrees of separation in the communication

network: even being indirectly connected with a past attendee via a network path of length four

significantly raises one’s likelihood of future attendance.

Building on our empirical finding, we develop a new influence centrality measure that captures

the empirical pattern of influence decay over successive connections. A node’s influence central-

ity captures the expected increase in adoption in the network. Different from the standard Katz

centrality, where the indirect influence decays exponentially at a common rate across successive con-

nections, our influence centrality takes into account the empirically estimated separation-specific

rates of decay and thus could be more relevant in empirical settings for increasing expected adop-

tions in the network. Our notion of influence centrality is useful for applications involving optimal

seeding strategies in network contexts where social influence is present. We conduct two exercises

to demonstrate this point. First, we conduct an in-sample test and show that the average influence

centrality of those who have previously attended the event can significantly predict the number of

eventual adopters. It has stronger predictive power than analogous measures constructed based on

other prevailing centralities, such as the diffusion and Katz centralities. Second, we quantitatively

demonstrate, in a simulated environment where high-centrality nodes are targeted to be the initial

adopters. Raising the communication probability over each connection and the number of initial

seeds can significantly amplify the overall expected adoption and may be desirable despite the cost

of these interventions. This exercise can inform optimal seeding in viral and targeted marketing

campaigns.

We summarize our contributions as follows. First, we develop a novel framework to estimate

social influence, where we exploit the spatial-temporal information to control for observed and

latent homophily using a matching-based difference-in-differences strategy. Second, we apply this

framework using high-resolution call detail records (CDRs) and provide credible estimates of direct

and long-range social influence over phone calls on offline behavior. We find social influence stem-

ming from phone communications to be significant and persist up to four degrees of separation.

Finally, we propose influence centrality, which is designed to capture the empirical pattern of

influence decay over successive connections. The measure can be used to improve optimal seeding

strategies in network contexts with social influence, such as targeted or viral marketing campaigns.
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We quantitatively demonstrate how raising the communication probability over each connection

and the number of initial seeds can significantly amplify the expected adoption in the network and

may be desirable despite the cost of these interventions.

2. Literature review
2.1. Social influence identification in networks

Identifying social influence effect in observational studies can be challenging from a methodological

standpoint (Shalizi and Thomas 2011). The reason is that individual decision-making in a social

network can be affected by several factors, including homophily, exogenous factors, and social

influence (Manski 1993). Various empirical approaches for studying social influence based on obser-

vational data have been adopted in the IS and social influence literature. First, in an instrumental

variable approach, a standard instrumental variable might be the behavior of two-degree neighbors

who are not neighbors of the focus user (de Matos et al. 2014). Next, propensity score matching

has been applied in many empirical settings, including studies of the effects of instant messaging on

the adoption of mobile applications (Aral et al. 2009), favoriting behavior on the songs individuals

listen to (Dewan et al. 2017), and online content contributions (Rishika and Ramaprasad 2019).

Finally, structural modeling, such as hierarchical Bayesian modeling, has been used to study the

effects of social influence and latent homophily on dynamic and repeated consumer purchases (Ma

et al. 2015).

The key to separating social influence from homophily and other exogenous variables lies in the

use of effective control variables. Recent studies on social influence in statistics and IS provide

promising solutions to partially address this issue using rich behavioral and network data that

have become increasingly available on digital platforms. First, it has been shown that adjusting

for high-dimensional behavioral data relevant to adoption behavior can remove the majority of the

estimation (selection) bias, leading to statistically indistinguishable results from those obtained

via a randomized experiment (Eckles and Bakshy 2020). Second, sufficient conditions for unbiased

and consistent estimates of social influence have been established theoretically when controlling for

estimated locations in a latent space, based on certain network generation processes (McFowland III

and Shalizi 2021). Third, it has also been shown that eventual adoption decisions of neighbors may

serve as a proxy for latent user preferences (Belo and Ferreira 2022). Inspired by these studies

and exploiting the rich spatial-temporal information in CDRs, we propose innovative ways to

operationalize and account for observed homophily with mobility data, as well as latent homophily

with latent positions learned from the social network and neighbors’ eventual adoption decisions.
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2.2. Social influence using mobile phone data

An abundance of literature studies how online behaviors diffuse through IT-enabled social networks,

as reviewed in Sundararajan et al. (2013). This literature has important managerial and strategic

implications for online marketing and platform designs. However, because of the differences in the

nature of the communication studied (summarized in Table 1), findings on online word of mouth

(WOM) may not provide direct guidance on the situation of phone communication and the diffusion

of influence through this different medium. Despite its importance as a medium of information

exchange, how phone communications mediate social influence has scarcely been studied in the IS

and social influence literature.

Phone call data have been used in studying the purchase of caller ring-back tones (Ma et al. 2015,

Zhang et al. 2018), switching of mobile carriers (Hu et al. 2019) and the use of phone plans for

unlimited calls (Belo and Ferreira 2022), and adoption of new mobile phone models (de Matos et al.

2014). Our study differs from these papers in several aspects. First, Hu et al. (2019) and de Matos

et al. (2014) only use phone call relationships to construct a proxy of social networks. Our work

relates to theirs, but we focus on the social influence that travels through phone communications.

Specifically, our study utilizes significantly richer panel data—for each phone call, we observe the

time stamp and location of both the call initiator and receiver, and our analysis is designed to fully

utilize the richness of the data, both spatial and temporal. By contrast, only static networks are

constructed based on collapsed, cross-sectional data using phone calls aggregated over a period of

time (9 months in Hu et al. (2019) and 11 months in de Matos et al. (2014)). It is precisely because

of these differences and the additional details we can observe that we can estimate social influence

mediated via phone calls. Second, while Ma et al. (2015) and Zhang et al. (2018) study the influence

of exposure to caller ring-back tones resulting from phone calls, they do not explicitly examine

how phone conversations mediate social influence. In contrast, our study focuses specifically on

how social influence spreads through phone conversations, leveraging their unique media richness

compared to other communication channels as discussed in Table 1. By examining this specific

channel, our study provides new insights into the ways in which social influence operates and the

behaviors it influences, beyond the scope of previous studies that focused solely on caller ring-back

tones. Third, all these studies focus on adoption decisions directly related to phone use, while our

focus is on offline adoption behavior, which is arguably a more general type of behavior that may

be influenced through phone communication. Offline decisions are common and of obvious interest

in marketing applications; indeed, many important behaviors pertain to offline settings and entail a

certain degree of effort, such as voter turnout (Bond et al. 2012), receiving immunizations (Banerjee

et al. 2019), and healthy habits (Christakis and Fowler 2013). Our paper extends this IS and social

influence literature and constitutes one of the first studies investigating the effect of social influence

through phone calls on an offline adoption decision using the large-scale CDR data.
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2.3. Indirect social influence in network environment

In the study of social influence in a network environment, one may consider both the direct influ-

ence (i.e., influence on one’s immediate neighbors in the network) and the indirect influence (i.e.,

influence beyond one’s immediate neighbors) on adoption decisions. The IS literature predomi-

nantly examines the direct influence on different types of technology adoption decisions (Aral et al.

2009, Katona et al. 2011, Rishika and Ramaprasad 2019, Dewan et al. 2017, de Matos et al. 2014).

However, studies have found only limited and inconsistent evidence that positive influence may

extend beyond direct neighbors in the social network. On the one hand, indirect influence was

initially found to be more effective than direct influence in medical innovation (Burt 1987, den

Bulte and Lilien 2001). More recently, it was shown that online messages play a role in political

mobilization and have an effect on two-degree neighbors in the Facebook friendship network (Bond

et al. 2012). Similarly, it was shown that indirect (i.e., two-hop) neighbors, like direct neighbors,

exert influence in the context of caller ring-back tone adoption decisions (Zhang et al. 2018). On

the other hand, this effect can be negative beyond immediate neighbors, e.g., it was shown that the

likelihood of individuals taking deworming was reduced if their direct first-order or indirect second-

order social contacts were exposed to it (Kremer and Miguel 2007). Contrasting with these views,

several studies show that influence was restricted to immediate neighbors in the social network,

such as the case of cooperative behavior in local public goods games (S. Suri 2011) or decisions to

get vaccination against influenza (Mobius and Rosenblat 2014, Rao et al. 2017).

Our paper aims to extend and enrich this literature on indirect social influence, and examine for

the first time the potential cascading effect of influence through the medium of phone communi-

cation. This research question is interesting to study in the phone communication medium for two

reasons. On the one hand, because of the personal and persuasive nature of phone communica-

tion and the ease with which it is established, social influence via phone calls may extend beyond

immediate neighbors in the communication network. For example, an individual who has heard

a colleague’s positive impression of an event that she attended may be eager further to pass on

that impression to her own neighbors. On the other hand, phone calls are a form of synchronous

oral communication that allows for less time for contemplation and fewer opportunity for selective

self-presentation, which may reduce the impact of the communication on behavior (Berger and

Iyengar 2013) and hence its propagation in the network. Addressing this research question has

direct implications for IS and marketing research. Indeed, if the effect of phone communication

is restricted to immediate neighbors, then businesses should mainly target individuals who have

many direct connections in their communication network. Otherwise, businesses should instead

consider targeting individuals who have many indirect neighbors to capitalize on the cascading

effect of influence.
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2.4. Network centrality and application in seeding in social networks

There is a rich body of literature on centrality measures of nodes in a network (Bloch et al.

2019, Leng et al. 2020). Intuitively, centrality quantifies how “central” a node is, according to

different criteria, and therefore captures how important the node is in the network. This structural

importance of nodes is a crucial concept in network science with many applications; in particular,

it has been widely applied to identify key individuals in social networks, bottleneck locations in

infrastructure networks, or super-spreaders of epidemics (Newman 2018).

Defining node centrality (i.e., the importance of nodes) for a certain application has generated

much theoretical interest in IS and network science research (Sundararajan et al. 2013). In business

research, one notable application of network centrality is seeding. The key idea is to target a small

subset of individuals in the network for intervention, leading to a maximal spread of information or

adoption decisions. In contrast to approaches based on influence or utility maximization (Kempe

et al. 2003, Li et al. 2018, Dou et al. 2013, Mallipeddi et al. 2022), which often involve computation-

ally intensive procedures, especially in large networks, centrality-based seeding is computationally

efficient and easy to interpret. Different centralities have been proven effective in a variety of

contexts, for example, betweenness centrality (Jackson 2008), Katz-Bonacich centrality (Ballester

et al. 2006), diffusion centrality (Banerjee et al. 2013), eigenvector centrality (Golub and Jackson

2010), and degree centrality (Jackson 2019). A commonality of these centrality measures is the

focus on the context of information spreading or diffusion in the network, where the implication for

adoption remains implicit. In contrast, in this work, we propose influence centrality that is designed

to capture the empirical pattern of influence decay over successive connections. Thus, influence

centrality is directly related to social influence and thereby contributes more explicitly to increas-

ing overall expected adoption. In addition, different from the standard Katz/eigenvector centrality

or the state-of-the-art diffusion centrality, where the indirect influence decays exponentially at a

common rate across successive connections, our influence centrality establishes different weights for

neighbors at different geodesic distances from the focal user using empirically-estimated separation-

specific rates of decay. This is another notable difference from existing centrality measures which

we will discuss from a technical perspective in Section 5.

3. Technical framework

We develop a technical framework for studying the social influence that happens through phone

communications and its effect on offline decisions using CDRs. The proposed technical framework

consists of three steps: (1) identify the adoption decision based on the visitation or attendance

inferred from the phone user’s mobility; (2) use phone data to construct communication cascades,

identifying individuals who have direct phone calls or are indirectly connected with adopters;
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and (3) isolate social influence via phone calls from homophily, the measurement of the latter is

operationalized using the mobility and phone call data.

3.1. Setting

We consider a large-scale mobile phone data set, call detail records (CDRs), collected in a small

European country. The data set includes individual phone usage records (i.e., phone calls, text

messages, and internet activities using the data service), as well as the location of the cell tower

with which each record was associated. The mobile carrier we collaborate with is the only network

provider in the country, meaning that the activity of all individuals who have been connected to

any cell tower in the country has been recorded. The data set covers seven months, from January

2016 to July 2016. The cultural event under consideration took place 22 times in July 2016 on

most weekdays (plus a few weekend days). The historical data from January to June 2016 are

used to collect user behavior indicators as appropriate controls, which we discuss in more detail in

Section 3.2.1. Table 2 shows the statistics indicating daily average phone use for every individual

in the mobile phone data set used in this study.

We consider the offline adoption behavior of attending an international cultural performance in

the country. Although the performance venue was located in a city park, the event took place late

in the evening, which reduced the chance of passers-by being mistakenly identified as adopters.

