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We study the propagation of pulled fronts in theA↔A+A microscopic reaction-diffusion process using
Monte Carlo simulations. In the mean field approximation the process is described by the deterministic Fisher-
Kolmogorov-Petrovsky-Piscounov equation. In particular, we concentrate on the corrections to the determin-
istic behavior due to the number of particles per correlated volumeV. By means of a hybrid simulation
scheme, we manage to reach large macroscopic values ofV, which allows us to show the importance in the
dynamics of microscopic pulled fronts of the interplay of microscopic fluctuations and their macroscopic
relaxation.
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When describing systems at much larger scales than the
correlation length, internal fluctuations due to the intrinsic
discreteness of the particles can be neglected, since they ac-
count for a correction typically only of the order ofV−1/2,
whereV is the number of particles in a correlated volume.
However, in some situations the dynamics of the system
spans different scales, which gives rise to a strong depen-
dence of its macroscopic features on the microscopic details
of its constituents, even in the limitV→`. Relevant in-
stances of this phenomena are the dynamic contact angle
problem[1], evolution of a fracture tip[2], dendritic growth
[3], and the flow of a gas through a microscopic channel[4].
In this paper we highlight and study another important ex-
ample, namely, the effect of internal fluctuations in the mac-
roscopic dynamics of pulled fronts[5,6]. Specifically, we
consider the propagation of pulled fronts in reaction-
diffusion microscopic problems, like theA↔A+A scheme
[7–9]. A continuum description of the system is possible in
the reaction-limited regime whereV is large enough so the
reaction is well stirred within each correlated volume[7,9].
In this case, the densityrsx,td of particles per correlated
volume is described, in the limitV→`, by the Fisher-
Kolmogorov-Petrovsky-Piscounov(FKPP) equation[10]
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This equation has traveling-wave solutions of the formr
=rsx−vtd which invade the unstable phasers`d=0 from the
stable phasers−`d=k1/k2 and travel with velocityvùv0

=2ÎDk1. Of particular interest is the solution with velocity
v0, since it is dynamically selected for a broad class of initial
conditions. Moreover,v0 is the linear spreading speed of
infinitesimal perturbations around the unstable state. Thus,
fronts with velocityv0 are essentially “pulled along” by the
growth and spreading of small perturbations in the leading
edgex@vt wherer!1. This sensitivity also causes theab-

sence of a typical macroscopic length and time scalein
which perturbations around the asymptotic solution with ve-
locity v0 are damped[5]. For example, the velocity of the
front starting from a steep enough initial condition ap-
proaches the asymptotic value like a power law,

vstd = v0 −
3

2q0t
+ Ost−3/2d, s2d

whereq0=v0/2D.
In particle models, however, the continuum description

given by the FKPP equation breaks down atr.1/V where
internal fluctuations are important. Since pulled front dynam-
ics are sensitive to infinitesimal events atr!1, we expect
macroscopic properties to depend strongly onV when V
→`. For example, by neglecting microscopic fluctuations
and mimicking the discreteness of particles by imposing an
effective cutoff in the FKPP equation atr=V−1, Brunet and
Derrida [11,12] obtained that the velocity is given by

vs`d ; vV = v0 −
v0Kv

ln2 V
+ Osln−5/2 Vd, s3d

where Kv is a constant. As expected the correction to the
macroscopic velocity of the front is very strong: in a macro-
scopic volume of 1023 particles, it is still 0.3%. Combining
Eqs. (2) and (3), we can easily infer that the typical time
scale of microscopic pulled fronts is given by the condition
vstVd.vV, that is[13],

tV , ln2 V. s4d

Thus, pulled fronts in reaction-diffusion particle models do
have a typical time scale, as opposed to those of the FKPP
equation, although it is set by microscopic details and di-
verges in the limitV→` [14].

Numerical confirmation of these predictions in general
reaction-diffusion particle models is difficult, since the ob-
servation of the functional dependence in Eq.(3) requires
typical simulations up to two orders of magnitude in lnV,
which are not computationally feasible. However, for a par-
ticular model in which particles undergo nonlocal diffusion
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movements, Brunet and Derrida were able to perform simu-
lations up toV.10150 and check the prediction(3) with high
accuracy[11,12]. Moreover, they also found that the front
diffuses in time and that the diffusion coefficient behaves
as [12]

DV .
KD

ln3 V
, s5d

whereKD is a constant. While the velocity correction(3) can
be easily understood in terms of an effective cutoff in the
FKPP equation[11], and simulations for moderate numbers
of particlessVø1010d in reaction-diffusion particle models
seem to be compatiblewith Eq. (3) [6,9,13,15], the func-
tional dependence ofDV has been observed only in the non-
local model of Brunet and Derrida. Although there is a heu-
ristic argument for a specific model to get the ln−3 V
dependence[6], the situation clearly remains unsatisfactory,
since there is only one empirical observation of Eq.(5).
Thus, our purpose in this paper is to simulate theA↔A+A
model for very large number of particles in order to check
both Eq.(3) and Eq.(5) and get some insight into the dy-
namics of pulled fronts in microscopic particle models.

