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Dynamic renormalization group study of a generalized continuum model of crystalline surfaces
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We apply the Noziees-Gallet dynamic renormalization gro@BG) scheme to a continuum equilibrium
model of ad-dimensional surface relaxing by linear surface tension and linear surface diffusion, and which is
subject to a lattice potential favoring discrete values of the height variable. The model thus interpolates
between the overdamped sine-Gordon model and a related continuum model of crystalline tensionless surfaces.
The RG flow predicts the existence of an equilibrium roughening transition onlg#d dimensional sur-
faces, between a flat low-temperature phase and a rough high-temperature phase in the Edwards-Wilkinson
(EW) universality class. The surface is always in the flat phase for any other substrate dimeisnEor
any value ofd, the linear surface diffusion mechanism is an irrelevant perturbation of the linear surface tension
mechanism, but may induce long crossovers within which the scaling properties of the linear molecular-beam
epitaxy equation are observed, thus increasing the value of the sine-Gordon roughening temperature. This
phenomenon originates in the nonlinear lattice potential, and is seen to occur even in the absence of a bare
surface tension term. An important consequence of this is that a crystalline tensionless surface is asymptotically
described at high temperatures by the EW universality class.
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[. INTRODUCTION perature, andy is a zero mean, Gaussian white noise with
correlations{7(r,t) »(r',t"))=5(r—r")8(t—t’). The sur-

The dynamics of growing surfacdd,2] has attracted face morphology of a crystal surface described by the sG
great interest during the last decade. This is due both to themodel thus results from an interplay between linear surface
practical implications for the control of film quality in thin tension, described by the term with coefficienin Eq. (1), a
film production techniques, and to the fundamental questionperiodic potential favoring discrete interface vallesna,
it raises in areas of physics such as spatially extended sysvith ne 7, and thermal fluctuations. Moreover, using the
tems in the presence of fluctuatidi®, or scale invariance in same arguments as in R¢6], for a nonzero value of the
nonequilibrium systemp4]. It has been observed that a sur- homogeneous drivin¢flux of aggregating particles in Eq.
face growing in the presence of fluctuations quite generically1), an alternative interpretation of the sG surface is as one
exhibits time and spatial scale invariance properties. Specifiminimizing surface aredfor small values of the surface
cally, if h(r,t) denotes the surface height at timabove a slope, subject to a flux of aggregating particles such that
d-dimensional substrate positior: RY, the height-difference growth events of the height take place in integer values. In
correlation  function G(r,t)=([h(ro+r,t)—h(rg,t)1?) equilibrium (F=0), the sG model is well knowf7—10] to
grows asG(r,t)~t?¥? for t¥?<r and scales as(r,t) feature a roughening transition whdr2: for temperatures
~r2% for t¥?>r, wherea andz are referred to as the rough- above a critical valud=T:C, the lattice potential is irrel-
ness and dynamic exponents, respectively. These scale isvant and the surface is rough, in the sense quoted above for
variance properties imply that sualbugh surfaces share the height-difference correlation function. The corresponding
many properties with dynamic critical phenomena, which al-exponent values are those of the Edwards-Wilking&w)
lows one to obtain useful information on the former from equation[11], which is simply theV=0 limit of Eq. (1),
studies on the latter, and vice versa. A particularly interestinghamely[12],
example is provided by the overdamped sine-Gor¢&®)

model, which describes the equilibrium fluctuations of a 2_4d
crystal surface and the features of its roughening transition XEW="5 Zew=2. 2
[5]
oh 27V 27h In the cased=2 considered, Eq(2) amounts toagy=0,
71 _ . 71
p o =F+vAh- a, S'”( a, )+ V2T (). implying G(r,t)~logr for r <t For temperatures smaller

) thanT$, the lattice potential dominates the large scale prop-
erties of the surface setting a finite correlation len§tloe-
In Eq. (1), A is the substrate Laplacian is the surface yond which the height-difference correlation functi@{r
mobility, F, v, V, anda, are positive constantg, is tem- > ¢£t) attains a constant value and hence the surface is flat.
The sG roughening transition is of the Kosterlitz-Thouless
class, and hence tlowntinuumsG model is related to impor-
*Electronic address: cuerno@math.uc3m.es tantdiscretemodels such as the discrete Gaussian andfthe
Electronic address: moro@thphys.ox.ac.uk models[5,13].
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As mentioned above, a practical domain that presentsistent with those obtained for thé=0 Ilimit of Eq. (3)
many instances of growing surfaces is the area of thin film—the so called linear MBE IMBE) equation[26,27—,
production by techniques such as, e.g., molecular-beam epiramely
taxy (MBE). In many MBE conditiong14], the main relax-
ation mechanism on the surface is surface diffusion, rather 4—d
than surface tension. In this case, and again considering the AIMBET "5 Zime=4, (5)
additional effect of a periodic lattice potential, one is led
naturally to the following model of a growing surfage5],

sG system the periodic potential is known to contribute a

sh Sy 2mh correction to the surface tension term upon renormalization,
a a i i
-177 _ 2 ; -1 the same phenomenon is expected to occur in the xXMBE
—=F—kA“h- sinf — | + 2T r,t). . . o .
T, K a, ( a, ) poom(ry) model, in which the bare surface tension is zero. Since sur-
(3)  face diffusion is irrelevant in the presence of surface tension
[14,28, this argument together with the available numerical

In Eq. (3), « is a positive constant, in which case the corre-€vidence{15,29 led to the prediction that the scaling prop-
sponding term in the continuum equation does provide—ert'es of the xMBE model in the high-temperature phase are
again for small surface slopes—a surface diffusion relaxatiof’® same as those of the sG model. To date, and although

mechanisni16]. All the other terms in Eq(3) have the same More recent numerical daf@9] confirm the existence of
meaning as in Eq1). SpecificallyF is related to the flow of ~Crossover behavior in the critical properties of modé),
adatoms onto the substrate. Thus, Fa# 0, Eq.(3) provides direct numerical verification of EW scaling properties seems

a nonequilibrium description of a growing surface whichhard to achieve. Moreover, previous analytical studisg,

roughens under the effect of thermal fluctuations. In particuhich employed a variational mean-field analysis success-