Three cell towers are located within a 500-meter distance and cover an area of radius of about

0.25 kilometers to 1.5 kilometers. We assume that the individuals who were connected to any of

these three cell towers during the event period (with a buffer time of 30 minutes before and after)

are the ones who attended the event (i.e., made the adoption decision). We discuss the statistical

implication of violating this assumption at the end of this section. For notational convenience, we

call the cultural performance the “product” and the attendees “adopters”.

Table 2 Basic statistics about the mobile phone data set (daily average per person).

Mean Std. Dev. Min 25th PCTL 50th PCTL 75th PCTL Max

Number of calls 2.84 3.64 0.00 0.92 2.00 3.65 68.90
Number of texts 3.04 5.73 0.00 0.67 1.81 4.00 45.65
Number of activities using data 29.07 65.00 0.00 0.00 3.20 36.90 3355.10
Number of total activities 34.95 66.40 0.00 4.00 11.00 43.08 3359.58

We divide the overall data set into non-overlapping observation periods; each observation period

is defined as T = [s, s+ l], where T ∈Ψ, s ∈ S, and l is the length of each period. Here, Ψ is the

set of all observation periods, and S is the set of the starting time instances of each period. For

each performance day, we choose the observation period T in Figure 1a to be a period of l = 24

hours, starting with the beginning of the performance each day. The motivation for choosing this
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(a) (b)

Figure 1 Illustration of the framework. (a) Each observation period is separated into two parts: 1) identifying the

initial adopter and 2) constructing the phone communication cascade. After this observation period, we

evaluate the eventual adoption decisions in the adoption period. (b) Identifying treatment and control

groups. In the upper panel, we show how to construct the treatment group and the control group.

Individuals connected to the initial adopter directly (labeled as hop 1) and indirectly (labeled as hop

2 and higher) in the communication cascade CT are categorized in the treatment group during the

observation period T . Individuals who are disconnected from any initial adopters through the information

cascade CT across all observation periods are labeled as the control group. As demonstrated in the

lower panel of (b), we aggregate all observation periods and perform empirical analysis separately for

each hop index group.

threshold is that the cultural performance took place each evening, and we would like to keep the

observation periods non-overlapping (so that the communication cascades defined below will not

interfere with each other).

We now introduce several key concepts in this paper in Figure 1a. First, we define DT as the

set of initial adopters for the observation period T . We identify individuals as initial adopters if

they were connected to one of the three cell towers nearest the performance venue during a time

interval at the beginning of the period T in Figure 1a, where the time interval is defined as the

time window of the performance (with a buffer time of ± 30 minutes). This strategy is similar to

the one in Toole et al. (2015), which uses connections made to three cell towers near an auto-parts

manufacturing plant to label whether individuals worked at the plant.

Second, we construct a communication cascade as a directed graph CT = (IT ,ET ), where the

node set IT = {1,2,3, ..., n} is a set of n individuals who have at least one mobile phone activity

in T ; meanwhile, the edge set ET = {(i, j)} is a collection of ordered node pairs (i, j), conditioned

such that i ∈ IT has information about the product when the communication with j ∈ IT takes

place and that i will spread the information to j. We cannot obtain the actual content of the
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communication because of privacy considerations. The assumption that information of interest

has been transmitted through the observed communication channel has been adopted in prior

studies (Aral et al. 2009).

We define the third concept, hop index, for an individual i in IT , as the length of the path

from individual i to an individual j ∈DT . Therefore, an individual i of hop index h is h-degrees of

separation from an initial adopter in DT . In our analysis, we define treatment groups as individuals

who have not yet made an adoption decision and have been connected via a single path to an initial

adopter3 in only one observation period. In addition, we define one treatment group for each hop h

as the group of individuals (from any observation period) with a finite hop index h. Note that if i

is an isolated node in CT for all observation periods (i.e., if i is not connected directly or indirectly

to any adopter), then the hop index would be infinity; hence, we use these nodes as the control

group, as in Figure 1b.

Finally, we define the adoption period to be the period that starts immediately after the obser-

vation period in which one received a treatment, till the last day of the performance.4Figure 1a

illustrates the adoption period in connection with the observation period.

Our data set includes 19 observation periods. We do not construct the observation periods

for the last three days of the performance because individuals who received information through

phone communications on these days did not have enough time to attend the event. For each

observation period T , we construct a communication cascade and compute the hop index for each

individual appearing in CT . We remove individuals who had less than five observations in the past

six months to ensure that we have sufficient information to control for. To reduce the chance that

individuals are communicating through other information channels, we exclude the following data:

1) Phone calls between parties (i.e., the caller and the receiver) that were served by the same cell

tower, thereby reducing the chance of including face-to-face communications. 2) Individuals whose

network geodesic distance from the initial adopter in the communication network (with reciprocal

phone communication) from the two months prior to the event was shorter than their hop indices;

thus, we avoid inflation on hop indices computation. 3) Individuals who were disconnected from

any individuals in the historical social network. After removing individuals using these criteria, our

data set include 23,581 individuals across four treatment groups. Another 21,652 individuals who

were disconnected from all communication cascades were in a single control group.

3 We do so to avoid the difficulty in disentangling the multiplication effect of social influence.

4 For a member of the control group, her adoption period is the same as that of the matched individual in a treatment
group (more details are provided in Section 3.2 when we construct the panel data).
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Table 3 Research design of the empirical strategy

Identification strategy Sensitivity analysis and robustness checks

1. Observed homophily (x)
2. Latent homophily (c, f)

PSM
1. Rosenbaum sensitivity test
2. Balance in propensity scores and covariates
3. Other matching strategies and Post-Lasso estimation

1. Observed homophily (x)
2. Latent homophily (c, f)
3. Trend before and after treatment (πaftersjt=1)
4. Pre-treatment difference (πDsj=1)
5. Matched pair fixed effect (ηs)
6. Time-varying common shocks (νt)

DID + PSM Shuffle test

3.2. Difference-in-differences in combination with behavioral matching

Identifying the social influence effect is challenging, especially when using observational data. That

individual decision-making (e.g., adoption behavior) in a social network can be affected by a number

of factors is widely recognized. The first factor is the correlation or homophily effect (McPherson

et al. 2001), which suggests that individuals tend to become neighbors (connected in the network)

because of a shared background or interest, which in turn leads to the adoption by both indi-

viduals. The second set of factors is exogenous factors (i.e., external causes common to network

neighbors (Manski 1993), such as marketing campaigns). The third set of factors is peer effects

(i.e., social influence), which states that one’s adoption is either directly or indirectly affected by

communication with one’s neighbors who have adopted the behavior.

We use a difference-in-differences (DID) model in combination with propensity score matching

(PSM) (Rishika et al. 2013, Li 2016, Dewan et al. 2017, Jung et al. 2019). We control for homophily

using behavioral variables: For observed homophily, we use visited locations in mobility history; for

latent homophily, we use latent positions inferred from a historical social network and neighbors’

eventual adoption behaviors. We also perform sensitivity analysis and robustness checks on the

results. Table 3 summarizes the empirical strategy of this paper.

3.2.1. Behavioral matching based on observed and latent homophily To ensure sim-

ilarities between the treated group and the control group in the DID analysis, we first adopt a

matching-based estimation framework to assemble a matched sample of the treated and control

units. Deciding on which variables to use to match individuals is a critical question. Existing stud-

ies rely primarily on socio-demographic information (de Matos et al. 2014, Jung et al. 2019), but

this approach has three shortcomings: 1) Such information is not always available; 2) it does not

capture the latent preferences (e.g., latent homophily (Ma et al. 2015)); and 3) it cannot adapt

to changes in individual tastes and preferences. To address these issues, we design a behavioral

matching framework based on observed homophily (visited locations in mobility history) and latent

homophily (latent preferences inferred from the historical social network, and neighbors’ eventual

adoption decisions). We demonstrate these three types of behavioral covariates, computed using

the mobile phone data, in Figure 2.



Leng, Dong, Moro, and Pentland: Long-range social influence in phone communication networks
Information Systems Research 13

Figure 2 Illustration of the three types of behavioral covariates extracted from the mobile phone data to approx-

imate high-dimensional observed and latent homophilous covariates.

Observed homophily: revealed preferences from mobility history. We first use individ-

uals’ history of visited locations to control for observed homophily. The theoretical foundations

for using spatial locations are revealed preference theory and consumer behavioral theory, which

together suggest that consumer choices, serving as revealed preferences, are indicative of consumer

preferences (Samuelson 1938, McFadden 2001). Furthermore, co-occurrence of locations and mobil-

ity trajectory similarities between individuals have been demonstrated to reveal similarities in

preferences (Ghose et al. 2019). Thus, we use individual mobility histories on weekends (i.e., the

frequency with which individuals visit different places) as data for the revealed preference. We

specifically use mobility behaviors on weekends because behavior in one’s spare time offers a better

proxy for individuals’ preferences. In addition, it has been shown that adjusting for behavioral

covariates relevant to the adoption decision of interest reduces the estimation bias substantively

and yields an estimate that is statistically indistinguishable from what is obtained through Random

Controlled Trials (RCTs) in a Facebook context (Eckles and Bakshy 2020). In our case, mobility

behaviors are highly relevant to the adoption decision of interest, which also is measured using

location visits.

We consider an individual-location matrix M, where the i-th row and k-th column correspond

to the i-th individual and k-th location (i.e., of the k-th cell tower), respectively, and where mik

represents the number of times that individual i has visited location k during a six-month period

prior to the performance month. We then apply principal component analysis (PCA) and project

M onto a subspace established by the top eigenvectors of its covariance matrix to obtain an eigen-

preference matrix in which the i-th column, xi, represents the latent preferences of individual i.

We choose 19 principal components (PCs) (xi ∈ Rdx where dx = 19) in the adoption behavior of

attending the cultural performance, such that they explain more than 90% of the variance in M.
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Latent homophily: neighbors’ eventual adoption decisions and latent preferences

learned from their historical social network. In this section, we explain how we control

for latent homophily (Ma et al. 2015). We control for two sources of latent homophily: (1) using

neighbors’ eventual adoption decisions as a proxy for user fixed effects, following (Belo and Fer-

reira 2022); and (2) latent positions learned from the historical social network. We discuss how we

control for these two sources of latent homophily in sequence.

First, we follow Belo and Ferreira (2022) to control for the adoption behaviors of neighbors (in the

historical social network) as a proxy for individuals’ interest in and attitude toward the adoption

decision. The rationale behind this proxy is that, as a result of homophily, adopters are more likely

to be connected to adopters and non-adopters to non-adopters. These connections lead to a positive

correlation between being an adopter and having neighbors who also are adopters. Consequently,

neighbors’ eventual adoption decisions (observed by the end of their respective adoption periods)

are a direct reflection of the focal individuals’ interests and preferences.5 Therefore, adding these

variables helps partially control for latent homophily. We specifically use two measures, the number

and percentage of neighbors who ended up adopting the behavior, as the control variables (denoted

as fi ∈R2 for individual i).

Second, we use latent positions learned from the historical social network to further control for

latent homophily. Social networks can be informative about latent characteristics of individuals

resulting from homophily (McPherson et al. 2001). McFowland III and Shalizi (2021) establish

sufficient conditions under which controlling for estimated locations in a latent space leads to

asymptotically unbiased and consistent social influence estimates, assuming a certain network for-

mation process (e.g., either a stochastic block model or a continuous latent space model)6. We

adapt their approach to controlling for latent covariates encoded in the historical social networks

in order to reduce bias due to latent homophily; specifically, we propose using an efficient network

representation learning approach, node2vec (Grover and Leskovec 2016), to learn feature represen-

tations for the individuals using the historical social network. Although this approach corresponds

to a relaxation of the specific assumptions in McFowland III and Shalizi (2021) in terms of the net-

work formation process, the principle behind node2vec remains that the network is homophilous,

i.e., nodes with similar characteristics and preferences will be more likely to form a link. In other

5 Simulation studies have demonstrated the effectiveness of this proxy over a wide range of parameters, independent
of the network’s structure, and with varying levels of homophily and the product’s baseline level of adoption (Belo
and Ferreira 2022).

6 More formally, the assumptions made in McFowland III and Shalizi (2021) are: (1) for the underlying network
models, all links in the historical social network are conditionally independent of each other, given the latent positions
for each individual; and (2) in observations of the whole network, adoption provides no additional information about
an individual’s latent positions.
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words, individuals that have similar network positions (e.g., they connect to one another or to the

same others, or they lie in the same social community) remain close in a low-dimensional latent

space. Therefore, latent positions computed using node2vec (ci ∈Rdc for individual i where dc = 16

in our case) can be used as covariates in a regression to control for latent homophily. We include

more details on node2vec and how the parameter dc is determined in Appendix A.

