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A dynamic symmetry-breaking transition with noise and inertia is analyzed. Exact solution of the linearized
equation that describes the critical region allows precise calculégxponent and prefactoof the number of
defects produced as a function of the rate of increase of the critical parameter. The procedure is valid in both
the overdamped and underdamped limits. In one space dimension, we perform quantitative comparison with
numerical simulations of the nonlinear nonautonomous stochastic partial differential equation and report on
signatures of underdamped dynami&1063-651X99)51202-6

PACS numbgs): 02.50.Ey, 05.70.Fh, 64.60i

When a system that undergoes a symmetry-breaking trarcritical point, the evolution is quasiadiabatic: the ensemble of
sition is swept through its critical point, the initial symmetry field configurations is a small perturbation of that found for
is broken and domains are formed. Because of critical sloweonstant parametefd1,16. In the second region, close to
ing down, it is not possible to sweep adiabatically; the numhe critical point, the system can no longer react quickly
ber of domains therefore depends on the rate of increase éhough to the time dependence of the critical paranjéder
the critical parameter. A new scenario for structure formatiorOur treatment based on the equation of motion, however,
in the early universe and a proposal for its test in laboratorypasses seamlessly between the first and second regions: in
experiments resulted from the first understanding of the imboth, the field is everywhere small and precise calculation of
portance of this nonequilibrium effedtl]. Until recently, the correlation function can be made from the linearized sto-
experimenta[2] results tended to support the proposed scechastic partial differential equatiogSPDB [11,16. We
nario, but a precise comparison was not possible becausdow that, for the purposes of calculating the number of
neither experiment nor theory was confident of more tharkinks formed, the end of the second, nonequilibrium, region
exponents. The situation is now changing, with new experiis the key. In the final region, the spatial structure consists of
ments using quenches of liquid helium through the superfluigharrow kinks separating long regions where the field is close
transition taking care to minimize vortex creation via flow to one of the minima of the potential. The spatial structure is
processe$3]. In this Rapid Communication we report pre- “frozen in” in the sense that the motion, merging and occa-
cise expressions for the number of defects and quantitativeional nucleation of kink-antikink pairs happens on a slower
agreement with numerical results. timescale than the process that formed them. The separation

The phenomenon of a dynamic transition has been studieaf timescales is especially marked at high damping and low
in the zero-dimensional cag@itchfork bifurcation in the  temperaturg13].
context of laser§4—10]. The time-dependence of the critical ~We shall consider the specific example of the stochastic
parameter produces a delay of the bifurcation given byprocess in one space dimension satisfying the following non-
V2u[In'd, whereu is the rate of increase of the parameterautonomous SPDEL2,14,13:
and e the magnitude of additive fluctuations. Theoretical 5 5
studies on spatially extended systems revealed a characteris- T Yi(X) =D Yi(X) + ydrYi(X)
tic distance between kinks. The spatial structure formed dur- _ _ 3
ing the sweep through critical point from the symmetric to IOV Vi) en(x.b). @)
broken-symmetry regime is frozen in by the nonlinearity The order parameter at timeand positionx, denoted by
when, sufficiently far into the symmetry-broken regime, they,(x), is a real-valued random variable. The last term in Eq.
system attains a metastable stdfel-14,16. Analytical (1) is a space-time noise-function correlated in space and
progress is possible because the critical region is welltime: ( 7(x,t) n(x’,t"))=8(x—x')8(t—t"). The fluctuation-
described by an equation which, although stochastic anglissipation relation is enforced by setting?=2ykg®,
nonautonomous, is linear. Here we consider the influence gfhere® is the temperature.
inertia; we derive the scalings and signatures of the over- |n our numerical simulations, the time dependence of the

damped and underdamped limits. critical parameter igy(t)=ut, starting atg=—7<0. The
The theory of dynamic transitions identifies three succesinitial conditions are

sive regimes in the evolution, as the critical parameter is

increased. In the earliest regime, sufficiently far from the T
YtO(X) = ﬁtho(X) = 0, toz - . (2)
12
*Electronic address: emoro@math.uc3m.es The simulations are performed on a dompirl] that con-
Electronic address: grant@lanl.gov tains many kinks, using periodic boundary conditions. Sec-
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20 @ ‘ ) iy i I the Fourier coefficientsyr(k)=L~Y2[§Y+(x)&k@™Lxdx,
151 _ 1r . whose time evolution is given by the SDE
— 10 | ; L |
= | ﬁ ) j ! ﬂ J2yr(K) +2adryr(K) = (T—k?)y7(K) +(2u) " eip(T k)
Q0 o5 i i ﬁ o B (5)
0.0 K& BFY il 4 ‘. 2 ' ST e ‘(l & L \j_
o5 ; A Vs . for integerk and wherex?= vk?(2/L)? and
2.0 — : . ; T
5@ 1L @ (TR T K )Y =80 S(T—T").
= ﬂ | I ] Eachy+(k) is Gaussian with mean zefd9]. The variance
S0 os, i ‘ fp F 1 grows exponentially fast fof — k?+ a?>1:
0.0k s e B e L o3 g " il | 1
distnidalio S : €2
.0'50 256 512 768 1024 100 1000 <y‘T'(k)YT(k)>—’77_q)(TO1011"2)
X r K
FIG. 1. Space-time evolution. The positions of crossings of zero X (T— e az)_(llz)ex;{i(T— pra az)s/z
are shown as a function of time for underdamged and over- 3