The A↔A+A model in one dimension consists of par-
ticles on a lattice with spacingDx in which the number of
particles at sitei, Nistd, is unbounded(see [8]). Reaction
events take place on site, while diffusion drives particles to
nearest neighbor positions. Particles annihilate with rates,
create another one with rateg, and diffuse with rateD. In
equilibrium, the average number of particles per site isV
=g /s, and whenV→` the system is described by Eq.(1)
with rsx,td=Nsx,td /V and k1=k2=g. Early Monte Carlo
(MC) simulations of this model[8] showed that indeed,
whenV@1, FKPP pulled fronts emerge. Specifically, it was
found that both the velocity correction and the diffusion co-
efficient of the front decay likeV−1/3 for Vø106, a scaling
which has been observed in other models for moderate val-
ues ofV [15]. However, in order to observe the scalings(3)
and (5) much larger numbers of particles are needed(typi-
cally V@1010) which cannot be attained in standard MC
simulations.

To reach larger numbers of particles in theA↔A+A
model, we note that, since the dynamics of pulled fronts are
very sensitive to the dynamics of the system close to the
unstable stater.0, a correct description of the reaction-
diffusion microscopic problem is needed only there, where
fluctuations are important[12]. Away from the unstable state,
i.e., whenr=Os1d, the number of particles is big enough so
that fluctuations are negligible and the system can be safely
described by macroscopic descriptions like Eq.(1). Thus we
propose to split the dynamics of the microscopic model into
two different descriptions: given a mesoscopic number of
particlesN* with V@N* @1, at any time stept we identify
the position i* as the smallest value ofi for which Nistd
øN*. In the region in which fluctuations can be safely ig-
nored, that is, wheni , i*, we update the number of particles
using a numerical approximation of Eq.(1), while we use
MC methods in the regioni ù i*. To complete the algorithm,
boundary conditions ati = i* should be given. Since only

diffusion couples the dynamics between different sites, we
implement the boundary condition through the conservation
of fluxes of particles through the boundary, similarly to other
MC hybrid methods[16–18].

To this end, if we define at each sitei the flux of incoming
particlesFi

−std and of outgoing particlesFi
+std (see Fig. 1),

the Euler approximation with time stepDt of Eq. (1) reads

Nist + Dtd − Nistd
Dt

=
Fi

−std − Fi
+std

Dx
+ gNistd − sNi

2std s6d

with

Fi
−std =

D

Dx
fNi−1std − Nistdg,

Fi
+std =

D

Dx
fNistd − Ni+1stdg. s7d

Obviously, conservation of the number of particles requires
that Fi

−std=Fi−1
+ std and Fi

+std=Fi+1
− std. Thus, our algorithm

evolves as follows. For a given mesoscopic time stepDt̃, we
update the microscopic regionsi ù i* d using a time continu-
ous MC method[8] until the time of the simulationDt ex-
ceedsDt̃. Note that the typical time step in the MC simula-
tion is given by dt−1.N* f1+logsV /N* dg [19], which is
smaller thanDt̃ in our simulations. Thus, several MC events
take place until the MC simulation timeDt exceedsDt̃,
which makes the realDt different for any time step. Any MC
event in which a particle jumps into the macroscopic region
si , i* d is recorded in the variableN−, and the particle is
removed from the MC simulation. We then update sitesi
ø i*−2 using Eqs.(6) and (7). Finally, the number of par-
ticles at the boundary sitei*−1 is updated using Eq.(6) but
with Fi*−1

+ calculated according to the MC recorded number
of jumps, N−. Specifically, we takeFi*−1

+ =sD /DxdNi*−1std
−N−/ sDtDxd. Since we should get thatFi*

− std=Fi*−1
+ std, we

FIG. 1. Snapshot of the front profile for one realization of the
hybrid method withV=1020 (upper panel). Below: schematic view
of the frontNistd close toi*. Open symbols are in the macroscopic
region and full symbols in the microscopic region. For each lattice
point i we define the flux of outgoingFi

+std and incomingFi
−std

particles. In the figure only those fori* are shown. Lines are guides
to the eye.
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update the number of particles at sitei* to satisfy this con-
dition on average: Ni*st+Dtd=Ni*st+Dtd+PDtDNi*−1std/Dx

wherePl is a Poisson random number with meanl. This
completes a time stepDt in the algorithm.

The condition for a sharp interface between the macro-
scopic and the microscopic regions ati* can be relaxed by
introducing a buffer region[16,17]. Moreover, fluctuations
can also be considered in the macroscopic region by adding
an internal noise source to the FKPP equation[16,20]. How-
ever, for large enoughN* and small enoughDt̃, our results
do not differ from those of these algorithm refinements. In
our simulations we takeDt̃=10−4, N*=minh104,V /2j, and
D=g=Dx=1.