Behavioral matching. As mentioned previously, there are multiple treatment groups for each

period T , and one for each finite hop index (see Figure 1b). For each treatment group, every indi-

vidual is matched to one individual in the control group. Thus, we use PSM to control for observed

homophily, drawn from mobility histories, and for latent homophily, drawn from latent positions

from the historical social network and neighbors’ eventual adoption decisions. The propensity score

for being treated in hop h is defined as the conditional probability of being connected to the initial

adopter via h hops, which we estimate based on individuals’ latent preferences using the logistic

regression. We estimate the propensity score model for each treatment group and for the control

group. Specifically, for each hop index, we compute,

log
(P(Di = 1)

P(Di = 0)

)
= αps

0 +x′
iα

ps
x + c′iα

ps
c + f ′iα

ps
f + ξi,

where ( )′ is the transpose operation; αps
x ∈ Rdx is the coefficient vector for observed homophily;

αps
c ∈Rdc is the coefficient vector for latent positions; αps

f ∈R2 is the coefficient vector for neighbors’

eventual adoption decisions at the end of their respective adoption periods; αps
0 ∈R is the intercept;

and ξi is the error term. We use the estimated coefficients to predict the time-invariant propensity

scores of each user and match individuals using the predicted propensity scores.

3.2.2. Difference-in-differences on matched samples. The DID approach compares the

changes in the adoption decisions of the treated units before and after the treatment (i.e., the

communication) to the adoption decisions in the control units over the same period of time. The

behavioral matching framework in the previous section helps substantially improve the similar-

ity between the treatment and the control group and to account for (both observed and latent)

homophily, thereby enhancing the inference related to the DID analysis and improving the con-

sistency of the estimates (Stewart and Swaffield 2008). We conduct the analysis on the matched

samples separately for each of the treatment groups. In other words, we apply the DID model to

the treatment group associated with each hop index and to the corresponding matched units in

the control group.

The DID model takes a panel data set as its input; we illustrate this structure in Figure 3.

Following the standard in constructing panels to measure diffusion processes, individuals leave the

panel after they adopt the behavior. Consider a matched pair s, as shown in Figure 3; the treated
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Figure 3 Illustration of the panel structure for the DID model, showing the data structure for a treated individual

(Bob) and a control individual (Anne).

individual, Bob (for hop index 1, without loss of generality), is on the left panel, and the matched

control individual, Anne, is on the right panel. Assume that Bob was treated (i.e., he received a

phone call) on day 3 and attended the event on day 5. We add a series of 1s after the treatment

day for aftersjt. Because Bob adopted on day 5, we remove the dates after day 5. Anne, the

matched control individual, neither received a call nor adopted; hence, the columns of “adoption”

and “received call” are filled with 0s. Because Anne is matched with Bob, we let afters0t = afters1t

for Anne.

We use a linear probability model with a binary outcome variable as follows:

zsjt =

observed homophily︷ ︸︸ ︷
x′
sjαx +

latent homophily︷ ︸︸ ︷
c′sjαc + f ′sjαf︸ ︷︷ ︸

homophily

+ γhDsj aftersjt︸ ︷︷ ︸
phone communications

+πDsj=1 +πaftersjt=1 + ηs + νt + ϵsjt. (1)

In Equation (1), t is the index for a day in the time period during which the event took place;

( )′ is the transpose operation; s indexes a matched pair of treated and control units; j denotes a

treated (j = 1) or a control (j = 0) unit; and ϵsjt is the error term. The dependent variable zsjt

is the adoption behavior of the (treated or control) unit j in the matched pair s at time t, where

zsjt = 1 indicates adoption and zsjt = 0 indicates non-adoption. Dsj is a treatment dummy variable

that equals 1 if the unit is in the treatment group and 0 if it is in the control group; aftersjt is

a dummy variable that equals 1 for the time period after the treatment (e.g., direct or indirect

communication) and 0 for the time period before the treatment.

The main parameter of interest is γh, which measures the change in the likelihood of adoption

if the individual had been included in the treatment group corresponding to hop h (i.e., if he or

she had received the phone call during the observation period with h hop distances from the initial

adopter). We use πDsj=1 ∈R to denote the pre-treatment difference in the two groups, which turns

on for the treatment unit in the matched pair s. We use πaftersjt=1 ∈R to denote the time trend in the

control group before and after the treatment is received. This variable turns on after the treatment
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is received and varies across the matched pairs s. We further use the fixed effect (ηs) at the level

of matched pairs s to capture the potential, unobserved, time-invariant heterogeneity.7 Finally, to

control for common shocks over time that affect the adoption behavior (e.g., a discount for an

event occurring at a certain time period t), we include the time fixed effect νt which is specific for

each time period t, thus addressing the possible time-varying common shocks. Note that the time

fixed effect νt differs from πaftersjt=1, because the former is fixed effect at t and is the same across

different units, while the latter differs across matched pairs. We use αx ∈ Rdx , αc ∈ Rdc , αf ∈ R2

to represent the coefficients for the observed mobility covariates (xsj), latent positions (csj), and

the neighbors’ eventual adoption behaviors by the end of their respective adoption periods (fsj).

We provide a final remark on potential measurement errors. The first source of measurement

errors in using phone data to estimate social influence is identifying adoption decisions. Adopters

may not actually use their phones when attending the event, or individuals may pass by the

performance venue without attending it. These measurement errors can affect two variables: 1) the

adoption decisions of individuals in the treatment group and the control group zsjt, and 2) the

identification of initial adopters, leading to errors in the treatment Dsj. Second, each observation

period in our setting is limited to 24 hours, and any phone calls made with initial adopters directly

of indirectly beyond this period can generate a measurement error in the treatment variable Dsj.

The classic result in the econometrics literature shows that: 1) a mismeasured outcome zsjt does

not lead to a bias, and 2) a mismeasured predictor (e.g., the treatment variable Dsj) will bias the

effect toward zero (Lewbel 2007). In other words, a mismeasured adoption outcome does not bias

our estimate of the social influence effect. However, if we have measurement errors in identifying

the initial adopters or if some treatments are missing after the observation period, this will lead to

an underestimation of the social influence effect. Nevertheless, our results remain valid even with

these types of measurement errors. We discuss the impact of measurement errors on our social

influence estimates in more detail in Appendix B, closely following Theorem 1 of Lewbel (2007).

Overall, despite potential measurement errors, our results remain valid.

4. Empirical results
4.1. Long-range effect of social influence via phone communication

We use the technical framework developed in Section 3 to quantify the long-range effect of social

influence via phone calls based on CDRs. The summary statistics of all control variables we use are

included in Appendix C. As described in the previous section, our identification strategy consists

of matching followed by DID analysis. To visually demonstrate how the DID estimator works, in

7 Note that, in understanding diffusion of adoption decisions, not adding the individual-level fixed effects is customary,
because such fixed effects would capture the adoption perfectly and thereby absorb the effect of interest (Belo and
Ferreira 2022).
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Figure D1 of Appendix D, we plot the over-time survival rate separately for the treatment and

the control groups. As we can see, starting from the date of the treatment—having received the

phone call—the two groups exhibit a widening gap in survival rates (one minus the probability of

adoption), as the treated group becomes differentially more likely to attend the event and therefore

are subsequently dropped out of the sample. The differential surviving rate quantitatively reflects

the cumulative effects of social influence over time.

We are now ready to present our main empirical results. We present the main estimates on

the change in the adoption likelihood (i.e., attending the event) due to social influence through

phone communication in Table 4. The detailed estimation results are presented in Tables E1-E2 in

Appendix E. In Figure 4, we present the estimates, with respect to different hop indices, relative

to the adoption likelihood of the control group. Our analysis reveals that being a direct contact

of an initial adopter increases the likelihood of attending the event by 87.61%8. For individuals

who are two degrees of separation away from the initial adopter, the increase in adoption like-

lihood is 68.65%. The effect of social influence on adoption likelihood weakens as the degree of

separation increases. Individuals who are three degrees of separation away from the initial adopter

have a 53.10% increase in adoption likelihood, while those who are four degrees of separation

away have a 46.71% increase. Interestingly, we find that the increase in adoption likelihood from

direct neighbors to two-degree indirect neighbors decreases by 21.65% (−γ2−γ1
γ1

). The increase in

adoption likelihood for three-degree neighbors is further reduced by 22.64% (−γ3−γ2
γ2

) compared to

the increase observed for two-degree neighbors. Overall, we observe a significant positive effect of

influence through phone communication from hop one to hop four, demonstrating the long-range

impact of social influence via phone communications. This finding suggests the potential of viral

and seeded marketing designs using phone communications. Although the treatment effect for hop

five is also significant, the estimate is not robust to unobserved confounders, as confirmed by the

Rosenbaum sensitivity analysis (see Section 4.2 for details). Therefore, we limit our analysis to

hops one to four, representing four degrees of separation.

Our empirical results on the long-range and decaying social influence motivate us to better

understand this observation in two aspects: 1) whether the results are reliable according to different

robustness checks; 2) what might be the mechanism behind the long-range effect. We address the

first point in Section 4.2 and the second in Section 4.3.

8 For the ease of readability in the paper’s description, we round the numbers to four digits, but in the calculation,
we use the eight-digit decimals provided in Table E1 of Appendix E.
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Figure 4 Change in adoption likelihood from social influence through phone communications (relative to the

matched control group). The vertical line corresponds to the 95% confidence interval.

Table 4 Social influence estimate (γh) from Equation (1)

Dependent variable: Adoption

hop 1 hop 2 hop 3 hop 4

Dsj aftersjt 0.0086∗∗∗ 0.0067∗∗∗ 0.0052∗∗∗ 0.0046∗∗∗

(0.0004) (0.0003) (0.0006) (0.0006)

Time fixed effect (νt) ✓ ✓ ✓ ✓
Pair fixed effect (ηs) ✓ ✓ ✓ ✓
Time-trend (πaftersjt=1) ✓ ✓ ✓ ✓
Pre-treatment difference (πDsj=1) ✓ ✓ ✓ ✓

Observations 360,226 368,000 60,398 49,680

Residual Std. Error
0.0386
(df = 348,243)

0.0341
(df = 355,980)

0.0227
(df = 58,007)

0.0206
(df = 47,680)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.

4.2. Robustness check

Balance between the treatment group and the control group. Checking covariate and propensity

score imbalance post-matching is important to assess the quality of the matching technique. In our

study, the standardized differences in the covariates of the treatment group and the control group

after matching are far below the rule-of-thumb value (Figure F1 of Appendix F1). After matching,

we achieved substantial reductions in the differences between treatment and control groups for all

latent homophily-related covariates and most observed homophily-related covariates, as indicated

by significant coefficients in Table F1 of Appendix F1. We observe that the distributions of the

propensity scores for the control and treated groups are similar and have a significant post-matching

overlap (using Figure F2 and Table F2 in Appendix F1). Both robustness checks in the covariates

and the propensity score demonstrate that the matched pairs in the treatment and control groups

are well-balanced.
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Sensitivity analysis toward unobserved confounders. As the treatment assignments in our study

(i.e., the phone calls) are not randomized, there may still be some level of bias in our analysis,

despite our efforts to control for observed and latent homophily. We analyze the sensitivity with

respect to the selection on unobservables using the Rosenbaum bounds approach (Rosenbaum

2005). It evaluates the extent to which unobserved variables might affect an individual’s assignment

into the treatment or control group and, therefore, the inference. We use the odds ratio of treatment

assignment (Γ) to quantify the amount of bias from unobserved variables required to change the

results qualitatively. Our results, as shown in Figure F3 in Appendix F2, indicate that the critical

level of Γ at which we would question the validity of the PSM is 8.5 (hop 1), 7.4 (hop 2), 2.0 (hop

3), and 2.0 (hop 4). Specifically, for hop one, when Γ= 8.5, the upper bound p-value is larger than

0.05, indicating that the confidence interval for the social influence effect would include zero if an

unobserved confounder caused the odds ratio of the treatment assignment to differ between the

treatment and control groups by 8.5. This interpretation applies to other hops as well. While there

is no clear consensus on a rule-of-thumb value for Γ, some studies have suggested that anything

above Γ= 1.5 indicates substantial insensitivity to unobserved confounders (Sen 2014, Ransbotham

et al. 2019). Our Γ values are sufficiently larger than this value across four hops, indicating that our

results demonstrate substantial insensitivity to hidden bias and strong support for the existence of

social influence through phone communications up to four degrees of separation. However, beyond

the fourth hop, the results are no longer robust to unobserved confounders, and therefore, we

exclude them from our analysis. In summary, our findings, as shown in Figure 4, are robust to a

plausible range of unobserved selection bias, up to the fourth hop.

Shuffle test. To further validate our findings on the impact of social influence through phone

communications, we perform the “shuffle test” introduced by Anagnostopoulos et al. (2008). This

shuffle test aims to exclude the effect of social influence while retaining other factors, such as

homophily and other unobserved confounders. This method, adapted by Belo and Ferreira (2022),

provides a lower bound in absolute terms for the effect of social influence (see Appendix E of Belo

and Ferreira (2022)).