E(K,V)zf ddr[g(Ah)erV

2mh
a

lar, as shown in Ref[15], the surface described by E¢®) fully appligd in Ref.[BO] for the analysis of the sG_roughen-
initially displays RHEED (reflection high energy electron N9 transition, have failed to reproduce EW scaling at high
diffraction) oscillations, akin to those observed experimen-t€mperatures for the xMBE model. Specifically, the results
tally [17]. For F=0, Eq.(3) describes the equilibrium fluc- obtained in Ref.[24] include an upper critical dlmen5|o_n
tuations at temperatur& (we will consider a unit Boltz- dc=4, below which mode(3)—(4) displays a phase transi-
mann’s constant of a surface minimizing the energy tion between a low-temperature flat_ phase a_nd a high-
functional (Hamiltoniar) temperature rou_gh phase whose scalmg behaylor is thaF of
the IMBE equation. However, the transition taking place is
of first order for all substrate dimensiong=<d., while the
1—005(27Th> ] 4) numerical simulations of15,25 strongly suggest that, at
a, ' least ford=2, the transition is of @ontinuougype. Besides,
the generation of a surface tension term by the lattice poten-
Therefore, such a surface can be also thought of as minimizti-frjlI referred to above .iS due to nont_riviql couplin_g_between
ing surface curvature to linear approximation, thus having indlfferent surface FO“”ef ”.]Odes' Wh'Ch. IS unsuﬁqgntly ac-
principle zero surface tension, and to favor values of thecounteq for by the variational mean-field description em-
height that are integer multiples af, . Note in this respect ployed in R.Ef'[24]' Therefor_e, itis natural to try improve on
that Eq.(3) does nothave the form of a continuity equation the m.ean-flleld approx!matlon of Refl4] and explore the
for the surface height, due to the form of the nonlinear anos.c.alle Invariant properties of the system near t_he phase tran-
noise termg18]. Hence, from the point of view of applica- slggn point through the use of the renormalization group
tions to MBE growth, the continuum XMBE mode) might ( Ig.this aper we consider the following generalized con-
be relevant for those situations in which nonconserved nois§ pdpl f surf bi 9 gd' latii i
is expected to play a e, e.g., for length scales larger than !nIL.lum model of surfaces subject to a periodic lattice poten
the typical diffusion lengti19]. On the other hand, in a tal:
similar way as the sG equation can be seen as a continuum
description of the discrete Gaussian model, @&fis a natu- ‘1@—F+ Ah— kA2h— 2mV
ral candidate for the continuum description of the discrete AT v “ N sin
Laplacian rougheningLr) model[20] on the square lattice
[21]. The Lr model has been used to describe two- 2T n(r,b). (6)
dimensional defect melting and as a model of tensionless
surfaces such as membrarf@?,23. Actually, Eq.(4) can  This equation obviously features both E@$) [sG mode]
indeed be obtained24] as a continuum limit of the Lr and(3) (xMBE mode) as special cases. Moreover, the linear
model, albeit in a nonunique fashion. limit V=0 [14,2§ of this equation has been observed to
Numerical simulations of Eq.3) for d=2 [15,25 show  accurately describe growth experiments of copper aggregates
an equilibrium roughening transition, similar to that in the by electrochemical deposition in the presence of organic ad-
sG model. In the case of E3), the exponents characteriz- ditives[31]. For the sake of simplicity, in this work we will
ing the rough high-temperature phase are numerically conconsider this generalized model in the absence of driving
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(F=0), in which case Eq6) describes the equilibrium fluc- previous sections, and to summarizing our conclusions. We
tuations of a surface with Hamiltonian additionally provide two appendixes. In Appendix A we de-
tail, following Refs.[8,33], the OPE that is needed in the

alv , K ) dynamic RG in order to perform the appropriate expansion
Eg(VrK!V):f d°r) 5 (Vh)*+ 5 (Ah) of the lattice potential in Eq(6) into relevant operators. Ap-
pendix B closes with a discussion of the specific way in
2h which the roughening transition of the sG model generalizes
+V 1_005( a, ) ] (7) " into that to be obtained in Sec. Il A for Eq),(7).

In order to study the critical properties of the xXMBE model |. DYNAMIC RENORMALIZATION GROUP ANALYSIS

in d substrate dimensions, we will extend tgnamicRG _ o ) )
approach devised by Nozis and GalletNG) for the d Th|s_sect|on is devoted to _the analysis o_f E6) in the

—2 sG mode[8] (see also a detailed account in R&f) to  €quilibrium caseF =0, employing the dyngmlc RG schemg
the generalized systeri6). There are two reasons for our ©f NG [8,9]. In this scheme, a coarse graining procedure is
pursuing this approachi) as anticipated above, in the RG performed over the_ microscopic mode_s _of the_ noise term.
analysis of Eqgs(3),(4) a finite (nonzer9 surface tension Namely, tﬂe noise is split into two statistically independent
term needs to be allowed for, given that it is generated in anparts,»= n+ 7, such that the total noise power spectrum is
perturbative scheme even if its bare amplitude is z6ifpa  the sum of the corresponding contributions. Hetg(r)
staticrenormalization group study of the equilibrium systemzf%deek*;](k), where A is a momentum cutoff related,
(4) is ill defined in some parameter ranges due to divergené to atomic positions on the substrate=e—*A with & a
integrals[25], similarly to the sG casg8]. Still, the static RG 9 POSHiC ] ) T e

