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Dynamics of defect formation
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A dynamic symmetry-breaking transition with noise and inertia is analyzed. Exact solution of the linearized
equation that describes the critical region allows precise calculation~exponent and prefactor! of the number of
defects produced as a function of the rate of increase of the critical parameter. The procedure is valid in both
the overdamped and underdamped limits. In one space dimension, we perform quantitative comparison with
numerical simulations of the nonlinear nonautonomous stochastic partial differential equation and report on
signatures of underdamped dynamics.@S1063-651X~99!51202-6#
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When a system that undergoes a symmetry-breaking t
sition is swept through its critical point, the initial symmet
is broken and domains are formed. Because of critical sl
ing down, it is not possible to sweep adiabatically; the nu
ber of domains therefore depends on the rate of increas
the critical parameter. A new scenario for structure format
in the early universe and a proposal for its test in laborat
experiments resulted from the first understanding of the
portance of this nonequilibrium effect@1#. Until recently,
experimental@2# results tended to support the proposed s
nario, but a precise comparison was not possible beca
neither experiment nor theory was confident of more th
exponents. The situation is now changing, with new exp
ments using quenches of liquid helium through the superfl
transition taking care to minimize vortex creation via flo
processes@3#. In this Rapid Communication we report pre
cise expressions for the number of defects and quantita
agreement with numerical results.

The phenomenon of a dynamic transition has been stu
in the zero-dimensional case~pitchfork bifurcation! in the
context of lasers@4–10#. The time-dependence of the critic
parameter produces a delay of the bifurcation given
A2mu ln eu, wherem is the rate of increase of the parame
and e the magnitude of additive fluctuations. Theoretic
studies on spatially extended systems revealed a charac
tic distance between kinks. The spatial structure formed d
ing the sweep through critical point from the symmetric
broken-symmetry regime is frozen in by the nonlinear
when, sufficiently far into the symmetry-broken regime, t
system attains a metastable state@11–14,16#. Analytical
progress is possible because the critical region is w
described by an equation which, although stochastic
nonautonomous, is linear. Here we consider the influenc
inertia; we derive the scalings and signatures of the ov
damped and underdamped limits.

The theory of dynamic transitions identifies three succ
sive regimes in the evolution, as the critical paramete
increased. In the earliest regime, sufficiently far from t
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critical point, the evolution is quasiadiabatic: the ensemble
field configurations is a small perturbation of that found f
constant parameters@11,16#. In the second region, close t
the critical point, the system can no longer react quic
enough to the time dependence of the critical parameter@1#.
Our treatment based on the equation of motion, howe
passes seamlessly between the first and second region
both, the field is everywhere small and precise calculation
the correlation function can be made from the linearized s
chastic partial differential equation~SPDE! @11,16#. We
show that, for the purposes of calculating the number
kinks formed, the end of the second, nonequilibrium, reg
is the key. In the final region, the spatial structure consists
narrow kinks separating long regions where the field is cl
to one of the minima of the potential. The spatial structure
‘‘frozen in’’ in the sense that the motion, merging and occ
sional nucleation of kink-antikink pairs happens on a slow
timescale than the process that formed them. The separa
of timescales is especially marked at high damping and
temperature@13#.

We shall consider the specific example of the stocha
process in one space dimension satisfying the following n
autonomous SPDE@12,14,15#:

] t
2Yt~x!2D]x

2Yt~x!1g] tYt~x!

5g~ t !Yt~x!2Yt~x!31eh~x,t !. ~1!

The order parameter at timet and positionx, denoted by
Yt(x), is a real-valued random variable. The last term in E
~1! is a space-time noise,d-function correlated in space an
time: ^h(x,t)h(x8,t8)&5d(x2x8)d(t2t8). The fluctuation-
dissipation relation is enforced by settinge252gkBQ,
whereQ is the temperature.

In our numerical simulations, the time dependence of
critical parameter isg(t)5mt, starting atg52t,0. The
initial conditions are

Yt0
~x!5] tYt0

~x!50, t052
t

m
. ~2!

The simulations are performed on a domain@0,L# that con-
tains many kinks, using periodic boundary conditions. S
R1303 ©1999 The American Physical Society
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ond order stochastic time-stepping@17# was used for the spa
tially discretized version of Eq.~1! @11#.

Typical time evolution is represented in Fig. 1, whe
each dot is the space-time position of a zero crossing in
numerical realization. The system makes a transition from
regime with many zero crossings and typical values of
field close to zero, to a regime with few zeros, correspond
to the positions of kinks, separating large regions wh
Yt(x) is close either to1Ag or to 2Ag. The transition takes
place atĝ.0. Forg.ĝ, each zero ofYt(x) corresponds to a
well-defined kink or antikink.