To conduct this test, we shuffle the dates of the phone calls (hence, the treatment) within each

treatment group (for each hop index) so that the overall adoption rate and the adoption curve (by

time) remain the same. We further constrain the shuffling to include only the individuals that were

treated in the same week, similar to the approach in Belo and Ferreira (2022). This restriction

addresses the concern that the adoption dates may conceal unobserved effects leading to adoption.

Specifically, unrestricted shuffling may not be desirable in the presence of temporal clustering in

the adoption pattern. For instance, it could lead to the assignment of late adoption dates to early

adopters. We then use the same DID strategy on the matched pairs (according to observed and
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(a) Hop 1 (b) Hop 2

(c) Hop 3 (d) Hop 4

Figure 5 Distribution of estimates over 100 shuffles of adoption dates. The x-axis is the change in adoption

likelihood resulting from phone communication. The y-axis is the frequency of the estimates over the

100 shuffles. The red vertical line represents the coefficient obtained using the original data.

latent homophily) to compute the change in adoption likelihood on the shuffled data. Afterward,

we compute the empirical distribution of the effect of social influence using the shuffled data, and

we compare this distribution with the effect of social influence from the original data. We can

reject the null hypothesis of no social influence if the estimates from the original data fall outside

the 95% confidence interval of the parameter obtained from the randomized data. Figure 5 shows

that the estimates from the original data are outside the 95% confidence interval of the estimates

obtained from the shuffling procedure. Additionally, the estimates obtained from the shuffled data

are significantly lower than those obtained from the original data for all hop indices. Hence, we

reject the null hypothesis that γh = 0 for h∈ {1,2,3,4} and conclude that social influence increases

the likelihood of adoption up to four degrees of separation. Given that randomization provides

a lower bound for the effect of social influence, this test indicates that the observed patterns of

social influence up to four degrees of separation are not likely to be driven entirely by the effects

of homophily or other unobserved confounders.

Other observational analysis methods. We test a series of methods (including coarsened exact

matching, subclassification, Mahalanobis distance matching, and Post-Lasso estimation), with

results shown in Figure G1 in Appendix G. All methods present the long-range social influence
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effect with a decay pattern as the degree of separation increases, suggesting the robustness of our

findings with respect to the observational methods.

4.3. Mechanism: information loss along phone communication cascade

The empirical findings motivated us to investigate the potential mechanism that leads to the decay

of social influence along the hop indices in the communication cascades. To this end, we adopt a

simple structural Bayesian approach that models a sequential update process through information

sharing, following Zhang (2010). In this process, information about the quality of the event (i.e.,

the subject of adoption) is shared through WOM communication via phone calls.

In the following paragraphs, we discuss the utility function and the Bayesian learning process.

Let ui(Sit) denote the utility of user i to adopt the decision at time t, based on state variables

contained in Sit = {Iit, ζit}, where Iit is a set of signals i received up to t and ζit is the idiosyncratic

utility shock to individual i. Following Zhang (2010), we have9:

ui(Sit) = αθt −αρθ2t + ζit, (2)

where θt characterizes any unobservable quality component of the product at time t; α is the

associated utility weight; ρ captures i’s risk-averse tendency. Because of the time and monetary

costs of attending the event (i.e., relative to resharing content on social media or downloading

an app), we assume that individuals are risk-averse. We follow Zhang (2010) and introduce the

quadratic term αρθ2t to capture this tendency, allowing for a positive risk-averse tendency ρ. Based

on this utility, individuals then make an adoption decision using a sigmoid function:

P
(
ui(Sit)

)
=

1

1+ e−ui(Sit)
. (3)

We assume that individuals have prior knowledge about the distribution of θt, which is assumed

to be i.i.d. normal with fixed mean µ and variance σ2
θ : θ ∼ N (µ,σ2

θ). In our context, such prior

knowledge might be obtained from television or offline advertisements of the event. In addition,

user i might receive a private signal sit of the unobserved quality θt.

We next describe two types of information update processes. The signal Sit might be derived

from the experience of attending the event (for initial adopters) or from communicating with their

neighbors (for non-initial adopters). In addition to their prior knowledge and their own private

signals (available if they have attended the event), individuals can gather private signals from

individuals with whom they communicate via phone calls. That is, compared to individuals in the

9 In this utility function, without loss of generality and following the setting in the literature of Bayesian learn-
ing (Acemoglu et al. 2011), we consider individuals to be homogeneous and therefore do not include user covariates.
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control group, those in the treatment groups can fine-tune their quality signals if they also receive

private signals from phone communications.

According to Bayes’s rule, the expectation of the posterior distribution of θt is a weighted average

of the posterior mean µ and the private signal, which follows a normal distribution with mean sit

and standard deviation σs. If one’s private signal is the only information available (e.g., in the case

of initial adopters, after they attended the event), then the rule for updating the expectation of θt

is (following Equation (8) of Zhang (2010)):

E(θt|Iit) =
σ2
θsit +σ2

sµ

σ2
θ +σ2

s

, Iit = {sit}. (4)

On the other hand, if an individual i receives r private signals by communicating with others (e.g.,

in the case of any non-initial adopters from hop 1 onward in the cascade), the expectation of the

posterior distribution of θt is a weighted average of the prior mean µ and the sample average of

these signals (following Equation (9) of Zhang (2010)):

E(θt|Iit) =
σ2
θ

∑r

j=1 sjt +σ2
sµ

σ2
θ +σ2

s

, Iit = {s1t, ..., srt}. (5)

We then use simulation to understand two elements. The first element is information loss along

the communication chain from hop 1 to subsequent hops, which is represented by the difference

in the expectation of the posterior probability on θt (when simulation stops) between the initial

adopter and individuals in later hops. We let

Information loss =
∣∣ 1

|I0|
∑
i∈I0

E(θt|Iit)−
1

|Ih|
∑
j∈Ih

E(θt|Ijt)
∣∣, (6)

where I0 is the set of initial adopters and Ih is the set of individuals in hop h.

The second element is how information loss affects adoption decisions and, in turn, social influ-

ence. The strength of social influence is computed as:

Strength of social influence = P
(
ui(Si,t=1)

)
−P

(
ui(Si,t=0)

)
. (7)

In this setup, the effect of social influence is quantified by the difference in the probability of

adoption before and after receiving the information via phone calls. In the simulation, we let

σθ = 0.1, σs = 0.1, α= 1, ρ= 0.1, and ζit ∼N (0,0.1). The prior mean for all individuals is set at

µ= 0.5. Given the reputation of the event, the initial adopter is likely to receive a private signal

reflecting the high quality of the event, in which case we set sit = 0.9 if i ∈ I0. In our empirical

setting, we consider only a single-path communication cascade; therefore, the private signal would

come only from the individual who communicated with i.

The simulation process aims to mimic social learning in phone communication using the following

steps in sequence:
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Figure 6 Information loss in a Bayesian learning process (according to Equation (6)) can lead to social influence

decay (according to Equation (7)).

1. The initial adopter computes the posterior using Equation (4), after receiving their private

signals through attending the event.

2. The initial adopter communicates with and sends a private signal (drawn from the posterior

from Equation (4)) to the individuals in hop 1 (which is set as the current hop index).

3. Individuals in the current hop update their posterior probability, according to Equation (5).

4. Compute the adoption probability of the individual (who received the information signal)

using Equation (3).

5. Repeat steps 3 and 4 to start the next hop and all subsequent iterations up to the fifth

iteration10.

We simulate the process 1,000 times over a single branch of a hypothetical communication

cascade. The results are presented in Figure 6. As shown in the left panel, we see that information

loss increases as the hop index increases, which provides evidence that information is lost along the

communication cascade. The right panel shows social influence based on the difference in adoption

probability, computed using the prior signal and the posterior signal. That is, for each user in the

communication cascade, we compute the difference in the adoption probability before and after

the phone communication. We see that social influence decreases along the hop indices because

of the information loss. This simple Bayesian model provides a mechanism that may explain the

empirically observed decay of social influence in Section 4.1.

5. Influence centrality

Centrality is an important characteristic for nodes in a network. It has been widely used in network-

based systems—for example, in seeding for marketing purposes. Defining node centrality for a

given application has generated substantial theoretical interest in IS, network science, and eco-

nomics research (Sundararajan et al. 2013, Liu 2019). Because centrality measures can be used to

10 We do not present the result after the fifth hop because the value of interest converges.
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understand how diffusion processes on digital and information networks may alter a wide variety of

economic outcomes, centrality’s definition and quantification may vary, depending on the substan-

tive settings. One immediate implication of the long-range effect of social influence in Section 4.1 is

the development of a new context-dependent centrality measure, which we call influence centrality.

Influence centrality is designed to quantify the structural importance of nodes, relating the overall

increase in expected adoption to a node that serves as the “injection” node (i.e., the individual

who is seeded to diffuse a certain product or behavior).

5.1. Influence centrality: A new centrality based on social influence effect

Consider a marketing firm or a public health agency that aims to use WOM through mobile phone

communications to spread information about a product or health-related behavior—for example,

an offline event in the former case or the benefits of immunization in the latter. To what degree

does the overall increase in expected adoption rely on who the firm or agency approaches first (e.g.,

to offer free tickets or free trials)? Given that we are interested in social influence, this question

is different from questions about increasing the spread of information in the network, which is the

motivation behind many widely applied centrality measures. Our centrality measure answers this

question by quantifying the importance of a user in the network with regard to the increase in

expected adoption if this user is the only one initially informed.

The measure is defined in a random walk fashion using an independent cascade model (Easley

and Kleinberg 2010). Assume that each informed individual calls a neighbor in the social network

with probability p , and that call from the seeded individual increases the adoption likelihood of

immediate neighbors by γ1. As social influence propagates, it reaches longer distances over the social

network; we assume that this initial seed increases the adoption likelihood of each of the second-

degree neighbors (who has been called with probability p2) by γ2, of each third-degree neighbor

(who has been called with probability p3) by γ3, and so on. Recall that the adjacency matrix of

the historical social network is A. The two-hop adjacency matrix, which captures individuals who

can reach one another by two hops, is A2. Similarly, the h-hop adjacency matrix Ah measures

the expected number of walks of length h between each pair of individuals. The diffusion process

continues until a fixed degree of separation is reached. We can therefore define influence centrality,

abbreviated as IC, as follows:

IC(A;p,γ,H) =
H∑

h=1

γh(pA)h ·1, (8)

where H is the maximal reach of the social influence (we choose H = 4 as informed by our empirical

results in Section 4.1), and 1 is an all-one vector. The values of γ = {γ1, ..., γH} are estimated

empirically using our framework and account for the decaying strength of social influence.
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IC bears similarities to and generalizes prevailing centrality measures. The main difference

between IC and other centrality measures is its focus on increasing social influence and expected

adoption, as well as its capability of accounting for heterogeneity between neighbors at different

hop indices (via γ). From this perspective, IC can be perceived as assigning a weight γh to edges

in a random walk matrix (pA)h, where the edge weights can be estimated empirically through the

technical framework in Section 3. If γ = {1}Hh=1, p= 1, and H = 1, IC is proportional to the degree

centrality. If γ = {1}Hh=1 and H =∞, IC becomes proportional to either the Katz centrality or the

eigenvector centrality, depending on whether p is smaller than the inverse of the largest eigenvalue

of A or not.11 Finally, IC is most similar to the diffusion centrality proposed in Banerjee et al.

(2013) among all centrality measures. However, the focus of the former is to amplify the influence

on adoption (hence different γh for different h) while the latter (and indeed most centralities in

the literature) is on the spread or diffusion of information (hence γh is homogeneous across dif-

ferent h). In all these approaches, the communication (diffusion) probability p can be estimated

either empirically or using simulations to test for robustness. For example, we estimate p from the

historical data: On each day of the month prior to the event, each individual communicated, on

average, with 7% of the individuals they communicated with during the whole month. Hence p is

set to be 0.07 in our analysis.

Following the evaluation procedure described in Banerjee et al. (2013), we conduct regression

analyses to evaluate the predictive power of mean and median centrality of those who have infor-

mation about the product initially (e.g., those who attended the event) on the number of eventual

adopters for each observation period. To perform the analyses, we first compute degree central-

ity, eigenvector centrality, Katz centrality, diffusion centrality and influence centrality using the

historical social network12. Then, for each observation period, we compute the mean and median

centrality of initial adopters using any centrality measure above (as the independent variables),

and record the total number of individuals that eventually adopted (as the dependent variable)

after excluding initial adopters. This processing step gives us a pair of data points for each of the

19 observation periods. To test the predictive power of different centralities toward the number of

adoptions, we then regress the dependent variable (total number of adopters) on the independent

variables (mean and median of a certain centrality of initial adopters) and show the coefficient

11 For both the eigenvector centrality and the Katz centrality, p needs to be smaller than the inverse of the largest
eigenvalue of the adjacency matrix A.