study will provide us, via the appropriate generalization,SMall parameter, angi(k) is the spatial Fourier transform of
with the correct expansion of the model nonlinearity in termsth® noise. Then, microscopic fluctuations are integrated out
of relevant operators through the use of Kadanoff’s operatoby definingh=(h(7+ 67));, and Sh=h—h, and by seek-
product expansionOPB [32], as was accomplished in ing an equation of motion for the thus defined long distance
[8,33] for the sG model. In any case, the results to be obmodesh. The result will be an equation with the same shape
tained from the dynamic RG study that follows will also as Eq.(6), but with new(renormalized coefficients, which
cover the case of a system minimizibgth surface area and are sensitive to the microscopic fluctuatiahs by the action
surface curvature, and will in particular allow us to analyzeof the nonlinearities. Specifically, the dynamic equations for
how the_ _standard sG ro_ugh(_enlng transition is modified Wh_ertlhe h and sh modes read

an additional surface diffusion term is considered. We will

finally consider the renormalization properties of the xMBE —

model, which corresponds to a specific choice of bare param- 71@ — yAh— KAZH—<(I)(F, Sh))s,+ mr,t),

eters within this generalized framework, and will compare at

the conclusions obtained with those from both the variational (8)
approach[24] and numerical simulation§15,25. To our

knowledge, ours is the first RG approach to the xXMBE model d6h

as formulated by Eq¥3),(4), and it may contribute to the ,U«_17=VA5h—KA25h—[‘b(h,5h)—<(D(h,5h)>5n]
elucidation of the existence and nature of the phase transition

in this and related systems, as the Lr model. There also exist +2D8y(r 1), (9)
static and dynamic RG studies of similar systems. Specifi-

cally, the equilibrium properties of a model which is different \ynare we have defineB=Tx "%, and we have introduced

from (3),(4) but is believed to provide the continuum de- . — _ = . —
scription of the Lr model on the triangular lattice, have beenq)(h’5h)_(ZWV/aL)S'r[ZI(h’Léh)/aL]' In order for Eq.(8)

analyzed i34], and its dynamical properties have been ob-t0 be a closed equation m we need to solve fosh in Eq.
tained in[35] and references therein. Within the rough MBE (9) and introduce the result into E). The formal solution
surfaces context, the dynamic properties of the conserved s@f Ed. (9) reads
model have been studied both under consefl&j36 and
nonconservefl18,37 noise. Finally, a Langevin equation be- (L , , L
lieved to describe a restricted curvature md@8] has been 5h(r,t):f dr f_wdt Xo(r =1, t=t)[{2Doy(r',t")
analyzed in Ref[39] by using RG techniques.

This paper is organized as follows. In Sec. Il we apply the TP (D)5, (10
dynamic RG scheme of NG to E¢). The parameter flow

thus obtained for this generalized model is studied in SeGyhere the primed notation denotes dependence on’thg
[l A as a function of the substrate dimensidnThe special variables, and thd-dimensional free propagator reads
limit of Eq. (6) corresponding to crystalline tensionless sur-

faces, Eq(3), requires additional considerations of a techni- 4% d o (k1= wt)

cal nature, and is deferred to Sec. Ill B. Finally, Sec. IV is Xo(r,t)ZJ @ ) (11
devoted to further discussion of the results obtained in the (2m) 9 kP4 kk?—iwu ™t
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Due to the nonlinear lattice potential, an explicit solution of Neglecting higher order harmonics of the lattice potential,
Eq. (9) can only be obtained by performing a perturbativesin(2zh/a, )cos(27h'/a, )=isif2=(h—h')/a,]. Further, we

expansion in powers df. Thus, defining

Sh(r,t)=8hO(r t)+Vvsh®(r,t)+0O(V?), (12
we obtain
t
6h(°)(r,t)=f ddr’f dt’ xo(r—r’,t—t")
X \2D8n(r' t'), (13

4772 t
5h(1)(r,t)=——2j ddr’f dt’ xo(r—r’,t—t")
ar —o

2WW>

an

x 5h'(©) cos( (14)

Using sin@+b)=sinacosb+cosasinb, and within our per-
turbation expansion, we can now evaluate in ).

— 2aV| 2w o
(‘I’(hﬁh))sn:T 1—¥<(5h )) sn
42V

af

(@ shM) 5 +0(Vv?)

2ah
a, /'

Xsin (15
which has the form
(@) 5,(N)=VOD(h)+V2dD(h)+0O(V?),  (16)
with
—_ 27 2m)2 98 T A9 2, 2mh
S0 =" (1 )2 ‘ sin ,
a 2a%(v+«kA?) a,

7

o 873 2wh
d@(h)=— —(5h(@shD) s sin q (18
a3 7 a

L

where Sy=27%/T'(d/2) is the surface area of the unit hy-
persphere ird dimensions]'(-) being Euler's Gamma func-
tion. The shape of Eq17) already reflects the fact that we
have considered an infinitesimal shell of microscopic noise at L

modes of widthe. We can write Eq(18) more explicitly as

—  327° t
®@(h)=— Jddr'J Xo(r—r',t—t")
al —o

2h 2ah’
©) sh’(0) inl ——
X (6h'®)sh >5,75|n( aljco{ a, )

(19

can use the results for the OPE of the lattice potential ob-
tained in Appendix A, and a Taylor expansion to obtain

— 3

275 ? 41 o
N T R
a 0 0

L

p> —  p*

X h Ah— ————A%h
"o 2d 8d(d+2)

2wT
><<5h(0)5hr(0)>57] ex;{ — a—d)(p,T,V,K,,u)
L

(20)
where we have definedp=r—r’ and r=t—t’, the
d-dimensional free propagator reads

,LL A kd/2 0 2 . 4 .
ole.n= /! g dona(phe o
(21
and we have introduced
Sd fA kd*l
STV K )= dk
dlp M= i t)o Mt
L DRI 100 o,
(pklz)d/27l !
(22)

with J,(x) being thenth order Bessel function of the first
kind. Finally, using the results of Eq&L7) and(20), Eq.(16)
has the form

— [ 2wh . oh —
(D) sn(h)=(V+e6V) sin | edm 1E+85vAh
2l

+e5kA%h+0O(V?3), (23

where the correction$v, 6k, etc. are implicitly defined.
Inserting the result of Eq23) into Eq.(8), we obtain that, to