During the evolution precedingg5ĝ, the cubic term in
Eq. ~1! is small and the linearized equation is a good a
proximation. It is illuminating to nondimensionalize the lin
earized equation:

]T
2YT~x!2n]x

2YT~x!12a]TYT~x!

5TYT~x!1em21/2h~x,t !,

where

T5m1/3t, a5
1

2
gm21/3, n5Dm22/3. ~3!

The dynamics can now be studied in terms of the charac
istic time t5m21/3 and nondimensional dampinga. The field
YT(x) satisfying Eq.~3! with initial conditions~2! is Gauss-
ian with mean zero at all times. The correlation functio
c(x)5^YT(x)YT(0)&, changes its form and amplitude wit
time. At any fixed time, there is the following relationsh
betweenc(x) and the number of zeros: ifc8(0)50, then the
mean number of zero crossings is a finite number given
@18,16#

r~T!5
L

p S 2
c9~0!

c~0! D 1/2

. ~4!

The analytical solution of Eq.~3! proceeds by separatin
into independent stochastic differential equations for eac

FIG. 1. Space-time evolution. The positions of crossings of z
are shown as a function of time for underdamped~a! and over-
damped~b! dynamics. In~c! and~d! the corresponding numbers o
crossings are shown.~Time increases upward.! The horizontal lines
correspond tog5ĝ.
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the Fourier coefficients,yT(k)5L21/2*0
LYT(x)eik(2p/L)xdx,

whose time evolution is given by the SDE

]T
2yT~k!12a]TyT~k!5~T2k2!yT~k!1~2m!2~1/2!eĥ~T,k!

~5!

for integerk and wherek25nk2(2p/L)2 and

^ĥ~T,k!ĥ~T8,k8!&5dk,k8d~T2T8!.

EachyT(k) is Gaussian with mean zero@19#. The variance
grows exponentially fast forT2k21a2.1:

^yT* ~k!yT~k!&→p
e2

m
F~T0 ,a,k2!

3~T2k21a2!2~1/2!expF4

3
~T2k21a2!3/2

22a~T2k2!2
4

3
a3G , ~6!

where

F~T0 ,a,k!5e~4/3!a3E
T0

`

Ai2~S2k21a2!e2aSdS. ~7!

No approximations have been made thusfar in the solu
of Eq. ~3!. We now consider the implications of the physic
picture presented above for the relative values of the par
eters. First, for there to be a quasiadiabatic first regime in
evolution, we require a sufficiently slow sweep:m!t3/2

@20#. Second, we require a well-defined value of the ord
parameter,g5ĝ, marking the end of the second part of th
evolution, implyinge2!m @17#.

We adopt the following definition:ĝ5m2/3T̂, where T̂
satisfieŝ Y

T̂

2
(x)&5dĝ @i.e., whend51, the first two terms on

the right-hand side of Eq.~1! are equally important#. We thus
evaluateĝ by solving ^YT̂

2
(x)&5dĝ, where

^YT
2~x!&5

1

L (
k

^yT* ~k!yT~k!&.@l~T!#21~2p!2~1/2!

3^yT* ~0!yT~0!& ~8!

andl(T)522n(]2/]k2)ln@^yT* (k)yT(k)&#.
The correlation function is the Fourier transform

^yT* (k)yT(k)&. It emerges from the sweep pastg50 with the

form c(x)5c(0)exp@2x2/2l2(T̂)# @11#. The number of ze-
ros present atg5ĝ is thus

r5
1

p

L

l~ T̂!
. ~9!

Our procedure is valid for arbitrary damping. We now exa
ine the underdamped and the overdamped limits, defined
the parametera5 1

2 gm21/3. The overdamped limit~studied
in @11#! is recovered asa→`.

o
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In theunderdamped limita→0, andr is only logarithmi-
cally dependent ona. In this limit l(T)52n1/2T1/4, and the
integral ~7! has the asymptoteF(T0 ,a,k2)→F1uT0

2k2u1/2 @21#. As T→T̂,

^YT
2~x!&→p

e2

m
F1S t

4pD D 1/2

T23/4expS 4

3
T3/2D , ~10!

and ĝ satisfies

ĝ3/25
3

4
m lnF m

pe2 S 4pD

mt D 1/2dĝ7/4

F1
G . ~11!

Immediately beforeg5ĝ, the number of zeros~4! is a de-
creasing function of time, given by

r~T!5
L

2p

T21/4

n1/2 . ~12!

The number of zeros present atĝ for a→0 is

r~ T̂!5
L

2p

m1/3

D1/2 H 3

4
lnF m

pe2 S 4pD

mt D 1/2dĝ7/4

F1
G J 21/6

. ~13!