12 We compute degree centrality by summing the number of contacts of each initial adopter, normalized by N − 1,
where N is the number of individuals who appear in the historical social network A. The eigenvector centrality is
based on the leading eigenvector of A. We set the diffusion probability p in diffusion centrality, Katz centrality, and
influence centrality to be 0.07. We compute the diffusion centrality using H as the diameter of the largest connected
component of the historical social network.
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Figure 7 The proportion of variance in the total number of adopters explained by the centrality of the initial

adopters.

of determination (R2) of the regression model in Figure 7. We can see that IC outperforms the

other centrality measures in predicting the number of adopters; hence, it is a stronger predictor of

adoption behavior, thanks to accounting for quantitative estimates of social influence over succes-

sive connections. This experiment suggests the possibility of IC being used to inform strategies for

commercial firms in promoting product adoption (Aral et al. 2009), for the government in encour-

aging voter turnout (Bond et al. 2012), and for public health agencies in promoting immunization

programs (Banerjee et al. 2019).

5.2. Policy implication in seeding and viral marketing

The proposed influence centrality, combined with the empirical results in Section 4.1, has a number

of policy implications because managers and campaigners can use such knowledge to improve their

decision-making as they promote new products or behaviors. In this section, we quantitatively

demonstrate how raising the communication probability over each connection (thus promoting

phone communications) and the number of initial seeds can significantly amplify the expected

adoption. First, IC can be applied in seeded marketing to identify a set of individuals for tar-

geted interventions that can maximize overall likelihood of adoption.13. Second, we quantitatively

demonstrate in a simulated environment where high-centrality nodes are targeted to be the initial

adopters, raising the communication probability over each connection and the number of initial

seeds can significantly amplify the overall expected adoption and may be desirable despite the cost

of these interventions. This exercise can inform optimal seeding in viral and targeted marketing

campaigns.

13 Although marketing agencies can solve an optimization problem to determine the optimal set of seeds, this cal-
culation is seldom done in practice. The reason is that the influence maximization problem, using an independent
cascade model, is a non-deterministic polynomial-time hardness (NP-hard) problem for which approximations are
needed but computationally expensive given the large size of social networks.
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To further investigate these policy implications, we conduct two analyses. The simulation pro-

cedure used in these analyses is summarized in the following steps:

1. Compute IC on the historical social network A.

2. Rank the centrality measures and select the top m individuals as seeds (initial adopters),

where m is a pre-determined number.

3. For neighbors of each seeded individual (for the first iteration) or neighbors of individuals who

have received influence in the previous iteration but has not yet diffused influence (for subsequent

iterations), decide whether each specific neighbor receives the phone call (hence influence), accord-

ing to a pre-determined communication probability p. If the individual receives the phone call, then

the adoption likelihood for that individual will increase by γh, where h is the individual’s distance

to the initial adopter in the network. Keep track of the total increase (from multiple iterations) in

adoption likelihood for each individual who has received influence. The upper bound of the total

increase in the adoption likelihood is 1.

4. Start subsequent iterations by repeating step 3 up to the fourth iteration (i.e., up to hop-4

neighbors of initial adopters, inspired by our empirical results).

5. Compute the increase in expected adoption by summing up the effect of social influence (γ) on

all individuals who receive the treatment (based on their distance to the initial adopter). The hop

index of a specific individual who has received the information is based on the degree of separation

from an initial adopter.

Two factors may play a role in the total increase in expected adoption: the number of seeds

m and the communication probability p. In the following sections, we first examine how these

two factors are related to the increase in expected adoption (Section 5.2.1); we then examine two

marketing strategies based on these two factors, analyzing the cost and benefit of these strategies

(Section 5.2.2).

5.2.1. Expected adoption with respect to seeding and communication probability.

Figure 8 shows the increase in expected adoption as a function of the two factors we consider:

the number of seeds and the phone communication probability. In Figure 8(a), we see that the

increase in communication probability leads to an increase in the expected adoption, as expected.

However, this effect is not linear; instead, two phases of transition indicate where the increase is

more significant: The increase (on a logarithmic scale) is the most significant before reaching the

probability of p= 0.2, and it slows down up to p= 0.4. After this point, the effect of seeding becomes

saturated. A similar pattern can be observed in Figure 8(b), which shows the effect of the number

of seeds. Indeed, the initial 20 to 30 seeds lead to a significant increase in expected adoption (again

on a logarithmic scale) before the effect saturates. This saturation is understandable because the
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Figure 8 Overall increase in expected adoption based on the different (a) communication probability, and (b)

number of initial seeds. Panel (c) shows the joint effect of these two factors, with color in the heatmap

indicating the increase in expected adoption.

seeds were chosen according to decreasing influence centrality. We could also investigate the joint

effect of the two strategies, i.e., increasing the number of seeds (m) and promoting the probability of

communication (p), which is illustrated in Figure 8(c). These results confirm that both the number

of seeds and the communication probability play a role in the increase in expected adoptions. The

former is related to seeded marketing, and the latter to viral marketing. This analysis motivates

us to examine two marketing strategies based on these two factors in the following section.

5.2.2. Cost-benefit analysis in seeding and viral marketing. To analyze the cost-

effectiveness of the two factors discussed in the previous section, we examine two marketing strate-

gies in seeded WOM and viral marketing. We first describe the strategies as follows.

1. [Strategy 1] Seedm individuals, through promotional offers and/or free tickets. This strategy

has a direct effect on increasing expected adoption.

2. [Strategy 2] Seed m individuals; in addition, promote phone communication across the

network by designing viral features into the advertising content (Aral and Walker 2011). Either

the marketing team of an advertising firm or a third-party content marketing firm can design such

features. As a result of this action, the communication probability p increases in all iterations of

step 3 of the simulation, resulting in an increase in expected adoption.

For strategy 1, we consider a base communication probability of p= 0.07, which is similarly esti-

mated from historical data as in Section 5.1. For strategy 2, we consider three levels of marketing

services that involve engineering viral content. These levels lead to adoption probabilities of p= 0.12

(Basic), p= 0.15 (Pro), and p= 0.17 (Diamond), respectively.14, respectively.

We set the cost of adding a seed to be cs and the cost of designing viral features to increase p

to be cv (this cost increases as we go from the Basic level to the Diamond level). Thus, the cost of

the two strategies is as follows:

14 Note that we use these specific probabilities as illustrative examples. Marketing firms can estimate these costs
according to their context.



Leng, Dong, Moro, and Pentland: Long-range social influence in phone communication networks
30 Information Systems Research

1. [Strategy 1]: cs ×m.

2. [Strategy 2]: cs ×m+ cv.

We collect statistics from real-world data to make the simulation more realistic. We set the benefit

of every 100% increase15 in expected adoption at $88 (the average ticket price for the offline event

in this study) and compute the total benefit as this amount times the increase in units of expected

adoption. We set cs = $22 ( 1
4
of the ticket price) and cv ∈ {$202,$337,$560} for the three levels of

services for viral content design16. By subtracting the cost from the benefit, we can analyze the

cost-effectiveness of the strategies under different numbers of seeds m.

Figure 9 shows the net benefit (benefit minus cost) of the strategies as a function of the number

of seeds. Note that the “no viral marketing” scenario corresponds to Strategy 1, while the other

three scenarios correspond to Strategy 2. As expected, the net benefit increases as the number of

seeds increases for all levels of viral marketing efforts. The addition of viral features leads to an

increased net benefit in all scenarios; the increase is most pronounced when the number of seeds

is small, although this effect becomes saturated when more seeds are added. In addition, for the

same level of net benefit, one can either improve the viral content or increase the number of seeds.

For example, using the “Pro” service and seeding eight individuals generates roughly the same

net benefit, compared with using the “Basic” service and seeding thirty-two individuals. These

findings demonstrate that both a seeding strategy based on IC and promoting communications

in the social network using viral features are effective in promoting adoption. Engineering viral

content to increase communication probability is particularly effective when the number of seeds

is small (toward the left end of Figure 9), e.g., practical constraints limit the ability to expand

seeding. The marketing strategies may both be profitable, despite their costs, and a cost-benefit

analysis can be used to estimate their net benefit.

6. Discussion

Phone communications play a crucial role in facilitating information exchange due to their unique

characteristics, as shown in Table 1. The availability of large-scale and longitudinal mobile phone

communication data and the associated mobility information from CDRs has allowed us to identify

social influence on one’s immediate and distant neighbors in the phone communication network.

In this study, we propose a new technical framework to investigate how social influence spreads

15 This 100% increase in expected adoption could result from, for example, 30% increase in expected adoption for an
individual A and 70% for another B.

16 We obtained these reference prices from the following content marketing platform: https://z3i.zerys.com/#/
pricingcalculator. Figure H1 of Appendix H shows the prices for the three tiers of content marketing services to
create viral content. These prices are adopted for illustrative purposes and marketing firms can estimate them based
on their own context.
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Figure 9 Policy simulations using the two marketing strategies, with different service levels and number of seeds.

through this communication channel. Our findings demonstrate that social influence through phone

communication can impact an offline adoption decision up to four degrees of separation in the

phone communication network. This finding improves our fundamental understanding of how social

influence spreads through an under-explored phone communication channel. Moreover, our empir-

ical results have inspired the development of a new centrality measure, influence centrality, which

evaluates the structural importance of nodes in amplifying expected adoption. This centrality mea-

sure offers a new perspective on leveraging the complex structure of social networks for marketing

purposes via mobile phone communications, thus expanding the existing literature in network sci-

ence. This measure provides a fresh perspective on using the complex structure of social networks

for marketing purposes through mobile phone communications, expanding the existing literature

in network science.

6.1. Theoretical and managerial implications

A quantitative framework for studying social influence via phone communication.

Despite the widespread use of mobile phones and their potential for mobile advertising cam-

paigns, understanding social influence on adoption behaviors through phone communication has

been hampered by the lack of practical tools for identifying influence in large-scale networks. Our

study proposes a technical framework for studying the impact of social influence mediated through

phone communications using CDRs, which have become increasingly accessible in recent years

(see Appendix I). Our framework has several potential and practical implications: 1) Our method-

ology for isolating social influence from homophily (and in particular, both observed and latent

homophily) using social interaction and behavioral data can be helpful in empirical IS research

when socio-demographic information is not available; 2) Our framework can be applied to other

adoption decisions and other types of social interaction data, such as Facebook, Twitter, and Yelp,



Leng, Dong, Moro, and Pentland: Long-range social influence in phone communication networks
32 Information Systems Research

or communication media, such as video calls or text messages. Overall, our analysis demonstrate

the potential of combining large-scale spatial-temporal data and network mining with economet-

ric models to better understand and quantify social influence. As discussed in Section 5.2, this

understanding and quantitative estimate can lead to more effective strategies in seeded and viral

marketing.

Seeded WOM and viral marketing. Seeded WOM and viral marketing are popular tech-

niques used in the advertising industry, as well as in public health campaigns and government

initiatives. Despite their effectiveness, identifying the right individuals to seed remains a challenge.

In network contexts, centrality measures are often used to select influential seeds. However, existing

centrality measures focus on information spread and diffusion, while neglecting the importance of

social influence. To address this gap, we propose a new centrality measure called Influence Cen-

trality (IC). Unlike existing measures, IC focuses on amplifying social influence, leading to an

increase in expected adoption. Our empirical findings on the decaying patterns of social influence

reveal the heterogeneity of influence across different hop indices from a focal individual’s perspec-

tive. Additionally, IC’s context-dependent nature and ability to capture heterogeneity can lead to

more effective marketing strategies for commercial firms, as well as for successful campaigns for

humanitarian and public health goals. Our study offers new perspectives on developing targeted

seeding strategies and identifying influential individuals in social networks. By incorporating IC

into seeding and viral marketing strategies, organizations can more effectively harness the power

of social influence to achieve their goals.

Extending hyper-contextual mobile targeting to phone communication networks.

Mobile targeting enables personalized advertising based on hyper-contextual insights derived from

mobile phone usage data, including location (where), time (when), search behavior (how and what),

and co-presence with others (with whom). Our study builds on this theory by extending the concept

of co-presence (with whom) to include phone communication networks. We demonstrate that social

influence can spread through phone communication networks, allowing firms to target individuals

who have interacted with recent product adopters, even indirectly. Our findings highlight the

importance of considering phone communication networks when designing hyper-contextual mobile

targeting strategies.

