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We study the propagation of pulled fronts in the— A+A microscopic reaction-diffusion process using
Monte Carlo simulations. In the mean field approximation the process is described by the deterministic Fisher-
Kolmogorov-Petrovsky-Piscounov equation. In particular, we concentrate on the corrections to the determin-
istic behavior due to the number of particles per correlated voln@®y means of a hybrid simulation
scheme, we manage to reach large macroscopic valu8s which allows us to show the importance in the
dynamics of microscopic pulled fronts of the interplay of microscopic fluctuations and their macroscopic
relaxation.
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When describing systems at much larger scales than theence of a typical macroscopic length and time scale
correlation length, internal fluctuations due to the intrinsicwhich perturbations around the asymptotic solution with ve-
discreteness of the particles can be neglected, since they doeity vy, are damped5]. For example, the velocity of the
count for a correction typically only of the order 6f"Y2,  front starting from a steep enough initial condition ap-
where () is the number of particles in a correlated volume.proaches the asymptotic value like a power law,

However, in some situations the dynamics of the system
spans different scales, which gives rise to a strong depen- _ 3 -3/

. . . = ! v(t) =vg +0O(t7%?), (2)
dence of its macroscopic features on the microscopic details 20t
of its constituents, even in the limil —o. Relevant in-
stances of this phenomena are the dynamic contact angiheredo=vo/2D. _ o
problem[1], evolution of a fracture tif2], dendritic growth I particle models, however, the continuum description
[3], and the flow of a gas through a microscopic charfidpl ~ given by the FKPP equation breaks dowrpat1/() where
In this paper we highlight and study another important ex_!nternal fluctqgtlons are important. Since pulled front dynam-
ample, namely, the effect of internal fluctuations in the maciCS are sensitive to infinitesimal events @« 1, we expect
roscopic dynamics of pulled fronts,6]. Specifically, we Macroscopic properties to depend strongly @nwhen Q.
consider the propagation of pulled fronts in reaction-—®- For example, by neglecting microscopic fluctuations
diffusion microscopic problems, like th&« A+A scheme and rr_1|m|ck|ng Fhe discreteness o]‘ particles by imposing an
[7-9. A continuum description of the system is possible in€ffective cutoff in the FKPP equation a=Q™, Brunet and
the reaction-limited regime whet@ is large enough so the Derrida[11,12 obtained that the velocity is given by
reaction is well stirred within each correlated voluifi7e9].
In this case, the density(x,t) of particles per correlated V(%) =vg=vo~ —
volume is described, in the limif)—, by the Fisher- In= )
Kolmogorov-Petrovsky-Piscouna#KPP) equation[10]

UOICU

+0(In"%2Q), (3

where IC, is a constant. As expected the correction to the

dp Pp 5 macroscopic velocity of the front is very strong: in a macro-

5 D2’ kip = kop®. (1) scopic volume of 18 particles, it is still 0.3%. Combining
Egs. (2) and (3), we can easily infer that the typical time

This equation has traveling-wave solutions of the fopm scale of microscopic pulled fronts is given by the condition

=p(x—vt) which invade the unstable phasec)=0 from the  v(7q) =vq, that is[13],

stable phase(-»)=k;/k, and travel with velocityv =v, 5

:2\s“‘D_k1. Of patrticular interest is the solution with velocity 7o ~ In° Q. (4)

vo, Since it is dynamically selected for a broad class of initiaIThus, pulled fronts in reaction-diffusion particle models do

conditions. Moreoverp, is the linear spreading speed of oo 4 typical time scale, as opposed to those of the FKPP

infinitesimal perturbations around the unstable state. Th“%quation, although it is set by microscopic details and di-

fronts with velocityv, are essentially “pulled along” by the verges in the limit) — o [14].

growth and spreading of small perturbations in the leading N merical confirmation of these predictions in general

edgex>uvt wherep<1. This sensitivity also causes te- (o, ction-diffusion particle models is difficult, since the ob-
servation of the functional dependence in E8) requires
typical simulations up to two orders of magnitude in(ln