Results for this hybrid scheme are shown in Figs. 2 and 3
and compared with full MC simulations up toV=105. In
each realization, the front position is defined by the place in
the lattice wherersx,td=1/2. Both the correction to the ve-
locity of the front(3) and the diffusion coefficient(5) agree,
up to statistical fluctuations, with those of the full MC simu-
lations, which supports the validity of our algorithm. Note
that whenV→` our algorithm reduces to the Euler approxi-
mation of the FKPP equation. Thus, the velocityv0 in (3) is
given by the solutions of the equations[21]

v0e
−q0v0Dt̃ = − 2 sinhq0,

e−q0v0Dt̃ = 2Dt̃ fscoshq0 − 1d − 1g, s8d

and the velocity correction coefficient obtained using the ef-
ficient deterministic cutoff argument of[11] is given by

Kv = p2q0sev0q0Dt̃ coshq0 − v0
2Dt̃/2d. s9d

In the limit V→` we observe in Fig. 2 that our results
tend to the scaling(3) together with the solutions(8) and(9).

However, a strong deviation of our results for the predicted
scaling(3) even for large values ofV is observed, a fact that
also was present in the Brunet and Derrida model[12].
Asymptotic convergence of microscopic pulled fronts in the
A↔A+A toward the solution of the FKPP equation is also
observed in the inset of Fig. 2, in which we plot the time
dependence of the velocity for different values ofV. As ex-
pected, in our simulations the velocity decays accurately like
Eq. (2) until it saturates to a constant value given by Eq.(3).

Regarding the diffusion coefficient, our results for the
A↔A+A confirm the scaling(5) found in [12]. Note that the
results for small values ofV agree with the scalingDV

,V−1/3 found in the initial studies of theA↔A+A model
[8]. To understand the origin of the functional dependence of
the diffusion coefficient, we show in the inset of Fig. 3 a
typical realization of the instantaneous velocity of the front
as a function of time. As we can see, long-lived fluctuations
occur at the front, whose origin is in the large relaxation time
of microscopic pulled front dynamics,tV, ln2 V. In order to
check this, we have measured the time correlation of the
instantaneous velocity of the front for different values ofV:

Cvstd ; kfvss+ td − vVgfvssd − vVgl. s10d

Our data(see Fig. 4) indicate that the velocity correlation
scales like

Cvstd ,
1

ln5 V
GS t

ln2 V
D , s11d

whereGsxd is a scaling function. As expected, the relaxation
time of velocity fluctuations is given bytV and, in particular,
Eq. (11) is consistent with the scaling ofDV given by Eq.(5)
using the Kubo formula

DV , lim
t→`

E
0

t

Cvst8ddt8 ,
1

ln3 V
. s12d

FIG. 2. Asymptotic velocity correction as a function of the loga-
rithm of the number of particlesV. Open symbols are results for the
full MC simulation while full symbols are for the hybrid scheme.
Dashed line corresponds to the scaling given by Eq.(3) with Kv
given by Eq.(9). Error bars are not shown when smaller than the
symbol size. Inset: time evolution of the instantaneous velocity of
the front(solid lines) with V=1020,1030, and 1040 from top to bot-
tom. Dashed line is the prediction given by Eq.(2).

FIG. 3. Diffusion coefficient of the frontDf as a function of the
logarithm of the number of particlesV. Symbols are as in Fig. 2.
Dashed line is a fit of the last points to the scaling form(5) with
KD=26.5. Dot-dashed line is the scalingDf ,V−0.32 of [8]. Error
bars are not shown when smaller than the symbol size. Inset: Ve-
locity as a function of time for one realization of the algorithm with
V=1020.
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The observed scaling(11) gives us some insight into the
effect of internal fluctuations in microscopic pulled fronts: at
small densities, fluctuations in the number of particlesNistd
become important(for example, note in Fig. 1 the presence
of particles well ahead of the tip of the front). Equation(11)
suggests that those fluctuations have a strength proportional
to 1/ ln5 V. In the existence of a typical macroscopic scale,
those fluctuations would be damped almost instantaneously
and the diffusion coefficient would have been proportional to
1/ ln5 V. In fact, a similar result is obtained analytically for
the coarse-grained continuous model(the stochastic FKPP

equation[20]) of the A↔A+A model when standard pertur-
bation techniques(which rely on the existence of a macro-
scopic time scale) are used[6]. However, microscopic pulled
fronts do not have this macroscopic time scale, and fluctua-
tions are accommodated by the dynamics on a much larger
time scaletV. The interplay between the microscopic fluc-
tuations of strength ln−5 V and the time scale of order ln2 V
in which they relax is what produces the dependence on lnV
observed in the diffusion coefficient.

In summary, we have presented a hybrid method for
studying the dynamics of fronts in particle reaction-diffusion
problems. This hybrid scheme allows us to investigate the
asymptotic convergence of those microscopic models to the
macroscopic description given by the FKPP equation(1). In
particular, we reproduced the scaling of the velocity correc-
tion with the number of particles given by Eq.(3), observed
in [11], and inferred in other works. More interestingly, we
confirmed the proposed scaling for the diffusion coefficient
(5) and showed that its origin is in the interplay of the typical
relaxation time of microscopic pulled fronts and the strength
of the microscopic fluctuations at small densities.
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