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Dynamic renormalization group study of a generalized continuum model of crystalline surfaces
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We apply the Nozie`res-Gallet dynamic renormalization group~RG! scheme to a continuum equilibrium
model of ad-dimensional surface relaxing by linear surface tension and linear surface diffusion, and which is
subject to a lattice potential favoring discrete values of the height variable. The model thus interpolates
between the overdamped sine-Gordon model and a related continuum model of crystalline tensionless surfaces.
The RG flow predicts the existence of an equilibrium roughening transition only ford52 dimensional sur-
faces, between a flat low-temperature phase and a rough high-temperature phase in the Edwards-Wilkinson
~EW! universality class. The surface is always in the flat phase for any other substrate dimensionsd.2. For
any value ofd, the linear surface diffusion mechanism is an irrelevant perturbation of the linear surface tension
mechanism, but may induce long crossovers within which the scaling properties of the linear molecular-beam
epitaxy equation are observed, thus increasing the value of the sine-Gordon roughening temperature. This
phenomenon originates in the nonlinear lattice potential, and is seen to occur even in the absence of a bare
surface tension term. An important consequence of this is that a crystalline tensionless surface is asymptotically
described at high temperatures by the EW universality class.
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I. INTRODUCTION

The dynamics of growing surfaces@1,2# has attracted
great interest during the last decade. This is due both to
practical implications for the control of film quality in thin
film production techniques, and to the fundamental questi
it raises in areas of physics such as spatially extended
tems in the presence of fluctuations@3#, or scale invariance in
nonequilibrium systems@4#. It has been observed that a su
face growing in the presence of fluctuations quite generic
exhibits time and spatial scale invariance properties. Spe
cally, if h(r ,t) denotes the surface height at timet above a
d-dimensional substrate positionrPRd, the height-difference
correlation function G(r ,t)5^@h(r01r ,t)2h(r0 ,t)#2&
grows asG(r ,t);t2a/z for t1/z!r and scales asG(r ,t)
;r 2a for t1/z@r , wherea andz are referred to as the rough
ness and dynamic exponents, respectively. These scal
variance properties imply that suchrough surfaces share
many properties with dynamic critical phenomena, which
lows one to obtain useful information on the former fro
studies on the latter, and vice versa. A particularly interes
example is provided by the overdamped sine-Gordon~sG!
model, which describes the equilibrium fluctuations of
crystal surface and the features of its roughening transi
@5#

m21
]h

]t
5F1nDh2

2pV

a'

sinS 2ph

a'
D1A2Tm21h~r ,t !.

~1!

In Eq. ~1!, D is the substrate Laplacian,m is the surface
mobility, F, n, V, and a' are positive constants,T is tem-
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perature, andh is a zero mean, Gaussian white noise w
correlations^h(r ,t)h(r 8,t8)&5d(r2r 8)d(t2t8). The sur-
face morphology of a crystal surface described by the
model thus results from an interplay between linear surf
tension, described by the term with coefficientn in Eq. ~1!, a
periodic potential favoring discrete interface valuesh5na'

with nPZ, and thermal fluctuations. Moreover, using th
same arguments as in Ref.@6#, for a nonzero value of the
homogeneous driving~flux of aggregating particles! F in Eq.
~1!, an alternative interpretation of the sG surface is as
minimizing surface area~for small values of the surface
slope!, subject to a flux of aggregating particles such th
growth events of the height take place in integer values
equilibrium (F50), the sG model is well known@7–10# to
feature a roughening transition whend52: for temperatures
above a critical valueT>TR

sG, the lattice potential is irrel-
evant and the surface is rough, in the sense quoted abov
the height-difference correlation function. The correspond
exponent values are those of the Edwards-Wilkinson~EW!
equation@11#, which is simply theV50 limit of Eq. ~1!,
namely@12#,

aEW5
22d

2
, zEW52. ~2!

In the cased52 considered, Eq.~2! amounts toaEW50,
implying G(r ,t); log r for r !t1/z. For temperatures smalle
thanTR

sG, the lattice potential dominates the large scale pr
erties of the surface setting a finite correlation lengthj, be-
yond which the height-difference correlation functionG(r
.j,t) attains a constant value and hence the surface is
The sG roughening transition is of the Kosterlitz-Thoule
class, and hence thecontinuumsG model is related to impor
tantdiscretemodels such as the discrete Gaussian and thF
models@5,13#.
©2001 The American Physical Society10-1
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As mentioned above, a practical domain that prese
many instances of growing surfaces is the area of thin fi
production by techniques such as, e.g., molecular-beam
taxy ~MBE!. In many MBE conditions@14#, the main relax-
ation mechanism on the surface is surface diffusion, ra
than surface tension. In this case, and again considering
additional effect of a periodic lattice potential, one is l
naturally to the following model of a growing surface@15#,
henceforth referred to as the xMBE model

m21
]h

]t
5F2kD2h2

2pV

a'

sinS 2ph

a'
D1A2Tm21h~r ,t !.

~3!