In the overdamped limitthe number of zeros is propor
tional to m1/4 @11,12#. We show that the latter scaling i
obtained in the limita→`. Here F(T0 ,a,k)→F2a21/2

@21# andl(T)252nT/a. Thus

^YT
2~x!&5p

e2

m

F2

a
~4pnT!21/2expS 1

2

T2

a D ~14!

and ĝ satisfies

ĝ25mg ln@e22gd~8Dĝ3!1/2# . ~15!

The number of zeros for overdamped slow passage is

r~ T̂!5
L

2p

~mg!1/4

D1/2 $ ln@e22gd~8Dĝ3!1/2#%21/4. ~16!

Equations~13! and~16! are the main results of this Rapi
Communication; the number of created defects scales

FIG. 2. Density of zeros for the underdamped~a! and over-
damped~b! cases. The lines are the analytical approximations~13!
and ~16!. Averages from numerical simulations of Eq.~1! are
shown atg5ĝ ~squares! andg5t ~circles!, with errors of symbol
size or smaller.~D5t51, Q5531029.!
th

the sweep rate asr;m1/4 for the underdamped case andr
;m1/3 for the overdamped regime. We have performed
tensive quantitative comparison with numerical simulatio
of Eq. ~1!. Two examples are shown in Fig. 2. Our analytic
predictions at instantg5ĝ are very accurate. Although th
exponents can be obtained from dimensional analysis@1,13#,
logarithmic corrections produce small deviations in nume
cally estimated exponents at finite damping. No evidence
been found for the region ofr;m1/2 scaling, predicted in
@15# from an approximation that replaced Eq.~5! by a first-
order equation.

Because the number of defects atĝ is typically much
larger than the equilibrium density at temperatureQ @22#,
their number decreases afterĝ as kink-antikink pairs annihi-
late ~see Fig. 1!. The smaller the damping, the more rapid
this annihilation proceeds@13#. In Fig. 2 we have also plotted
the number of zeros atg5t. While the number of zeros is
reduced, the scaling withm seen atg5ĝ is preserved.

The crossover between regimes, represented in Fig

FIG. 3. From the underdamped to the overdamped regime: d
sity of zeros vsa for fixed m. Squares are numerical averages. T
main plot shows the density of defects at the instantĝ and the
analytical predictions for the underdamped~13! and the over-
damped~16! regimes. We measuredĝ numerically as the instan
when^YT̂

2
(x)&5

1
2 ĝ. In the inset we plot the value thus obtained

Eqs.~11! and ~15!. ~m51022, D5t51, Q5531029.!

FIG. 4. ‘‘Bounce back’’: The number of zeros oscillates aft
g5ĝ for small damping. The graph ofr vs time is for m54
31023, g51024, e51026 and D5t51. The inset plots the pe
riod of the oscillations obtained at different values ofm, with g
51024. The straight line isP52p/A2ĝ with ĝ given by Eq.~11!.
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takes place when the nondimensional dampinga5 1
2 gm21/3

.1. At small damping the dependence of the number
defects on damping is only logarithmic, (e2}g). At large
damping,r;g1/4.

Apart from the scaling of the number of defects withm, a
different signature of underdamped dynamics can be see
Figs. 1 and 4: multiple ‘‘bounce back’’ of the number o
zeros soon afterg5ĝ. The phenomenon has been reported
simulations of a sudden quench (m5`) @23#. We propose
the following interpretation. In a dynamic transition at lo
damping, domains reach a minimum of a potential well w
a finite velocity and therefore oscillate about it for a tim
Parts of some domains recross the crest of the instantan
potential barrier during these oscillations. This yields an
timate of the frequency of the oscillations:A2ĝ, correspond-
ing to harmonic oscillations about the minimum. In o
simulations, two well-defined bumps are typically seen in
number of defects vs time. From this we are able to meas
the period,P of the oscillations in the number of zero
despite the nonlinearity, it is very well approximated byP
52p/A2ĝ ~see Fig. 4!.
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The procedure carried out in this Rapid Communicat
for the real equation~1! can be applied to other equation
exhibiting continuous transitions@11# and in more than one
space dimension@11,14#. The scalings are not sensitive to th
particular equations chosen, but they are sensitive to
breaking of the exactY→2Y symmetry in the equation o
motion.

In summary, we derive quantitative predictions for t
number of defects formed in a symmetry-breaking transit
in one space dimension by analyzing the dynamics in
critical region, where the system is out of equilibrium r
gardless of how slowly the critical parameter is chang
Prefactors are calculated, so no fitting necessary. Un
damped slow passage results in a defect density proporti
to m1/3 and produces characteristic oscillations in the num
of zeros. Experiments where liquid helium is expand
through the lambda transition we are now reaching the p
where quantitative comparisons can be made.

We are grateful for Angel Sanchez’s comments on
manuscript. E. Moro thanks the CNLS for its hospitality.
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