V2 order, the long distance modgsobey an equation with
the same shape as E®), namely,

- oh - — _ _ 27V [2xh
M_1—=vAh—KA2h— a sin a ++2D %(r,t),

. (24)

but with new coefficientsv=v+edv, k=k+edk, u *

=u " t+edu"t, andV=V+e6V. In order to recover the
original Fourier mode cutoff\, we now rescale variables as
r—r'=r/b, (25
h—h'=hb?, (26)
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t—t'=b" %, (27)

whereb=e®, and we thus get

. oh —— — _— 24V [2=h —
w1 = AR kAZhe T sin( 774)+\/2D17(r,t),
(28)

with coefficients v=1b?"2, k=xb? 4, V=Vb?2¢ ;7!
=71 andD=D b? 229, Finally, for an infinitesimale
=dIl and expanding7(s), etc., to first order ire, we obtain
the dynamic RG flow to/? order

d 27)6 9S8, TAUE
—VZ(Z—Z)V—i—( 77)6 d V2B (v, k)
dl 4da’ (v+ kA?)?
(29)
d 27)° IS, T A8
LS VZBAO( 1, ),
dl 16d(d+2)a’ (v+ kA?)?
(30)
dv (2m)279S, T A92
—=(z2-2a)V———; Vv, (31)
dl 2a%(v+kA?)
-1 6—d d—6
Qe ”_Cm SaTA 7 e agony,,.0, (32
di 2a(ptkn?® e
dD
o7 = (z=2a—d)D, (33
da,
W:—a{ai, (34)
with

B (v, k)= fo d?f;nﬂfo dre” "Iy 1(p)

~ 27T

XG(p,1,v,K)EXH — —;

a‘L
X p(p,7,v,6,) |, (39

6= [ AR — A
1 1 L = —_ eX - - 5 1
pTviR)= | arz-1(p ——

(36)

wherep=pA. It is worth noting that the flow of the mobility

PHYSICAL REVIEW E65 016110

netic roughening holds exactly at two fixed lines of Egs.
(29)—(34), which are the two linear limits of Ed6), namely
the EW[V=«k=0, see Eq(2)] andIMBE [V=v=0, see
Eqg. (5)] equations. Both systems can be interpreted as de-
scribing equilibrium fluctuations, governed by the corre-
sponding Hamiltonians. We also remark that, as anticipated
in Sec. |, it is clear from Eq29) that, if we consider the RG
flow for the xXMBE model(3)—(4) in which there is no bare
surface tension, the lattice potential does generate it under
RG iterarion.

Finally, we find it more convenient to express the flow in
the dimensionless variables

_2at A2 4wV K_KafA2 .
X=ﬁ(v+K )! y=TA2, = 7T (7)

Thus, we have

dx 4y2[_
mz(d—Z)X—4K+a;[B(2)(X,K)
_ _RB(4)
dy d Sd Ad72
a2 amet x| 39
aK_ d—4)K _ yZ”B“‘) K 40

where

B(n) SdAd_z ” ~Tn+1 - -7 -
B (><,K)E(27T)d_1 Odpp OdTe Jarz-1(p)

X G(p,7,x,K)e~ 287K, (41)

s 1 — ~
G(p,r,x,K)sf dkk923 4o 1 (kp)exp{— 2 (x/2— K)k?
0

+Kk*]/x}, (42)
, T, X,K)= d = =
Sl K= i) K i ke KR

L T(@2)34p-1(Kp)
('R'I;/Z) d2—-1

x exp| — 27 (x/2— K)k?>+ Kk*]/x} |.

wu is enslaved to that of all other system parameters, which

allows us to neglect its evolution under E¢89)—(34) in the

(43

rest of the paper. Moreover, in order to preserve fluctuation- . .
dissipation by this RG proceduf8,9] we need to impose the Note that the convergence properties of the integral

exponent relatioz=2«+d in the flow (29)—(34). Note that
this relation(termedhyperscaling[40] in the studies of ki-

#(p,7,x,K) defined above depend on the substrate dimen-
sionality d and on the parameter values. Specifically, dor
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=2 andthe condition associated with the XMBE mod8), ~ drawing the system into th&=0 limit for which the inter-
namely,x= 2K, the integral diverges logarithmically at the face is flat. Thus, there exists a roughen!ng transition be-
lower limit. This divergence originates in the fact that corre-tween these flat and rough phases. Numerically, we estimate
lation functions do not have a well-defined thermodynamicthe critical temperature as the value charact§r|2|ng the trajec-
limit for the IMBE model ind=2 [14]. tory that separates between flow onto $he0 line and flow
The dynamic RG flow(38)—(40) just obtained generalizes towards increasing. We thus obtainT$=0.725+0.05 for
that in [8,9] for the case of a finite surface diffusion term, V=12, =1,v=1k=0, which is close to the value for the
and for any value of the substrate dimensinThe sine- flow equations of the pure sG mod#,8], Ta°= 2/7=0.64.
Gordon case is retrieved simply by setting:0 and neglect- On the other hand, as we see in parig)sand(c) of Fig. 1,
ing the higher order contributioB)(x,0), related with the in general a small initial surface diffusion shifts the rpugh-
RG flow of the surface diffusion term. Actually, this integral NiNg temperature to higher values. The reason for this effect

will allow us to study in the next section the effect of suchiS that, as studied in Ref14,28 whenV=0, even though
relaxation mechanism on the sG roughening transition. ~ Surface diffusion is irrelevant relative to surface tension in

the hydrodynamic limit, an initial value(0)+ 0 introduces

a crossover length scalel, (1)=[«(1)/v(1)]*? below
which surface diffusion is the relevant relaxation mechanism.
Once the coarse-graining procedure has overcome this scale,
k() renormalizes to zergsee Appendix B and the flow
takes place on the sGfy) plane with av coefficient that
differs from its bare value. From there on the flow is effec-
tively as that of the pure sG model. The results shown on