In Eq. ~3!, k is a positive constant, in which case the cor
sponding term in the continuum equation does provide
again for small surface slopes—a surface diffusion relaxa
mechanism@16#. All the other terms in Eq.~3! have the same
meaning as in Eq.~1!. Specifically,F is related to the flow of
adatoms onto the substrate. Thus, forFÞ0, Eq.~3! provides
a nonequilibrium description of a growing surface whi
roughens under the effect of thermal fluctuations. In parti
lar, as shown in Ref.@15#, the surface described by Eq.~3!
initially displays RHEED ~reflection high energy electro
diffraction! oscillations, akin to those observed experime
tally @17#. For F50, Eq. ~3! describes the equilibrium fluc
tuations at temperatureT ~we will consider a unit Boltz-
mann’s constant! of a surface minimizing the energ
functional ~Hamiltonian!

E~k,V!5E ddr H k

2
~Dh!21VF12cosS 2ph

a'
D G J . ~4!

Therefore, such a surface can be also thought of as minim
ing surface curvature to linear approximation, thus having
principle zero surface tension, and to favor values of
height that are integer multiples ofa' . Note in this respect
that Eq.~3! does nothave the form of a continuity equatio
for the surface height, due to the form of the nonlinear a
noise terms@18#. Hence, from the point of view of applica
tions to MBE growth, the continuum xMBE model~3! might
be relevant for those situations in which nonconserved n
is expected to play a roˆle, e.g., for length scales larger tha
the typical diffusion length@19#. On the other hand, in a
similar way as the sG equation can be seen as a contin
description of the discrete Gaussian model, Eq.~4! is a natu-
ral candidate for the continuum description of the discr
Laplacian roughening~Lr! model @20# on the square lattice
@21#. The Lr model has been used to describe tw
dimensional defect melting and as a model of tension
surfaces such as membranes@22,23#. Actually, Eq. ~4! can
indeed be obtained@24# as a continuum limit of the Lr
model, albeit in a nonunique fashion.

Numerical simulations of Eq.~3! for d52 @15,25# show
an equilibrium roughening transition, similar to that in th
sG model. In the case of Eq.~3!, the exponents characteriz
ing the rough high-temperature phase are numerically c
01611
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sistent with those obtained for theV50 limit of Eq. ~3!
—the so called linear MBE (lMBE! equation @26,27#—,
namely

a lMBE5
42d

2
, zlMBE54, ~5!

which in d52 impliesa lMBE51. However, given that in the
sG system the periodic potential is known to contribute
correction to the surface tension term upon renormalizat
the same phenomenon is expected to occur in the xM
model, in which the bare surface tension is zero. Since
face diffusion is irrelevant in the presence of surface tens
@14,28#, this argument together with the available numeric
evidence@15,25# led to the prediction that the scaling prop
erties of the xMBE model in the high-temperature phase
the same as those of the sG model. To date, and altho
more recent numerical data@29# confirm the existence o
crossover behavior in the critical properties of model~4!,
direct numerical verification of EW scaling properties seem
hard to achieve. Moreover, previous analytical studies@24#,
which employed a variational mean-field analysis succe
fully applied in Ref.@30# for the analysis of the sG roughen
ing transition, have failed to reproduce EW scaling at hi
temperatures for the xMBE model. Specifically, the resu
obtained in Ref.@24# include an upper critical dimensio
dc54, below which model~3!–~4! displays a phase trans
tion between a low-temperature flat phase and a hi
temperature rough phase whose scaling behavior is tha
the lMBE equation. However, the transition taking place
of first order for all substrate dimensions,d<dc , while the
numerical simulations of@15,25# strongly suggest that, a
least ford52, the transition is of acontinuoustype. Besides,
the generation of a surface tension term by the lattice po
tial referred to above is due to nontrivial coupling betwe
different surface Fourier modes, which is unsufficiently a
counted for by the variational mean-field description e
ployed in Ref.@24#. Therefore, it is natural to try improve o
the mean-field approximation of Ref.@24# and explore the
scale invariant properties of the system near the phase
sition point through the use of the renormalization gro
~RG!.

In this paper we consider the following generalized co
tinuum model of surfaces subject to a periodic lattice pot
tial:

m21
]h

]t
5F1nDh2kD2h2

2pV

a'

sinS 2ph

a'
D

1A2Tm21h~r ,t !. ~6!

This equation obviously features both Eqs.~1! @sG model#
and~3! ~xMBE model! as special cases. Moreover, the line
limit V50 @14,28# of this equation has been observed
accurately describe growth experiments of copper aggreg
by electrochemical deposition in the presence of organic
ditives @31#. For the sake of simplicity, in this work we wil
consider this generalized model in the absence of driv
0-2



-

e

r
G

an

m
e

n
m
t

n
ob
o

ze
he
il
E

am
re
na

de

iti
x

cifi
nt
e-
e
b
E

-

th

e

ur
ni
is
th

We
e-
e
ion
-
in

zes

e
is

rm.
nt
is

,

f
out

ce
pe

for

DYNAMIC RENORMALIZATION GROUP STUDY OF A . . . PHYSICAL REVIEW E65 016110
(F50), in which case Eq.~6! describes the equilibrium fluc
tuations of a surface with Hamiltonian

Eg~n,k,V!5E ddr H n

2
~¹h!21

k

2
~Dh!2

1VF12cosS 2ph

a'
D G J . ~7!