6.2. Limitations and future work

Our study has several limitations that provide avenues for future research. First, although we mea-

sure observed and latent homophily by analyzing detailed behavioral information, the CDR data

are not comprehensive and cannot capture social interactions that take place through other com-

munication channels (for example, online or email interactions). This limitation in observability is
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a general concern for most, if not all, social influence studies using data collected from one digital

platform (such as online social media (Bond et al. 2012) or messaging apps (Aral and Walker

2014)): Due to ethical and privacy considerations, and the technical challenge in merging social

interactions from multiple communication media, most studies only obtain social interactions from

one medium. Consequently, our method, relying on the CDR data, establishes upper bounds on

influence estimates when communications through other channels are unobserved. Second, we do

not observe the content of phone communications due to data privacy and confidentiality reasons.

As a result, the social influence effect on event attendance that we intend to measure may not

have taken place through phone calls. Future studies might use surveys, similar to that in Lovett

et al. (2013), to assess the probability of relevant information being spread through phone com-

munications. Third, due to the lack of sufficient data, we investigate the treatment effects of a

single communication path between the initial adopter and an individual a certain distance away

in the communication work. Future studies might consider multiplicative effects of social influence

with multiple communication paths. Fourth, our empirical context focuses on attending an offline

performance event, so the generalizability of the findings is limited to similar offline behaviors.

Future studies may apply the proposed framework to investigate which real-world offline behaviors

are amenable to phone communication. Our framework might also be used to study heterogeneity

in the effects of social influence (e.g., with respect to factors such as tie strength) or how social

influence varies as time elapses.
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Salah AA, Pentland A, Lepri B, Letouzé E (2019) Guide to Mobile Data Analytics in Refugee Scenarios

(Springer).

Samuelson PA (1938) A note on the pure theory of consumer’s behaviour. Economica 5(17):61–71.

Sen M (2014) How judicial qualification ratings may disadvantage minority and female candidates. Journal

of Law and Courts 2(1):33–65.

Shalizi CR, Thomas AC (2011) Homophily and contagion are generically confounded in observational social

network studies. Sociological Methods & Research 40(2):211–239.

Stewart MB, Swaffield JK (2008) The other margin: do minimum wages cause working hours adjustments

for low-wage workers? Economica 75(297):148–167.

Stuart EA, Lee BK, Leacy FP (2013) Prognostic score–based balance measures can be a useful diagnostic

for propensity score methods in comparative effectiveness research. Journal of clinical epidemiology

66(8):S84–S90.

Sundararajan A, Provost F, Oestreicher-Singer G, Aral S (2013) Research commentary – information in

digital, economic, and social networks. Information Systems Research 24(4):883–905.
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Appendix for Long-Range Social Influence in Phone Communication
Networks on Offline Adoption Decisions

A. A brief overview of node2vec

Node2vec is a machine learning algorithm designed for node embedding, developed by Grover and

Leskovec (2016). The key objective of this algorithm is to map nodes in a graph into vectors within

a lower-dimensional space, ensuring that similar nodes end up being represented closely in this new

space. The inner workings of node2vec are based on a random walk procedure, which generates a

series of node sequences. This model treats the node sequences as sentences and aim to predict the

context (neighboring nodes) given a target node. By training on these node sequences, node2vec

learns representations (embeddings) for each node that encode the structural properties of the

graph.

The optimization technique employed by node2vec is designed to maximize the log-probability

of observing a specific network neighborhood, denoted as N b(i), for a given node i, in light of its

corresponding mapping function f(i). The objective can be formally expressed as:

maxf

∑
i∈V

logPr(N b(i)|f(i))

where f(i) signifies the function that projects node i into a lower-dimensional vector, represented

as ci; Pr(N b(i)|f(i)) is the likelihood of observing a neighborhood for a node i conditioned on its

features f(i); V is the node set.

Additionally, node2vec includes a random walk mechanism that is characterized by several

parameters: a return parameter qr, which influences the probability of an immediate revisit to a

node during the walk; an in-out parameter qio, which distinguishes between “inward” and “out-

ward” nodes; the length of the walk l; and the dimensionality of the latent representations dc. The

tuning of these parameters aims to maximize their predictive power on adoption decisions, with

the optimal parameters found to be qr = 0.25, qio = 2, l= 27, and dc = 16.
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B. Measurement errors in using phone data to estimate social influence

In this discussion, we primarily address two main sources of measurement errors associated with

the use of phone data to estimate social influence. The first substantial source of measurement

error stems from the challenging task of accurately identifying adoption decisions. There are several

scenarios that could complicate this process. For instance, adopters may not use their phones

when attending the event. Alternatively, some individuals might be near the event venue but not

participate in the event. Both scenarios could result in inaccuracies when identifying initial adopters

and their adoption decisions within both the treatment and control groups. These measurement

errors consequently impact two significant variables: 1) the adoption decisions of individuals in

the treatment and control groups zsjt; and 2) the identification of the initial adopters, which leads

to errors in the treatment Dsj. The second primary source of measurement error is attributed

to the constraints of our 24-hour observation window to construct communication cascades. Any

communication involving initial adopters occurring directly or indirectly beyond this window will

introduce additional measurement errors to the treatment variable, Dsj.

In summary, these two sources of measurement errors can be considered as inaccuracies in the

outcome (left-hand side, attributed to the first source) and predictor (right-hand side, attributed to

both sources) variables within the regression model, as outlined in Equation (1). In econometrics,

it is well-documented that the OLS estimate is downward biased in the case of a mismeasured

predictor, while a mismeasured outcome does not lead to a bias. This result is based on classical

mismeasurement assumptions, which assumes that the error of measurement is not correlated with

the true variables and is not correlated with stochastic disturbance in the regression specifica-

tion (Hausman 2001, Lewbel 2007). We discuss both factors in detail below.

Mismeasurement in the adoption outcomes. It is reasonable to assume that the patterns of indi-

viduals’ phone usage, particularly the probability of them not using their phones while attending

the event, are equivalent for both the treatment and control groups, after accounting for latent

positions derived from the historical social network and the eventual adoption decisions of neigh-

bors. Therefore, any mismeasurement in the outcome variable is subsumed into the error term, ϵit,

of Equation (1). This mismeasurement does not influence the estimation of the treatment effect.17

In other words, random errors in the dependent variable do not compromise the consistency of

the treatment effect estimate, γh. We formally demonstrate this with the derivation of an OLS

17 For clarity, we adopt i instead of sj as the subscript in this section.
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estimator.18 Consider a mismeasured adoption decision zit, in which uz
i is the measurement error.

We then have the following equation:

zit = z∗it +uz
i = x′

iαx + c′iαc + f ′iαf + γhDi afterit +πDi=1 +πafterit=1 + ηs + νt +(ϵit +uz
i )︸ ︷︷ ︸

ϵ∗it

, (9)

where z∗it is the ground-truth outcome. The new error term, ϵ∗it = ϵit + uz
i , is a zero-mean random

variable because both ϵit and uz
i are random variables having a zero mean. Therefore, a random

measurement error in the adoption outcome does not introduce bias in the treatment effect esti-

mation γh.

Mismeasurement of the treatment. Measurement errors among the initial adopters or

direct/indirect communication with them after the observational period can lead to misclassifi-

cation of the treatment variable. Formally, let us consider a scenario where a measurement error

occurs in the treatment variable. Instead of observing the the ground-truth variable Di after
∗
it,

we observe Di afterit. Recalling that z represents the adoption behavior, and x, c, and f are the

control covariates, we define B as the concatenation of all these control variables. We outline two

necessary assumptions, following assumptions A1 and A2 in Lewbel (2007),

Assumption 1. There exists E(z|B,D after∗,D after) =E(z|B,D after∗).

To enhance clarity, we omit the B and b argument in the following discussion. Assumption 1 implies

that z is mean independent ofD after−D after∗, conditional onB andD after∗. This means that the

misclassification in the treatment does not impact the true expected adoption behavior. However,

this assumption would be violated if misclassification occurs due to misperception or deceit by

individuals in either the treatment or control group. Fortunately, the mechanical misclassification

of initial adopters, such as individuals who did not use phones during the performance, does not

influence the true adoption behaviors of other individuals in both the treatment and control groups.

In our scenario, the misclassification of initial adopters is unobservable to individuals in both

groups, eliminating the possibility of misperception or deceit. Consequently, this assumption, akin

to the classical assumption of independent measurement errors, is reasonable in our setting.

Before we proceed to the next assumption, we define some useful functions. We first define

function r∗(b) as the ground-truth conditional probability (on B= b) of receiving the treatment:

r∗(b) =E(D after∗|B= b) = P(D after∗ = 1|B= b).

We similarly define r(b) by replacing D after∗ with D after:

r(b) =E(D after|B= b) = P(D after = 1|B= b).

18 The proof in this section is conducted using the OLS estimator because the fixed-effect models can be estimated
using the so-called entity-demeaned OLS (i.e., by removing the time-specific and matched-pair-specific means).
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We define ℶ1(b) and ℶ0(b) as the conditional probabilities of misclassifying the treated individuals

and the control individuals, respectively. We have:

ℶd(b) = P(D after = 1− d|B= b,D after∗ = d).

We define the ground-truth conditional mean adoption decision, given B and D after∗ as:

h∗(B,D after∗) =E(z|B,D after∗) = h∗
0(B)+ γ∗(b)D after∗, (10)

where h∗
0(B) = h∗(B,0). We define γ∗(b) as the ground-truth conditional average treatment effect,

γ∗(b) = h∗(b,1)−h∗(b,0).

And γ(b) is the estimated (and mismeasured) conditional average treatment effect:

γ(b) = h(b,1)−h(b,0),

where h(B,D after) =E(z|B,D after).

Assumption 2. There exists ℶ0(b)+ℶ1(b)< 1 and 0< r∗(b)< 1 for all b∈ support (B).

The first inequality indicates that the sum of the misclassification probabilities is less than 1, sug-

gesting that, on average, observations of D after are more accurate than random guesses. Therefore,

this assumption can be easily satisfied in practice. The second part of this assumption requires

the presence of at least one individual in both the treatment and control groups. Under these two

assumptions, Proposition 1 follows exactly from Theorem 1 of Lewbel (2007). It illustrates that

the mismeasurement error in the treatment variable biases the estimate towards zero.

Proposition 1. (Lewbel 2007). If Assumption 1 is satisfied, then there exists a function µ(b)

with |µ(b)| ≤ 1, such that γ(b) = γ∗(b)µ(b). If, in addition, Assumption 2 is satisfied, then µ(b)> 0.

Proposition 1 suggests that measurement errors in our binary treatment variable introduce an

attenuation bias in the estimated treatment effect. The magnitude of the mismeasured treatment

effect estimate γ(b) provides a lower bound on the true treatment effect γ∗(b), and when Assump-

tion 2 is also satisfied, the sign of the mismeasured effect γ(b) matches the sign of the true effect

γ∗(b).

Proof for Proposition 1 (Theorem 1 in Lewbel (2007)). We refer readers to the proof of Theo-

rem 1 in Lewbel (2007) for more details.

Define

pd(B) =E(D after∗|B,D after = d) = P(D after∗ = 1|B,D after = d).
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We suppress the B and b argument for clarity. By Bayes’ rule,

p0 =
ℶ1r

∗

1− r
and p1 =

(1−ℶ1)r
∗

r
. (11)

Also,

r=E(D after) =
∑

d∈{0,1}

E(D after|D after∗ = d)P(D after∗ = d) = (1−ℶ1)r
∗ +ℶ0(1− r∗), (12)

which gives r=ℶ0 when ℶ0 +ℶ1 = 1; otherwise

r∗ =
r−ℶ0

1−ℶ0 −ℶ1

and 1− r∗ =
1−ℶ1 − r

1−ℶ0 −ℶ1

. (13)

Based on Assumption 1 and Equation (10),

E(z|D after∗,D after) = h∗
0 + γ∗D after∗.

By law of iterated expectations, this gives,

E(z|D after = d) = h∗
0 + γ∗pd

Because γ =E(z|D after = 1)−E(z|D after = 0), we obtain

γ = (p1 − p0)γ
∗ = γ∗µ.

The µ in Proposition 1 equals p1−p0. Because µ equals the difference between the two probabilities,

then −1≤ µ≤ 1.

Based on Equation (11),

µ= p1 − p0 =
r∗

(1− r)r
(1−ℶ1 − r),

and using Equation (13) for 1− r∗:

(1− r)rµ= (1− r∗)r∗(1−ℶ0 −ℶ1).

Because probabilities r and r∗ lie between 0 and 1, then µ> 0 when Assumption 2 holds. □
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C. Data summary statistics

Table C1 presents the statistics of all control variables, including the mean, standard deviation,

minimum value, 25th percentile, 50th percentile (median), 75th percentile, and maximum value.

Table C1 Data statistics for the control variables used in behavioral matching and DID.