For general values ofl. there are no proper nontrivial panel(d) of Fig. 1 correspond to a numerical simulation of
9 ' prop the sG modelEq. (6) with k=0F=0] for u=v=V=a,

fixed points of(38)—(40), but rather regions in thex(y,K) - o .
phase space that are invariant under the RG flow. These coT—l’ and of Eq.(6) for x=0.5, for both of which we have

. , (/2
respond to the two significant linear limits of the generalized®®MPUted _the specific - heafdefined as xe=((Ey)
model, namely, the EW linel'gy, and the|MBE line —(Eg))/(TL?), with Eg4 as in Eq.(7)] for several substrate
T ise ' defined ,by ' " lateral sized and periodic boundary conditions. Clearly, the

roughening transition temperature —which is preceded by a

Ill. DISCUSSION OF THE RG FLOW

The fixed point structure of the RG flowB8)—(40) de-
pends on substrate dimensionalityand thus so do the criti-
cal properties of mod€(6),(7). In what follows we will re-
strict ourselves to dimensiongl=2 in which phase
transitions are expected to occur.

Cew={(x,y,K):y=K=0x#0}, peak inyg as in the pure sG modéh2]—shifts to higher
values fork# 0. Integrating numerically the RG floy88)—
Iivee=1{(x,y,K):x=2K,y=0}. (40), we obtainTE%(«x=0.5)=1.35+0.05.

However, for the special dimensiods-2 andd=4, respec-

. . . . . 2. d>2 cases
tively, these regions become lines of fixed points.

In order to inquire about the upper critical dimensidp,
of model(6),(7), we consider values af above the physical
] . two-dimensional case. An important consequence of this is
We start by analyzing generic features of the RG flow asnat the points on the EW linEgy, are not fixed any longer
a function of substrate dimensiah in the case in which the nder the RG iteration. This already signals the final result
bare values of surface diffusion and surface tensiorbate  that, in these dimensions, there is no proper phase transition.
nonzero. The special initial conditioffor the RG flow in  Rather, the only existing phase is the flat low-temperature
which there is no bare surface tensioaBE mode) willbe  gne. Before justifying this result in detail, let us note that the
considered in detail in Sec. Il B. EW equation already predicts a flat surfacedor2 [1,2,12,
and therefore when adding a lattice potential to the surface
tension term in the sG equation, the result thgt 2 is the
Obviously, the case which is most interesting from thecorresponding upper critical dimensidi2,43 does not
physical point of view is that of a two-dimensional substrate.come as a surprise. In the generalized ma@g(7), similar
As stated above, now the invariant EW regibp,, actually  results to those in the previous section indicate that the same
becomes the well-known sG line of fixed poif,9]. An  valued.=2 actually occurs: for 2d<4, it is clear from
important point along this line is=1, where the flow of the Eq. (40) thatK(l) still decreases exponentially under the RG
lattice potentialy changes stability, see Appendix B. If the iterarion, and again the flow becomes essentially that of the
bare value of the surface diffusiof(l =0)=0, as in the sG sG model in the corresponding dimension, thus predicting a
model, numerical integration of Eq$38)—(40) shows that flat morphology. In Fig. 2&a) we show as an illustration re-
the flow essentially remains on the,{) plane and thus sults of a numerical integration of Eq®8)—(40) for d=3.
completely reduces to that of the sG system, as seen in pandé is clear from the figurégfor this, it is useful to note the
(a) of Fig. 1: for highT the flow is towards thg =0 axis, the projection of the RG flow lines onto thex(y) pland, the
interface being rough and characterized by the scaling prodtow is eventually towards larggvalues for all temperatures.
erties of the EW equation. For low values, the lattice po- Note also that the<(l) value may in some cases become
tential y grows indefinitely upon iteration of the RG flow, negative, signalling a nonphysical instability. We attribute

A. Generalized model

1. d=2 case
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FIG. 1. Panelga)—(c) (x,y) projection of the RG flow(38)—(40) for d=2, using»(0)=V(0)=1=a, =A=1, and(a) «(0)=0, (b)
k(0)=10"2, (c) k(0)=10"1. In panels(@—(c), initial conditions lie on the dashed line and the dotted line is the separatrix for the pure sG
flow. Solid lines correspond t6=0.5, 0.6, 0.7, 0.8, 0.9, ant= 1 right to left in(a) and(b), and top to bottom iric). Panel(d) specific heat
for the sG modelleft curves and for model6) with u=v=1 andx=0.5 (right curve$ for different system sizes. All units employed are
arbitrary.

this effect[also apparent on panelb) and(c) of Fig. 2] to  (3),(4) simply amounts to a specific condition on the bare

limitations of ourO(V?) approximation to the RG flow. parameters, namely, they lie on the plarn@)=2K(0),
The valued=4 is marginal for the surface diffusion term y(0)+#0, thus implying »(0)=0. In this section we thus

in Eq. (6). In an analogous way to théleoof d=2 for the  study the RG flow for the XMBE model separately for dif-

EW equation[see Eq.(2)], the IMBE equation predicts a ferent values of the substrate dimension.

roughness exponent=0 for d=4 [logarithmic behavior of

G(r,t), see Eq.5)] and a flat morphology fod>4 [1,2]. 1. d=2 case

Even though the decay &f(l) under the RG flow38)—(40)