damped(b) dynamics. In(c) and(d) the corresponding numbers of
crossings are show(iTime increases upwandThe horizontal lines —2a(T— Kz) _ fas
correspond t@={§.

3¢ ®)

ond order stochastic time-steppifi7] was used for the spa- where
tially discretized version of Eq1) [11].

Typical time evolution is represented in Fig. 1, where N
each dot is the space-time position of a zero crossing in one ~ ®(To,a@,x)=€*3¢ fT AI%(S— K+ a®)e*5dS.  (7)
numerical realization. The system makes a transition from a 0
regime with many zero crossings and typical values of the
field close to zero, to a regime with few zeros, correspondin%f
to the positions of kinks, separating large regions wher
Y,(x) is close either to+ \/g or to — \/g. The transition takes
place aty>0. Forg>g, each zero o¥(x) corresponds to a
well-defined kink or antikink.

During the evolution preceding=§, the cubic term in
Eqg. (1) is small and the linearized equation is a good ap
proximation. It is illuminating to nondimensionalize the lin-
earized equation:

No approximations have been made thusfar in the solution
Eq. (3). We now consider the implications of the physical
epicture presented above for the relative values of the param-
eters. First, for there to be a quasiadiabatic first regime in the
evolution, we require a sufficiently slow sweep:<7%?
[20]. Second, we require a well-defined value of the order
parameterg=§, marking the end of the second part of the
“evolution, implyinge?< u [17].

We adopt the following definitiong=u?°T, where T
satisfies(Y%(x)}z &9 [i.e., whens=1, the first two terms on

FEY(X) = v 7(X) + 2adrY1(x) the right-hand side of Eq1) are equally importaft We thus
=TY7(X) + e Y2(x,1) evaluateg by soIving(Yi(x))z 60, where
where 1
(Y00)= T 2 (Y1 (yr(k)=[NT)] " H2m) =2
1
T=u¥%, a=-yu B =Dy 22 3)
2 X(y} (0)y+(0)) ®

The dynamics can now be studied in terms of the character- _ 2. 2 *
istic timet= 3 and nondimensional damping The field  2"dMT)= —2u(5" 9k In[{yr (K)yr(K))].

Y.(x) satisfying Eq.(3) with initial conditions(2) is Gauss- *The correlation function is the Fourier trangform of
ian with mean zero at all times. The correlation function,<yT(k)yT(k)>' It emerges fronj the sweep pgst 0 with the
c(x)=(Y+(x)Y1(0)), changes its form and amplitude with form c(x)=c(0)exg—x¥2\*(T)] [11]. The number of ze-
time. At any fixed time, there is the following relationship ros present ag=g is thus

betweenc(x) and the number of zeros: df (0)=0, then the

mean number of zero crossings is a finite number given by 1 L
[18,16 p=——= 9
™ NMT)
L C”(O) 1/2
p(T)= P _C(O) : (4) Our procedure is valid for arbitrary damping. We now exam-

ine the underdamped and the overdamped limits, defined by
The analytical solution of E¢(3) proceeds by separating the parameterr=3yu Y3 The overdamped limitstudied
into independent stochastic differential equations for each o [11]) is recovered ag— .
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FIG. 2. Density of zeros for the underdamp@ and over- FIG. 3. From the Underdamped to the OVerdamped regime: den-

damped(b) cases. The lines are the analytical approximatidi®s sity of zeros vsx for fixed u. Squares are numerical averages. The

and (16). Averages from numerical simulations of E¢l) are  Main plot shows the density of defects at the inst@grand the

shown atg=§ (squaresandg= r (circles, with errors of symbol ~ analytical predictions for the underdampeti3) and the over-

size or smaller(D=7=1, ®=5x10"9.) damped(16) regimes. We measure@ numerically as the instant
when(Y%(x))= %g. In the inset we plot the value thus obtained vs

In the underdamped limitv—0, andp is only logarithmi-  Egs.(11) and(15). (u=10"2, D=7=1,®=5x109.)
cally dependent om. In this limit A\(T)=2»2TY4 and the
integral (7) has the asymptote®(Ty,a,x?)—®4|Ty  the sweep rate as~ uY* for the underdamped case apd