*Electronic address: emoro@math.uc3m.es; http:/gisc.uc3m.ewhich are not computationally feasible. However, for a par-
~moro ticular model in which particles undergo nonlocal diffusion
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movements, Brunet and Derrida were able to perform simu-
lations up taQ) = 10*° and check the predictiof8) with high
accuracy[11,12. Moreover, they also found that the front
diffuses in time and that the diffusion coefficient behaves
as[12]

Dy~ 5

¢ nd’ ®)
where/Cp is a constant. While the velocity correcti@®) can

be easily understood in terms of an effective cutoff in the
FKPP equatiorfl11], and simulations for moderate numbers ‘ . | . .
of particles(Q2 =109 in reaction-diffusion particle models TS TS|
seem to be compatibleith Eq. (3) [6,9,13,15, the func-
tional dependence @ has been observed only in the non-
local model of Brunet and Derrida. Although there is a heu
ristic argument for a specific model to get the Sif)
dependencé6], the situation clearly remains unsatisfactory,
since there is only one empirical observation of EB).
Thus, our purpose in this paper is to simulate e A+A
model for very large number of particles in order to check
both Eq.(3) and Eq.(5) and get some insight into the dy-
namics of pulled fronts in microscopic particle models.

The A<~ A+A model in one dimension consists of par-
ticles on a lattice with spacingx in which the number of )
particles at sitei, Ni(t), is unboundedsee[8]). Reaction MC hybrid method§16-1§. _ , ,
events take place on site, while diffusion drives particles to T_o this (_and, if we define {?‘t each §|tme+flux of incoming
nearest neighbor positions. Particles annihilate with rgte particlesF; (1 a”‘?' of _outgqlng_partlcleﬁ (t) (see Fig. ],
create another one with ratg and diffuse with rateD. In  the Euler approximation with time steft of Eq. (1) reads

FIG. 1. Snapshot of the front profile for one realization of the
_hybrid method withQ)=10?° (upper pangl Below: schematic view
of the frontN;(t) close toi*. Open symbols are in the macroscopic
region and full symbols in the microscopic region. For each lattice
point i we define the flux of outgoindr;(t) and incomingF; (t)
particles. In the figure only those fof are shown. Lines are guides
to the eye.

diffusion couples the dynamics between different sites, we
implement the boundary condition through the conservation
of fluxes of particles through the boundary, similarly to other

equilibrium, the average number of particles per sitéis _ L T
=vy/ o, and when() — the system is described by E@.) Ni(t +AD = Ni(t = Fi-F® + yN(1) — oN(t)  (6)
with p(x,t)=N(x,t)/Q and k,=k,=v. Early Monte Carlo At Ax