. . . ) . In the physicald=2 case, and due to the divergencies in
might not be so fast as in smaller dimensions, it neverthelest%e correlation functions mentioned above. this very condi-
occurs, see Fig.(B), with the result of an effective sG be- ’ y

havior in d=4 dimensions, again corresponding to a flattion induces a trivial RG flow, since tH&" integrals in Eq.
morphology. Finally, as illustrated in Fig(@ for d=5, if ~ (41) become identically zero. The linear combinatian
d>4 all coefficients in the RG flow grow under iteration. In —2K—which is proportional to the surface tension—, is a
particular, the lattice potential increases indefinitely and constant under the RG flow. Equatiof@)—(40) can be ex-
thus the surface morphology is dictated by the behavior ofctly solved to show that any initial condition on the

the T—0 limit, namely, again there is no phase transition=2K plane tends to the origin fdr—. For large enough
and the surface is flat. but finitel, the surface scales as tHdBE equationindepen-

dently of the value ofT, and thus there is no temperature
driven phase transition, which contradicts the results of, e.g.,
numerical simulations of Eq3) for two-dimensional sub-
As remarked above, within the RG flow of the generalizedstrates[15]. Thus, some kind of integral regularization is
model (6),(7), the case corresponding to the xXMBE modelneeded wheml=2. Here we introduce a lower momentum

B. Crystalline tensionless surfaces
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FIG. 2. RG trajectories from a numerical integration of Egs.
(38)—(40) for d=3 (&), d=4 (b), andd=5 (c) with »(0)=0.5,
x(0)=0.25, andV(0)=0.1. Thick solid lines correspond, right to
left, to (a) T=1.5, 2, 2.5, 3, 3.5, 10;b) T=10, 15, 20, 30, 40(c)
T=5, 10, 15, 20, 25. Thin solid lines on thg,y) planes are pro-
jections of the RG flow lines above them. Thick dots on thexis
denote both the origin and the poirnt2S4A9~2/[d(27)9 ] at
which the rhs of the flow equation fgrvanishes. Other parameters
are as in Fig. 1. All units employed are arbitrary.

cutoff 1/(AL) in the integrals(42), (43), with L being a

PHYSICAL REVIEW B5 016110

FIG. 3. RG trajectories from a numerical integration of Egs.
(38)—(40) for the xMBE modeli.e., v(0)=0] with L=128, x(0)
=1, andV(0)=0.1. Solid lines exemplify the three types of behav-
ior depending orT: (1) high T phase] MBE scale invariant behav-
ior (T=10); (2) intermediateT phase, EW scale invariant behavior
(T=0.46); (3) low T massive phaseT(=0.45). For the sake of
clarity, all three coordinates along lind) have been artificially
expanded by a factor of 10. The=2K plane of initial conditions
appears shaded, and both the origin and the (1,0,0) point are sig-
nalled with thick dots. Other parameters are as in Fig. 1. All units
employed are arbitrary.

In any case, the regularized integr&&’(x,x/2) are no
longer identically zero. This leads us to expect the RG flow
to escape from th&= 2K plane, which would mean a finite
surface tension has been generated under renormalization,
and thus the occurence tdmperature dependeivehavior.
Nevertheless, the flow may take many iterations before it
appreciably deviates from the=2K plane, given that, in its

neighborhood, the integraB™ can be rather small numbers
for largeL values.

In Fig. 3 we show the numerical integration of the RG
flow (38)—(40) for various initial conditions on the xMBE
plane andL =128. Indeed, three different types of behavior
can be distinguished. For high enough valued othe vari-
ablesx, y, K are very small and the RG flow escapes from the
x= 2K plane very slowly. Under these conditions, the system
flows towards the origin while featuring the scale invariant
behavior of thd MBE line I'j\yge . An example is trajectory
(1) on Fig. 3. For intermediate temperatures; x— 2K be-
comes non-negligible and the flow is attracted by th@®,0)
segment withx<<1, where the behavior is described by the
EW equation, see trajector§?) on the figure. Finally, for
high values ofT, the flow falls rapidly onto thex,y) plane
with x>1, see trajectory3) on the figure. This behavior is
described by the low-temperature massive phase of the sG
model, where the lattice potential is dominant and the sur-

measure of the lateral dimension of the two-dimensional subface is flat, see Appendix B.
strate. Proceeding in this way, it can be seen that the integrals In order to examine this behavior more closely, we can

(41) now vanish as a power law ofLl/In this regularization
scheme, the RG iteration has to be stopped @hed.. An-

focus on the crossover length, introduced in Sec. Il A.
By coarse-graining the system with the RG transformation

other possible procedure like that of dimensional regularizafor scales up to the system size €InL), and if the lattice
tion can be employed with the same conclusions as those thpbtential turns out to become irrelevant, we can decide
follow, similar to the RG analysis of tensionless membranesvhether the system scaling is of thelBE or EW type by

[44].

evaluatingL . (I*) to be larger or smaller thah(I*)=1,
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FIG. 4. Linear-log plot of the numerical RG flow &f. (l) for
d=2, L=128. Other parameters are as in Fig. 3. Solid lines are for
T=10, 0.46, andl =0.45, top to bottom. For the sake of compari-
son, the dashed line depicts the RG flowlgf(l) for the linear
systemV(0)=0. In all cases the flow is terminated fbIn 128
=4.85. All units employed are arbitrary. Inset: Blowup of the same
plot for smalll values, in log-log representation.

respectively. Note that, for a zero lattice potential, the RG
flow of Ly is easily computed from Eqg29),(30) to be
given by L, (I)=L(0)expI), hence an exponential be-
havior ofL (1) will be a sign of the irrelevance of the lattice
potential at scalé. In Fig. 4 we show the RG flow df . (I)
for the same temperature conditions as in Fig. 3 &aifd
=0)=128. As we see, for high enough temperatia®s
(1), (2) in the figurd, indeedy(l) is seen to decay very
rapidly to zero,L.(l) displaying an exponential behavior. panel, solid lines correspond to temperature valliesl.5, 2, 2.5,
However, while for the highest temperature conditltine 3 '35 andr=10, right to left. Thin solid lines on thex(y) plane