Mean Standard deviation Minimum 25th percentile 50th percentile 75th percentile Maximum

x1 0.000 3315.870 -1045.555 -1016.075 -909.806 -105.592 177716.884
x2 0.000 2484.175 -104151.427 -69.455 127.305 139.723 135271.576
x3 0.000 2426.733 -33269.196 -301.625 -295.754 -241.110 163151.808
x4 -0.000 2118.413 -8512.189 -270.335 -267.812 -227.533 151609.627
x5 -0.000 2093.425 -5572.187 -207.957 -205.477 -153.883 150347.958
x6 0.000 1961.369 -55575.096 -283.942 -278.329 -165.060 153474.042
x7 -0.000 1892.127 -53795.043 -132.826 -100.791 -69.239 113301.895
x8 -0.000 1517.756 -12457.799 -173.908 -170.007 -155.343 70394.145
x9 0.000 1469.649 -28428.331 -56.958 -55.842 -46.624 92583.819
x10 0.000 1431.712 -88502.543 -138.733 -121.221 -90.011 88909.405
x11 -0.000 1335.346 -1862.969 -51.971 -51.660 -44.747 111304.677
x12 -0.000 1250.929 -47449.051 -99.935 -88.995 -53.808 55097.260
x13 -0.000 1228.536 -36863.835 -58.163 -43.748 -43.027 70186.154
x14 0.000 1007.812 -9384.834 -41.941 -32.855 -30.590 67042.285
x15 0.000 952.018 -11033.319 -58.717 -53.144 -40.690 86802.956
x16 0.000 926.777 -48689.114 -39.109 -12.469 -0.792 49358.794
x17 0.000 855.107 -8892.994 -25.814 -20.357 -18.735 92451.977
x18 0.000 830.127 -15326.425 -50.400 -47.961 -45.787 64768.805
x19 0.000 685.514 -9554.601 -53.825 -44.046 -38.881 65470.980
c1 2.000 0.913 -1.729 1.336 2.290 2.658 5.892
c2 -1.080 1.282 -5.167 -2.480 -1.031 -0.048 3.525
c3 -1.788 1.225 -4.929 -3.093 -1.807 -0.834 3.021
c4 -1.075 1.100 -4.607 -2.134 -1.197 -0.242 3.297
c5 1.059 1.198 -1.558 -0.237 1.046 1.977 5.950
c6 -0.868 0.862 -5.507 -1.050 -1.050 -0.357 2.132
c7 0.397 0.996 -3.915 -0.323 0.664 1.159 4.236
c8 0.210 0.978 -4.191 -0.484 0.472 0.966 4.272
c9 1.761 0.781 -1.919 1.412 1.776 2.033 5.943
c10 0.001 1.240 -4.150 -1.010 0.007 1.274 4.196
c11 -0.691 1.052 -5.421 -1.430 -0.870 0.149 2.354
c12 -1.680 1.129 -5.446 -2.781 -1.795 -0.829 3.127
c13 -0.656 0.940 -5.480 -1.247 -0.281 -0.037 2.700
c14 0.282 0.871 -3.901 -0.250 0.692 0.692 5.451
c15 1.080 0.882 -2.700 0.532 0.717 1.648 5.150
c16 -0.464 0.881 -4.592 -1.015 -0.074 0.024 3.230
f1 0.001 0.037 0.000 0.000 0.000 0.000 2.000
f2 0.000 0.014 0.000 0.000 0.000 0.000 1.000
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D. Survival rate over time by groups

In Section 3.2.2, we adhere to a standard practice in crafting panel data for diffusion behaviors,

as outlined by Belo and Ferreira (2022), by excluding individuals from the panel after they adopt

the behavior. Consequently, direct comparison of adoption decisions between the treatment and

control groups during the pre-treatment period is not possible. Instead, we compare the likelihood

of adoption between the two groups in the pre-treatment period by applying a hazard model (Aral

et al. 2009). The hazard model allows us to calculate a survival rate, which represents the likelihood

of not adopting the behavior before the treatment, and we compare these rates between the matched

samples in the treatment and control groups.

Using the regression model η(t,D) = η0(t)e
κ0+κdD, we estimate the rate at which individuals

attend the offline event. Here, η(t,D) denotes the likelihood of adoption; t is the time index;

D ∈ {0,1} pertains to the treatment and control groups; η0(t) symbolizes the baseline adoption

likelihood; and κ0, κd ∈R are the parameters. The change in the likelihood of adoption is measured

by κd and is linked with switching from the control to the treatment group.

Figure D1 illustrates the survival rate of the control group and each of the treatment groups

(within matched pairs), wherein we align the pre-treatment and post-treatment days (represented

as t). Here, t < 0 denotes the day before the treatment; t= 0 represents the treatment day; and

t > 0 signifies the days in the adoption period.19 The survival rate at t < 0 is relevant to the pre-

treatment differences of the two groups as it reflects the pre-treatment differences between the two

groups. We observe no systematic visual distinction between the treatment and control groups in

terms of the survival rate during the pre-treatment period. However, starting from the treatment

day, a growing disparity emerges in the survival rates, with the treated group exhibiting a higher

likelihood of attending the event and subsequently being dropped from the sample. The differential

survival rate quantitatively captures the cumulative effects of social influence over time.

19 For example, in reference to Section 3.2 and Figure 3, we can label day one as t=−2, day three as t= 0, and day
five as t= 2 for both Bob and Anne.
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(a) Hop 1 (b) Hop 2

(c) Hop 3 (d) Hop 4

Figure D1 Survival rate by treatment (y-axis) for the aligned treatment date (x-axis). The four figures correspond

to the survival rate of individuals in the four treatment groups and the control group.The aligned

date < 0 is the pre-treatment period, and the treatment exposure begins at 0.
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E. Estimation table from the DID model on matched samples

We present the estimated results in Tables E1-E2, which include the coefficients for our main

variable of interest, Dsjaftersjt, as well as the coefficients for variables x,c, and f . Our findings

indicate that phone communication can significantly increase the adoption likelihood γ by 0.0086,

0.0067, 0.0052, and 0.0046 from hop 1 to hop 4. For the control group, the adoption likelihood

stands at 0.0098. This leads to a comparative percentage increase in the adoption likelihood for each

hop group in relation to the control group, amounting to 87.61%, 68.65%, 53.10%, and 46.71% for

the first four hops respectively. These results underscore the long-range impact of social influence

facilitated by phone communications, highlighting the substantial potential of mobile phones in

viral and seeded marketing strategies. It is important to note, however, that due to the binary

nature of the outcome variable and our choice of a linear probability model for the analysis, the

R2 measure loses its usual interpretative value (Hanck et al. 2019). This is because a regression

line cannot perfectly fit binary dependent variables with continuous regressors.
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Table E1 Estimates from the main DID model (part I).

Dependent variable: Adoption

hop 1 hop 2 hop 3 hop 4

Dsj aftersjt 0.00861414∗∗∗ 0.00674916∗∗∗ 0.00522119∗∗∗ 0.00459264∗∗∗

(0.00035388) (0.00030401) (0.00060045) (0.00062162)

x1 0.00000013∗∗ −0.00000003 −0.00000041 0.00000031
(0.00000006) (0.00000005) (0.00000029) (0.00000022)

x2 0.00000010∗∗ 0.00000001 −0.00000020 −0.00000052
(0.00000005) (0.00000005) (0.00000037) (0.00000050)

x3 0.00000002 0.00000003 −0.00000008 −0.00000012
(0.00000004) (0.00000004) (0.00000020) (0.00000022)

x4 0.00000016∗∗ −0.00000005 −0.00000020 0.00000003
(0.00000006) (0.00000005) (0.00000045) (0.00000011)

x5 0.00000008 −0.00000004 −0.00000008 −0.00000002
(0.00000010) (0.00000005) (0.00000066) (0.00000032)

x6 0.00000027∗∗ −0.00000002 −0.00000106 −0.00000023
(0.00000011) (0.00000009) (0.00000089) (0.00000035)

x7 −0.00000011∗ −0.00000009 −0.00000037 0.00000078∗∗

(0.00000006) (0.00000007) (0.00000027) (0.00000031)

x8 0.00000016 −0.00000008 −0.00000066 0.00000009
(0.00000012) (0.00000007) (0.00000079) (0.00000029)

x9 −0.00000011 −0.00000005 −0.00000017 0.00000015
(0.00000011) (0.00000008) (0.00000031) (0.00000035)

x10 −0.00000031∗∗ 0.00000020∗ −0.00000031 −0.00000000
(0.00000014) (0.00000011) (0.00000112) (0.00000040)

x11 0.00000017 −0.00000029 −0.00000266 0.00000009
(0.00000022) (0.00000022) (0.00000313) (0.00000031)

x12 −0.00000012 0.00000008 0.00000034 −0.00000002
(0.00000015) (0.00000012) (0.00000082) (0.00000019)

x13 −0.00000010 −0.00000004 0.00000001 −0.00000029
(0.00000009) (0.00000010) (0.00000022) (0.00000037)

x14 0.00000015 0.00000030∗∗∗ 0.00000204∗∗∗ 0.00000008
(0.00000021) (0.00000011) (0.00000066) (0.00000031)

x15 −0.00000010 0.00000023∗ −0.00000161∗ −0.00000078
(0.00000009) (0.00000012) (0.00000094) (0.00000079)

x16 −0.00000007 0.00000014 −0.00000012 −0.00000115
(0.00000012) (0.00000009) (0.00000029) (0.00000090)

x17 −0.00000005 −0.00000002 0.00000002 −0.00000985
(0.00000014) (0.00000010) (0.00000021) (0.00000999)

x18 0.00000027∗ −0.00000006 −0.00000019 0.00000013
(0.00000015) (0.00000011) (0.00000092) (0.00000062)

x19 0.00000012 0.00000021 −0.00000024 0.00000068
(0.00000019) (0.00000016) (0.00000086) (0.00000078)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table E2 Estimates from the main DID model (part II).

Dependent variable: Adoption

hop 1 hop 2 hop 3 hop 4

c1 −0.00065460∗∗∗ 0.00043623∗∗∗ −0.00025075 0.00066402
(0.00016792) (0.00014262) (0.00063764) (0.00044803)

c2 0.00002068 0.00015440 0.00037303 0.00039341
(0.00014550) (0.00012101) (0.00035397) (0.00036414)

c3 −0.00123777∗∗∗ 0.00010076 0.00026631 −0.00029249
(0.00028330) (0.00024246) (0.00308679) (0.00116076)

c4 −0.00059973∗∗∗ 0.00022627 0.00008107 0.00015001
(0.00020343) (0.00018018) (0.00234160) (0.00091419)

c5 −0.00018366 −0.00003268 −0.00023204 0.00089503∗∗

(0.00016264) (0.00014281) (0.00048211) (0.00039013)

c6 0.00168100∗∗∗ −0.00073436∗∗ 0.00006931 −0.00100788
(0.00042476) (0.00037069) (0.00529100) (0.00205883)

c7 −0.00057674∗∗∗ −0.00021529 0.00005045 0.00087626
(0.00019040) (0.00017731) (0.00205287) (0.00084908)

c8 0.00035249∗∗ −0.00021696∗ −0.00073306∗ −0.00029406
(0.00014365) (0.00012257) (0.00037555) (0.00035734)

c9 0.00047624∗∗∗ 0.00004060 0.00055956 −0.00005796
(0.00017922) (0.00016301) (0.00137390) (0.00059330)

c10 −0.00150325∗∗∗ 0.00038904 0.00017426 0.00030160
(0.00034242) (0.00028399) (0.00353222) (0.00151574)

c11 0.00219535∗∗∗ −0.00031302 −0.00092488 −0.00018391
(0.00061206) (0.00053461) (0.00841970) (0.00334316)

c12 −0.00120020∗∗∗ −0.00008805 0.00056117 0.00000739
(0.00029552) (0.00025087) (0.00328136) (0.00114837)

c13 0.00064076∗∗∗ −0.00010673 −0.00035169 −0.00013720
(0.00018354) (0.00014412) (0.00136448) (0.00053599)

c14 −0.00043075∗∗ −0.00028706∗∗ 0.00036648 0.00029569
(0.00016806) (0.00014026) (0.00162522) (0.00062522)

c15 0.00007766 0.00001824 −0.00096334 0.00022993
(0.00016787) (0.00014789) (0.00067258) (0.00037780)

c16 −0.00009547 0.00016336 0.00051048 −0.00051338
(0.00017996) (0.00015555) (0.00127812) (0.00067177)

f1 0.00064243 0.00103946 −0.00573922 −0.01427646
(0.00302893) (0.00364255) (0.01284173) (0.01010160)

f2 −0.00172523 0.01603047 0.00846063 0.01756889
(0.00770979) (0.01110770) (0.03698765) (0.01226223)

Time fixed effect (νt) ✓ ✓ ✓ ✓
Pair fixed effect (ηs) ✓ ✓ ✓ ✓
Time-trend (πaftersjt=1) ✓ ✓ ✓ ✓
Pre-treatment difference (πDsj=1) ✓ ✓ ✓ ✓

Observations 360,226 368,000 60,398 49,680
R2 0.03201922 0.03190918 0.03895760 0.04105386

Residual Std. Error
0.03860605
(df = 348,243)

0.03405705
(df = 355,980)

0.02265690
(df = 58,007)

0.02054692
(df = 47,680)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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F. Robustness checks

F1. Balance between the treatment and control groups To mimic the random assignment

of treatment in a randomized controlled experiment, it is crucial to ensure that the treatment and

control groups are comparable and that any observed differences between them are due to chance.