(MC) simulations of this mode[8] showed that indeed, \yiin
whenQ>1, FKPP pulled fronts emerge. Specifically, it was
found that both the velocity correction and the diffusion co- _ D
efficient of the front decay lik&) %/ for 2 <10P, a scaling Fi(t)= E([Ni—l(t) - Ni®],
which has been observed in other models for moderate val-
ues of() [15]. However, in order to observe the scalin@s
and (5) much larger numbers of particles are neediggi- FH(t) = E[Ni(t) - Nizg(D)]. 7)
cally Q> 10'% which cannot be attained in standard MC ' Ax
simulations. . . . .
To reach larger numbers of particles in the—A+A ObV|0L_Jsti c9nservat|on+of Ehe_ number of particles requires
model, we note that, since the dynamics of pulled fronts aréhat Fi(t)=Fi_,(t) and F; (t),_Fi+1(t)' Thus,. OL_” alggnthm
very sensitive to the dynamics of the system close to th&velves as follows. For a given mesoscopic time stgpve
unstable statg=0, a correct description of the reaction- UPdate the microscopic regidh=i*) using a time continu-
diffusion microscopic problem is needed only there, where?uS MC method8] until the time of the simulation\t ex-
fluctuations are importari.2]. Away from the unstable state, ceedsAt. Note that the typical time step in the MC simula-
i.e., whenp=0(1), the number of particles is big enough so tion is given by o™ =N*[1+log{Q/N*)] [19], which is
that fluctuations are negligible and the system can be safelgmaller thanAt in our simulations. Thus, several MC events
described by macroscopic descriptions like Bq. Thus we take place until the MC simulation timat exceedsAt,
propose to split the dynamics of the microscopic model intowhich makes the realt different for any time step. Any MC
two different descriptions: given a mesoscopic number ofvent in which a particle jumps into the macroscopic region
particlesN* with 1> N*>1, at any time step we identify (i <i*) is recorded in the variabl&~, and the particle is
the positioni* as the smallest value af for which N;(t) removed from the MC simulation. We then update sites
<N*. In the region in which fluctuations can be safely ig- <i*—2 using Egs.(6) and (7). Finally, the number of par-
nored, that is, when<i*, we update the number of particles ticles at the boundary sii¢—1 is updated using Eq6) but
using a numerical approximation of E@l), while we use with F};_; calculated according to the MC recorded number
MC methods in the regioi=i*. To complete the algorithm, of jumps, N. Specifically, we takeF._;=(D/AX)N;«_(t)
boundary conditions at=i* should be given. Since only -N7/(AtAx). Since we should get thd. (t)=F;_;(t), we
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FIG. 2. Asymptotic velocity correction as a function of the loga-  FIG. 3. Diffusion coefficient of the fronb; as a function of the
rithm of the number of particleQ. Open symbols are results for the logarithm of the number of particleQ. Symbols are as in Fig. 2.
full MC simulation while full symbols are for the hybrid scheme. Dashed line is a fit of the last points to the scaling foih with
Dashed line corresponds to the scaling given by By.with X,  K£5=26.5. Dot-dashed line is the scaliyy~ Q%32 of [8]. Error
given by Eq.(9). Error bars are not shown when smaller than thebars are not shown when smaller than the symbol size. Inset: Ve-
symbol size. Inset: time evolution of the instantaneous velocity ofiocity as a function of time for one realization of the algorithm with
the front(solid lineg with Q=10%,10%, and 1d° from top to bot- (=107
tom. Dashed line is the prediction given by K8g).

However, a strong deviation of our results for the predicted
scaling(3) even for large values di is observed, a fact that
also was present in the Brunet and Derrida mofdé].

update the number of particles at siteto satisfy this con-
dition on average: Ni*(t+At):Ni*(t+At)+HAtDNi*_1(t),AX
wherell, is a Poisson random number with meanThis  Asymptotic convergence of microscopic pulled fronts in the
completes a time stefit in the algorithm. A< A+A toward the solution of the FKPP equation is also
The condition for a sharp interface between the macroebserved in the inset of Fig. 2, in which we plot the time
scopic and the microscopic regionsiatcan be relaxed by dependence of the velocity for different values(dfAs ex-
introducing a buffer regio16,17. Moreover, fluctuations pected, in our simulations the velocity decays accurately like
can also be considered in the macroscopic region by addingg. (2) until it saturates to a constant value given by E3j.
an internal noise source to the FKPP equafit®,20. How- Regarding the diffusion coefficient, our results for the
ever, for large enoughl* and small enough\i, our results A« A+A confirm the scaling5) found in[12]. Note that the
do not differ from those of these algorithm refinements. Inresults for small values of) agree with the scalind,
our simulations we takéf=10"% N*=min{10*,Q/2}, and ~Q 3 found in the initial studies of thé\<> A+A model
D=y=Ax=1. [8]. To understand the origin of the functional dependence of
Results for this hybrid scheme are shown in Figs. 2 and 3he diffusion coefficient, we show in the inset of Fig. 3 a
and compared with full MC simulations up @=1C°. In  typical realization of the instantaneous velocity of the front
each realization, the front position is defined by the place irs a function of time. As we can see, long-lived fluctuations
the lattice wherep(x,t)=1/2. Both the correction to the ve- occur at the front, whose origin is in the large relaxation time
locity of the front(3) and the diffusion coefficierts) agree, ~ Of microscopic pulled front dynamicsy, ~In* Q. In order to
up to statistical fluctuations, with those of the full MC simu- check this, we have measured the time correlation of the
lations, which supports the validity of our algorithm. Note instantaneous velocity of the front for different values(bf
that when() — 0 our algorithm reduces to the Euler approxi-