— kY2 [21]. As T—T, ~ u*? for the overdamped regime. We have performed ex-
tensive quantitative comparison with numerical simulations
2 112
2 € _aa f 32 of Eq. (1). Two examples are shown in Fig. 2. Our analytical
(Y(x))—m L il zp) T em3zTT) 10 predictions at instangg=§ are very accurate. Although the

exponents can be obtained from dimensional analytsik3],
andg satisfies logarithmic corrections produce small deviations in numeri-
12 ca7ia cally estimated exponents at finite damping. No evidence has
EM'” L(‘“TD) 59 _ (11)  been found for the region gb~ u'? scaling, predicted in
4 me | pr O,y [15] from an approximation that replaced E§) by a first-
order equation.
Because the number of defects @tis typically much
larger than the equilibrium density at temperat@e22],

A3/2_

g

Immediately beforeg=4§, the number of zero#) is a de-
creasing function of time, given by

L T4 their number decreases aftgras kink-antikink pairs annihi-
p(T)= 5o T (12) Ia'Fe (see_ I_:ig._ 1 The smaller the (_Jlamping, the more rapidly
™ this annihilation proceed4.3]. In Fig. 2 we have also plotted

the number of zeros a= 7. While the number of zeros is

The number of zeros present@for 0is . . P
P gior a— reduced, the scaling with seen aig=4 is preserved.

. L w'3(3 w [4mD\ Y2574 ~ 16 The crossover between regimes, represented in Fig. 3,
P1= 5 pm z'“?( M) o, | -
100
In the overdamped limithe number of zeros is propor-
tional to x'* [11,12. We show that the latter scaling is 80
obtained in the limita—x. Here ®(Ty,a,k)— P, 2
[21] and\(T)2=2vT/a. Thus 60
2 2 Q
2 € (I)z —_12 l T
(Y7(X))=7— —(47vT) exp = — (14 40+
Mmoo 2 «
and g satisfies 201
@*=pyIn[ e 2y5(8DG*) . (15) o+
0.0 0.2 0.4 0.6 0.8 1.0
The number of zeros for overdamped slow passage is g(t)
~ L (M?’)lm FIG. 4. “Bounce back”: The number of zeros oscillates after

p(T):E D2 {Infe 275(8D93)1/2]} e, (16) g=¢ for small damping. The graph af vs time is for u=4
X103, y=10"% €=10"% andD=7=1. The inset plots the pe-

Equationg(13) and(16) are the main results of this Rapid riod of the oscillations obtained at different values m@f with

Communication; the number of created defects scales witk 104, The straight line i =27/2§ with § given by Eq.(11).
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takes place when the nondimensional dampings yu =2 The procedure carried out in this Rapid Communication
=1. At small damping the dependence of the number ofor the real equatiofl) can be applied to other equations
defects on damping is only logarithmice’¢<y). At large  exhibiting continuous transitionid 1] and in more than one
damping,p~ y¥“. space dimensiofil1,14. The scalings are not sensitive to the
Apart from the scaling of the number of defects witha  particular equations chosen, but they are sensitive to any
different signature of underdamped dynamics can be seen 'ujyeaking of the exacY¥— —Y symmetry in the equation of
Figs. 1 and 4: multiple “bounce back” of the number of motion.
zeros soon afteg=g. The phenomenon has been reported in - |n symmary, we derive quantitative predictions for the
simulations of a sudden quencl o) [23]. We propose nymber of defects formed in a symmetry-breaking transition
the folllowmg m;erpretaﬂon. In a dynamic transmon at onv in one space dimension by analyzing the dynamics in the
damping, domains reach a minimum of a potential well Withq ica| region, where the system is out of equilibrium re-

gﬂrtnte fvelocn):jand _therefore otsrflllate ?b(f)l#] |t_fort att'me'gardless of how slowly the critical parameter is changed.
arts of some domains recross the crest of the Instantan€opy., ors are calculated, so no fitting necessary. Under-

potential barrier during these oscillations. This yields an es-

. ilationd3 damped slow passage results in a defect density proportional
timate of the fre_quenc_y of the oscillatio 29! (_:orrespond- to x'® and produces characteristic oscillations in the number
ing to harmonic oscillations about the minimum. In our

. . : . of zeros. Experiments where liquid helium is expanded
simulations, two well-defined bumps are typically seen in the[hrough the lambda transition we are now reaching the point

number of defects vs time. From this we are able to measurghare quantitative comparisons can be made
the period,P of the oscillations in the number of zeros; '

despite the nonlinearity, it is very well approximated By We are grateful for Angel Sanchez’s comments on the
=2m/\/2§ (see Fig. 4 manuscript. E. Moro thanks the CNLS for its hospitality.
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