(1)] the scaling behavior is of theMBE type sinceL«(I")  are projections of the RG flow lines above them. As in Fig. 3, the
>1, we observe that there are lower temperatures for whicR(o)=2K(0) plane of initial conditions appears shaded. Thick dots
the lattice potential is irrelevant, but the long distance behavon the x axis denote both the origin and the point

ior is rather of the EW type, since,(I1*)<1. This is the =284A972/[d(2#)9 *] at which the rhs of the flow equation fgr
case of, e.g., the RG flow lin@) on Figs. 3 and 4, for which vanishes. Other parameters are as in Fig. 1. All units employed are
the system falls onto the high-temperature line of fixedarbitrary.

points of the sG model. Finally, for low enough temperatures

the lattice potential dominates the asymptotic properties ofn order to escape the xMBE plane of initial conditions, see
the system, as signalled in Fig. 4 by the complex nonexpotine (1) in Fig. 3], the scaling behavior observed in the sys-
nential behavior ofL,(I) for T=0.45. These temperature tem will be of thel MBE type.

condition corresponds in Fig. 4 to the RG flow of liK®),

along which the system falls onto the flat low temperature 2 d>2 cases

phase of the sG model. In analogy with the sG case, the

dynamic RG flow(38)—(40) thus predicts a roughening tran- e have also considered the RG flow of the xMBE model
sition at a temperature for higher substrate dimensions, finding a behavior that is

qualitatively consistent with all the above analysis. More-
2a% (v+KA?) over, given that for anyl>2 the integralg in Eq. (43) is
TR:T’ (44) always a finite number, the results that follow can be taken as
additional support for those presentedds2 employing
at which the flow of the lattice potential changes stability. lattice cut-off regularization. As can be seen in Fig. 5, for
Note bothv and « in Eq. (44) are renormalized, rather than d>2 the RG flow of the XMBE model does take on the exact
bare values. FOF <Tg, the system is in the sG massive low shape of the generalized model studied in Sec. Ill A, and all
temperature phase, within which the surface is flat. For the conclusions drawn there become applicable also for the
=Ty, the surface is rough and should asymptotically featurespecific initial condition we are now considering. Namely,
the EW scale invariant behavior. However, crossover behavthe RG flow escapes from the= 2K plane, and thereon the
ior exists; specifically, for a small system sider which the  behavior is similar to that of the sG model. In particular,
asymptotic behavior may not be reached for very high  there is no phase transition and the surface morphology is
temperature$for which the RG flow needs many iterations flat for any valued>2. Therefore, the upper critical dimen-

FIG. 5. RG trajectories from a numerical integration of Egs.
(38)—(40) for the xMBE model[i.e., »(0)=0] with «(0)=1, and
V(0)=0.1. Panel(a) [(b)] corresponds tal=3 [d=4]. On each
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sion of the xXMBE model3),(4) is also predicted to be.  the variational mean-field approach limits its capabilities in
=2. Specifically, in Fig. 5, we plot results of a numerical determining correctly both lower and upper critical dimen-
integration of Eqs(38)—(40) starting from the xXMBE model sions, see, e.g[30] and[24] for the case of the sG model.
initial condition for substrate dimensiorts=3 [panel (a)] Concerning numerical simulatiorj45,25, EW scaling has
andd=4 [panel(b)]. As can be seen in the figure, for any been obtained in the high-temperature phase only for tem-
initial condition on the xMBE plane —that is, for any tem- peratures that are extremely close to the roughening tempera-
perature value—, the RG flow is towards the sG plane andure, whereasMBE behavior has been obtained for all other
towards increasing values, which is the behavior that cor- temperature values above the transition. Recall we obtained
responds to the low-temperature flat phase, as in the s@ Sec. lll B 1 that, if the temperature was high enough, the
model for the corresponding substrate dimension. For a&ystem might need a long time to overcome the crossover
given value ofd, the higher the temperature is, the longerassociated withMBE behavior. Seemingly, the finite system
will it take for the RG flow to escape from the plane of initial sizes thus far employed in the simulatiois<{128) are af-
conditions, since the crossover lendth is larger. In this fected by this type of crossover limitations. We also note that
very high temperature conditions, the initlAIBE behavior  the occurrence of EW scaling for the xMBE model is remi-
will be relevant for a longer time in the dynamics of £g).  niscent of the hexatic phase claimed for the Lr md@&l—

22]. This is an intermediate phase which features EW scal-

ing, and which lies in between the flat low-temperature phase

IV. SUMMARY AND CONCLUSIONS (the liquid phase in the melting contexand the high-

The dynamic RG study presented for the generalized€mperature phasgsolid phasg with IMBE scaling, being
model of crystalline surface$),(7) predicts an upper critical Separated from both of them by roughening transitions of the
dimensiond,=2. Thus, for a two-dimensional surface there KT type [20—22. On the other hand, as found in Re45]
exists a roughening temperature, in such a way that the higtnd references therein, there are also claims on the inexis-
temperature phase exhibits the scaling properties of the EVignce of an hexatic phase in the Lr model and, moreover, on
equation. Moreover, the transition properties are controlledhe first order type of the only roughening transition ensuing.
by the sG fixed pointsee Appendix B and is thus expected We are currently performing large scale simulations of the Lr
to be of a continuous type. If we think of Eq),(7) as a model on the square latti¢@9] in order to check the predic-
generalization of the sG model in which(possibly small tions of our RG analysis, in particular whether any trace of
surface diffusion term has been allowed for, we have seen iffossover behavior and EW scaling can be detected in the
Sec. Il A that the consequence is an increase in the s@urface properties at high temperatures.
roughening temperature, due to the crossover induced by
such an irrelevant perturbation. Moreover, the specific case ACKNOWLEDGMENTS
of the xMBE model has been seen to share all these proper-
ties, its peculiarity of having a zero bare surface tension We are grateful to Juan JesiRuiz-Lorenzo and Angel
merely introducing much more severe crossover effectsSanchez for discussions and to Martin Rost for discussions
From the point of view of applications to epitaxial growth and comments. E. M. aknowledges the EU Grant No.
systems, this result illustrates the relevance of EW scaling aldPMF-CT-2000-0487. This research has been supported by
an universality class in MBE: in principle, if the symmetry of EPSRC(UK) Grant No. GR/M04426, DGE$Spain Grant
the system prohibits nonequilibrium surface currents and inNo. HB1999-0018, and by MCyT(Spain Grant No.
cludes invariance of the dynamics under arbitrary surfacdFM2000-0006.
tilts, IMBE scaling is expecte@2]. However, we have ob-
tained for a system relaxing linearly as in thdBE equation APPENDIX A
that, if a lattice potential influences the dynamics as in Eq.