mation of the FKPP equation. Thus, the veloaityin (3) is C,() =([v(s+1) —vqllv(s) —val). (10)
given by the solutions of the equatiofl] Our data(see Fig. 4 indicate that the velocity correlation
- scales like
o€ 9v0At = — 2 sinhqp, L t
C,(t) ~ G , 11
oV In®Q (Inzﬂ) (1)

e 9voAl = 2AT [(coshqgy — 1) — 1], (8)
whereG(x) is a scaling function. As expected, the relaxation
time of velocity fluctuations is given by, and, in particular,
Eqg.(11) is consistent with the scaling @f, given by Eq.(5)

and the velocity correction coefficient obtained using the ef
ficient deterministic cutoff argument ¢11] is given by

K, = 72q0(€°% coshq, — v2KT/2). 9) using the Kubo formula
t
In the limit (} — o we observe in Fig. 2 that our results D ~ "mf C,(t)dt ~ i _ (12)
tend to the scalingd) together with the solution&) and(9). — In®Q
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equation[20]) of the A< A+A model when standard pertur-
bation techniqueswhich rely on the existence of a macro-
scopic time scaleare used6]. However, microscopic pulled
fronts do not have this macroscopic time scale, and fluctua-
tions are accommodated by the dynamics on a much larger
time scalery. The interplay between the microscopic fluc-
tuations of strength I? Q and the time scale of ordera)

in which they relax is what produces the dependence éh In
observed in the diffusion coefficient.

In summary, we have presented a hybrid method for
| studying the dynamics of fronts in particle reaction-diffusion
OROO0OORCE000 - problems. This hybrid scheme allows us to investigate the
0 50 100 150 200 asymptotic convergence of those microscopic models to the

t macroscopic description given by the FKPP equatibn In

FIG. 4. Velocity time correlation as a function of time for dif- particular, we reproduced the scaling of the velocity correc-

ferent values of the number of particles Inset shows the scaling ,tion with the.number'of particles given by E@)’ Ob,serVEd
given by Eq.(11). in [11], and inferred in other works. More interestingly, we

confirmed the proposed scaling for the diffusion coefficient

The observed scalingll) gives us some insight into the (5) and showed that its origin is in the interplay of the typical
effect of internal fluctuations in microscopic pulled fronts: at relaxation time of microscopic pulled fronts and the strength
small densities, fluctuations in the number of partidig&) of the microscopic fluctuations at small densities.
become importantfor example, note in Fig. 1 the presence
of particles well ahead of the tip of the fronEquation(11) We would like to thank R. Cuerno, C. R. Doering, A.
suggests that those fluctuations have a strength proportion&nchez, and P. Smereka for comments and discussions and
to 1/Ir° Q. In the existence of a typical macroscopic scalethe MCTP at University of Michigan and the DEAS at Har-
those fluctuations would be damped almost instantaneoushard University for their hospitality during the progress of
and the diffusion coefficient would have been proportional tothis work. This work has been supported by grants from the
1/In° Q. In fact, a similar result is obtained analytically for Ministerio de Ciencia y Tecnologia and Comunidad de
the coarse-grained continuous mod#ie stochastic FKPP Madrid (Spain.
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