One way to achieve this is by checking for post-matching covariate and propensity score imbalances.

Analyzing both the covariates for observed and latent homophily, as well as the propensity score,

is a critical step in this process. By doing so, we can determine whether pairs in the treatment and

control groups are sufficiently similar and whether the treatment effect estimates are reliable.

Checking for overlap in covariates between the treatment and the control group. To effectively

remove confounding effects, we need to balance the covariates (x,c, and f) between the matched

pairs. We use the standardized mean difference (SMD) to evaluate if the covariates in the treatment

and control groups have sufficient overlap (Cohen 1988). The SMD measures the difference in

means in the unit of pooled standard deviation for a specific covariate. Following this formula:

SMD=
xj,h −xj,c√
(σ2

j,h +σ2
j,c)/2

,

where xj,h and xj,c are the means of the covariate j for the treatment group on hop h and the

control group c, respectively, and σj,h and σj,c are the standard deviations of covariate j for the

treatment group on hop h and the control group c, respectively. We perform a similar analysis

on c and f . Guidelines suggest that an SMD below 0.25 or 0.1 for a particular covariate indicates

sufficient overlap between the treatment and control groups (Stuart et al. 2013). Figure F1 shows

that all the variables we choose pass this robustness check.

We also analyze the differences in the control variables of the treatment and the control groups

before and after implementing PSM (Table F1). This table shows the differences in the sample

means of the treatment and control groups on the different conditioning variables before and

after matching was performed. The standardized difference, short for Std. dif., is computed as the

absolute difference normalized by the standard deviation of the treatment group. The percentage

reduction in standardized bias after matching is shown in the last column. We observe that after

matching, most variables achieve substantial bias reduction, with a few exceptions. Notably, the

average standardized bias reduction is 36.15%, indicating that the matching achieved good quality

and adequate balance between the two groups. The patterns for all hop groups are similar, so we

only show hop 1 in this appendix.

Checking for balance in propensity scores between the treatment and control groups To assess

if the propensity scores of the matched pairs in the treatment and control groups are balanced,

we plot their distributions (Figure F2). The graphs indicate that the distributions of propensity
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Table F1 Differences in the treatment and the control groups before and after PSM for hop 1.

Variable Treatment Control (before) Control (after) Std. dif. (after) Std. dif. (before) Bias reduction (%)

c1 1.6626 2.0779 1.6999 0.0417 0.4653 91.038
c2 -0.3495 -1.3051 -0.4903 0.1561 1.0591 85.2611
c3 -1.2529 -1.8771 -1.3875 0.1536 0.7125 78.4421
c4 -0.552 -1.1813 -0.6468 0.1067 0.7087 84.9443
c5 1.7363 0.8259 1.5676 0.1914 1.0323 81.4589
c6 -0.5001 -1.0782 -0.5423 0.0516 0.7067 92.6985
c7 -0.0647 0.5851 0.0089 0.0796 0.7024 88.6674
c8 -0.2329 0.3381 -0.1535 0.0874 0.6286 86.0961
c9 1.7752 1.7176 1.7714 0.0044 0.0666 93.3934
c10 -0.9493 0.3611 -0.8054 0.1619 1.474 89.0163
c11 0.0895 -1.102 -0.0095 0.1338 1.6112 91.6956
c12 -1.2336 -1.7442 -1.3458 0.1263 0.5747 78.0233
c13 -0.8653 -0.6 -0.845 0.0215 0.2812 92.3542
c14 0.0087 0.3929 0.0514 0.0475 0.4286 88.9174
c15 1.4219 0.9551 1.3499 0.0808 0.5241 84.5831
c16 -0.7781 -0.3269 -0.7489 0.0332 0.5116 93.5106

x1 516.8323 -534.716 168.6711 0.1064 0.3214 66.8948
x2 65.1144 77.4631 58.1673 0.0031 0.0055 43.6364
x3 -59.7531 -179.0862 -156.8535 0.0362 0.0445 18.6517
x4 12.7363 -166.4732 -8.697 0.0142 0.1189 88.0572
x5 -7.8875 -131.1355 -9.233 0.0011 0.1 98.9
x6 184.0699 -191.6389 -95.3678 0.0757 0.1018 25.6385
x7 37.8163 -36.416 -64.1527 0.0378 0.0275 -37.4545
x8 4.022 -76.3275 -13.4865 0.0151 0.0695 78.2734
x9 -25.9622 -10.8598 -22.6436 0.006 0.0273 78.022
x10 -16.264 -96.312 83.326 0.0438 0.0352 -24.4318
x11 8.9739 -9.3456 -36.9819 0.0637 0.0254 -150.7874
x12 -6.3109 -31.9376 -0.0512 0.0069 0.0284 75.7042
x13 48.4492 -29.8367 -45.8742 0.0715 0.0593 -20.5734
x14 22.5637 -17.9400 -37.5643 0.0788 0.0531 -48.3992
x15 21.1188 -31.6315 10.9908 0.0061 0.0315 80.6349
x16 1.6597 -1.4429 23.5587 0.0201 0.0028 -617.8571
x17 -4.0051 -9.0715 -8.3151 0.0055 0.0064 14.0625
x18 18.7481 -31.3464 -44.0867 0.0779 0.0621 -25.4428
x19 5.9943 -24.3380 -12.2617 0.0198 0.0328 39.6341

f (number) 0.0018 0.0006 0.0017 0.0022 0.0281 92.1708
f (percentage) 0.0006 0.0001 0.0005 0.0088 0.0247 64.3725
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Figure F1 SMD for the matched samples of each treatment group.

scores for the two groups are similar and significantly overlap after matching. We also calculate the

pairwise differences in propensity scores between the two groups and present them in Table F2.

The differences are on the order of 10−2 for the four hops, where propensity scores range from

0 to 1. These results suggest that the treatment and control groups are well-balanced regarding

propensity scores.
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Figure F2 Distribution for propensity scores of the treatment and control groups for different hop indices h.

Table F2 Pairwise difference in the propensity scores between the treatment and the control group.

Hop Difference in mean 95% confidence interval

1 0.04099197 (0.03893030, 0.04305363)
2 0.02779980 (0.02602115, 0.02957844)
3 0.01602217 (0.01326176, 0.01878257)
4 0.03068643 (0.02702569, 0.03434718)

F2. Rosenbaum sensitivity test Since the treatments in our study, namely, the phone calls,

are not randomized, a certain degree of bias may persist in our analysis, despite our attempts to

control for observed and latent homophily. We examine the sensitivity to selection on unobservables

utilizing the Rosenbaum bounds approach (Rosenbaum 2005). This approach gauges the potential

impact of unobserved variables on an individual’s assignment to the treatment group or a control

group and consequently on inference.

To quantify the amount of bias from unobserved variables that could qualitatively alter the

results, we use the odds ratio of treatment assignment (Γ). As illustrated in Figure F3 in Appendix

F2, our findings indicate that the critical level of Γ at which we would question the validity of

the PSM is is 8.5 (hop 1), 7.4 (hop 2), 2.0 (hop 3), and 2.0 (hop 4). Specifically, for hop one,

when Γ = 8.5, the upper bound p-value exceeds 0.05. These results suggest that if an unobserved

confounder were to cause the odds ratio of treatment assignment to differ by less than to 8.5
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Figure F3 Rosenbaum sensitivity test. The x-axis and y-axis correspond to the Γ value and the upper bound

significance level, respectively. The dotted horizontal line corresponds to an upper bound p-value of

0.05.

between the treatment and control groups, the confidence interval for the social influence effect

would not include zero.

While there is no universally agreed upon rule-of-thumb value for Γ, some studies propose that

any value above Γ = 1.5 signals substantial insensitivity to unobserved confounders (Sen 2014,

Ransbotham et al. 2019). Our Γ values substantially exceed this threshold across four hops, indi-

cating that our results are considerably insensitive to hidden bias and provide strong support for

the existence of social influence through phone communications up to four degrees of separation

in our data. However, beyond the fourth hop, our results become more susceptible to unobserved

confounders, and hence, we omit them from our analysis.
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G. Other analysis methods based on observational data

We have expanded upon the main analysis in Section 4 by incorporating various alternative observa-

tional methods. Alongside PSM, we have utilized other methods such as coarsened exact matching,

subclassification, Mahalanobis distance matching, and Post-Lasso estimation. These methods are

explained below:

1. Subclassification involves stratifying the samples based on propensity scores (Imbens and

Rubin 2015). We divide the samples into strata comprising units with similar propensity scores and

calculate the treatment effect estimate of each stratum. This method helps control for covariates

within each stratum. We then estimate the average treatment effects on the treated units using

regression within the strata.

2. Coarsened Exact Matching (CEM) is a matching method that reduces reliance on functional

forms (Iacus et al. 2012). Unlike PSM, which necessitates defining the functional form of the covari-

ates to estimate the propensity score, CEM coarsens each covariate of the treated and control units

into predefined strata and executes exact matching on these coarsened covariates. This method

helps avoid potential complications arising from functional form misidentification and reduces bias

due to model misrepresentation.

3. Mahalanobis Distance Matching (MDM) is akin to propensity matching but uses a different

distance function, the Mahalanobis distance, between data pairs instead of differences in propen-

sity scores. Mahalanobis distance is a scale-free Euclidean distance where the Euclidean distances

between two units are normalized by the covariance matrix.

4. Post-Lasso estimation estimates the effects of treatments with a data-driven penalty (Belloni

et al. 2013). Specifically, we calculate the difference in adoption likelihood of the treatment and

control groups by applying ordinary least squares to the model selected by Lasso regression.

Figure G1 illustrates the effect of social influence, represented by the difference in adoption

likelihood (on the y-axis), for different hop indices (on the x-axis) using the above-mentioned

alternative methods. This analysis reveals a consistent decaying pattern of social influence effect

across all methods, demonstrating the robustness of this decay pattern.
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Figure G1 Difference in increased adoption likelihood for treatment group (relative to the control group). The

vertical bars cover 95% confidence intervals.
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H. Reference prices from a marketing website

In our simulation detailed in Section 5.2.2, we utilized reference marketing prices obtained from

the content marketing platform Zerys, accessible at https://z3i.zerys.com. Figure H1 illustrates

the pricing structure for three tiers of content marketing services aimed at creating viral content.

It is important to note that these prices serve as a basis for our analysis and are used purely for

illustration. In a practical scenario, marketing firms can estimate their own costs based on their

specific contexts and requirements.

Figure H1 Reference prices for three marketing effort tiers (low, medium, and high) used in the cost-benefit

analysis simulation presented in Section 5.2.2.
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I. Practical accessibility of phone communication data

The increasing availability of call detail records (CDRs) to researchers, governments, and commer-

cial firms highlights the potential of our work to yield broad theoretical and practical implications.

First, CDRs have been increasingly utilized in a range of academic disciplines, including sustainable

urban development and mobility analysis (Barbour et al. 2019, Leng et al. 2021c), tourism man-

agement (Leng et al. 2021b), healthcare (Jones et al. 2018), inequality analysis (Ucar et al. 2021,

Leng et al. 2021a), and migration analysis (Salah et al. 2019). Second, governments and public

authorities have turned to CDRs for data-driven policy-making, such as tracking population move-

ments and modeling epidemics during the Covid-19 pandemic in countries like China, South Korea,

Israel, and several European nations (Oliver et al. 2020). Third, CDRs are becoming commercially

available through partnerships with network providers and collaborations with companies such as

Flowminder20 for business insights and policy-making. Marketing companies and event managers

can partner with network providers to develop joint marketing strategies that benefit both parties.

Privacy-preserving analysis frameworks like Open Algorithms21 make these collaborations more

practical by enabling privacy-preserving analysis of mobile phone data.

In summation, the expanded accessibility of phone communication data to a range of stake-

holders underlines the necessity for customized technical frameworks that can analyze and extract

meaningful insights from this data. Our framework, centered around mobile phone call data, serves

as a valuable instrument to investigate emerging and critical research questions within this domain.

20 https://www.flowminder.org

21 https://www.opalproject.org