(3)—thereby accounting, e.g., for the discrete character of In this appendix we recall the considerations needed to
deposition events or the influence of an underlying lattice—perform the correct Taylor expansions in Ed.9), using
then asymptotic EW scaling should occur. Admittedly, crossKadanoff's operator algebri82]. We generalize results for
overs associated withviBE behavior may be nonetheless the static RG analysis of the sine-Gordon nonlined88,8].
rather long, particularly for high temperatures. Thus, in our dynamical RG calculation each of fliginite

FO-r-thebcase of theﬂXMIBE mOdEI, the eXiShtence Oga phaSﬂumber O): non|inearities@2n+l(p) = (F_F’)zn*'l appear-
transition between a flat low-temperature phase and a rou : ; iy ;
high-temperature phase as predicted by H88)—(40) is QHg in the Taylgr expansion of gfmw(h h')/a. contﬂbu_tfes
compatible with previous results obtained by the variationaf* €™M Proportional to the marginal operaty(p) =h—h’,
approximatior{24] and numerical simulatior45,25. How- where, as abovgp=r—r". In our continuum approach, this
ever, while the variational mean field predicts the transitionS the most relevant term or|g|nat|r(g|a2 Taylor expansion
to be first order, the incorporation of fluctuations by means ofD€ renormalization oboththe Ah andA*h terms in Eq(6).

the RG is consistent with a phase transition of a continuoud NUs:
type, which is closer to the numerical results. Moreover, our

present RG study predicts the upper critical dimension to be @2n+1(p)s[ﬁ(r)_ﬁ(r')]2n+l
that of the sG modeld.=2, while mean field predictsl, _ o
=4. We note that the absence of nontrivial mode coupling in =0yns1(r)+asn1(p)(h—h"), (A1)
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where®,,, 1(r) is an irrelevant operator. A way to compute dy B
thea,, ,, constants i$32,33 by performing all contractions a1 —ty, (B2)
contributing to the behavior
dK 2
(O2n41(1) O1(r+ p))n~azn 1 1(P){O1L(r) O1(r + p))iy, —=—2K—y—B(4), (B3)
(A2 dl 64

where, within our order of approximation in powers ¥f  where we have terme®=B("(1,0). Introducing new
averageg - - - )y, are computed with respect to the Gaussianvariables in order to bring flowB1)—(B3) into normal form
distribution ofh given by theV=0 limit of Eq. (7). Thus one  [41]

obtains
— 1 2
N 1R | =t
azn+1(p)=(2n+1)((h—h") >Fw<(h—h )y
(A3) y=uz,
Using this result in the Taylor expansion of the sine, one gets B® )
K=uz— -5gUu53,
el w 2n+1 128
| 2#(h—=h") s (=" (27w
ol Y T & @2n+)\a, Ozn+1(p) we finally obtain
* (_1)n 277_ 2n+1 — — %: a@)n2
T2 o ) (TR0 ar — Sus— B, (B4)
2’77' 2’7T2 _— — dU2
=gol(r)ex;{—¥<(h—h’)2)h]. g Uiz, (BS)
(A4) dU3
——=—2U3. (B6)
This is the result employed in EQO) of Sec. Il. dl
APPENDIX B The interesting feature of the approximate flB4)—(B6) is

that the third equation can be readily solved for the surface

As already stated, the dynamic RG fl¢@8)—(40) can be  diffusionlike variable uz, as uz(l)=uz(0)exp-2l), thus
seen as a generalization of that for the sG equation, as devaking apparent one of the qualitative features of the origi-
rived, e.g., i8,9]. In this appendix we explore this relation- nal RG flow, namely, the fact that surface diffusion is an
ship in some more detail in the physically interesting casdrrelevant variable that decouplé¢sxponentially fast from
d=2. the flow for the lattice potential and the surface tension. On

Similarly to the sG case, an important point in the the other hand, by taking the ratio between the first and sec-
(x,y,K) parameter space is that where the lattice potegtial ond equations in Eq$B4)—(B6) and integrating irl, one can
changes stability. Actually, the existence in the generalizeg¢heck that the relation
model of a surface diffusion term does not change this fact,
in the sense that the point (1,0,0) still controls the behavior
of the RG flow to a large extent. This is due to the fact that
the surface diffusion is irrelevant with respect to surface ten-
sion, and that the latter is generated by the RG flow, as obdefines a separatrix for the flo(B4)—(B6), generalizing the
tained in Sec. Il. The simplest way to substantiate this conwell-known asymptotes of the sG hyperbold@d [see also
clusion is to study the flow38)—(40) perturbatively near the panel(a) of our Fig. 1. On, e.g., the first quadrant of the
point (1,0,0). To this end, we introduce the temperaturelikqu,,u,) plane, flow lines below the separatrix flow onto the
variable[8,9] t=2/x—2, rewrite Eqs{(38)—(40) in the new u,=0 line of fixed points(irrelevant lattice potential, high
variables {,y,K), and approximate the corresponding flow temperature behavigrwhereas flow lines above the separa-
to second order around the fixed poibtyK)=(0,0,0). We trix flow towards large values of the lattice potentigl (low

uf(l)zB‘”u%(l)—lGJlmul(l Nug(1”)dl’ (B7)

obtain temperature, massive phas&hus, the separatrix marks the
@) temperature driven phase transition. Unfortunately, we have
——BK(14+1)—y? B(Z)—B— (B1) not been able to produce a useful simpler expression for
dl y 16 )’ locus (B7), not even within perturbation theory.
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