In order to study the critical properties of the xMBE mod
in d substrate dimensions, we will extend thedynamicRG
approach devised by Nozie`res and Gallet~NG! for the d
52 sG model@8# ~see also a detailed account in Ref.@9#! to
the generalized system~6!. There are two reasons for ou
pursuing this approach:~i! as anticipated above, in the R
analysis of Eqs.~3!,~4! a finite ~nonzero! surface tension
term needs to be allowed for, given that it is generated in
perturbative scheme even if its bare amplitude is zero;~ii ! a
static renormalization group study of the equilibrium syste
~4! is ill defined in some parameter ranges due to diverg
integrals@25#, similarly to the sG case@8#. Still, the static RG
study will provide us, via the appropriate generalizatio
with the correct expansion of the model nonlinearity in ter
of relevant operators through the use of Kadanoff’s opera
product expansion~OPE! @32#, as was accomplished i
@8,33# for the sG model. In any case, the results to be
tained from the dynamic RG study that follows will als
cover the case of a system minimizingbothsurface area and
surface curvature, and will in particular allow us to analy
how the standard sG roughening transition is modified w
an additional surface diffusion term is considered. We w
finally consider the renormalization properties of the xMB
model, which corresponds to a specific choice of bare par
eters within this generalized framework, and will compa
the conclusions obtained with those from both the variatio
approach@24# and numerical simulations@15,25#. To our
knowledge, ours is the first RG approach to the xMBE mo
as formulated by Eqs.~3!,~4!, and it may contribute to the
elucidation of the existence and nature of the phase trans
in this and related systems, as the Lr model. There also e
static and dynamic RG studies of similar systems. Spe
cally, the equilibrium properties of a model which is differe
from ~3!,~4! but is believed to provide the continuum d
scription of the Lr model on the triangular lattice, have be
analyzed in@34#, and its dynamical properties have been o
tained in@35# and references therein. Within the rough MB
surfaces context, the dynamic properties of the conserved
model have been studied both under conserved@18,36# and
nonconserved@18,37# noise. Finally, a Langevin equation be
lieved to describe a restricted curvature model@38# has been
analyzed in Ref.@39# by using RG techniques.

This paper is organized as follows. In Sec. II we apply
dynamic RG scheme of NG to Eq.~6!. The parameter flow
thus obtained for this generalized model is studied in S
III A as a function of the substrate dimensiond. The special
limit of Eq. ~6! corresponding to crystalline tensionless s
faces, Eq.~3!, requires additional considerations of a tech
cal nature, and is deferred to Sec. III B. Finally, Sec. IV
devoted to further discussion of the results obtained in
01611
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previous sections, and to summarizing our conclusions.
additionally provide two appendixes. In Appendix A we d
tail, following Refs. @8,33#, the OPE that is needed in th
dynamic RG in order to perform the appropriate expans
of the lattice potential in Eq.~6! into relevant operators. Ap
pendix B closes with a discussion of the specific way
which the roughening transition of the sG model generali
into that to be obtained in Sec. III A for Eqs.~6!,~7!.

II. DYNAMIC RENORMALIZATION GROUP ANALYSIS

This section is devoted to the analysis of Eq.~6! in the
equilibrium caseF50, employing the dynamic RG schem
of NG @8,9#. In this scheme, a coarse graining procedure
performed over the microscopic modes of the noise te
Namely, the noise is split into two statistically independe
parts,h5h̄1dh, such that the total noise power spectrum
the sum of the corresponding contributions. Heredh(r )
[*L̄

L
d2kek•rĥ(k), whereL is a momentum cutoff related

e.g., to atomic positions on the substrate,L̄5e2«L with « a
small parameter, andĥ(k) is the spatial Fourier transform o
the noise. Then, microscopic fluctuations are integrated
by definingh̄[^h(h̄1dh)&dh anddh[h2h̄, and by seek-
ing an equation of motion for the thus defined long distan
modesh̄. The result will be an equation with the same sha
as Eq.~6!, but with new~renormalized! coefficients, which
are sensitive to the microscopic fluctuationsdh by the action
of the nonlinearities. Specifically, the dynamic equations
the h̄ anddh modes read

m21
]h̄

]t
5nDh̄2kD2h̄2^F~ h̄,dh!&dh1A2Dh̄~r ,t !,

~8!

m21
]dh

]t
5nDdh2kD2dh2@F~ h̄,dh!2^F~ h̄,dh!&dh#

1A2Ddh~r ,t !, ~9!

where we have definedD[Tm21, and we have introduced
F(h̄,dh)[(2pV/a')sin@2p(h̄1dh)/a'#. In order for Eq.~8!

to be a closed equation inh̄, we need to solve fordh in Eq.
~9! and introduce the result into Eq.~8!. The formal solution
of Eq. ~9! reads

dh~r ,t !5E ddr 8E
2`

t

dt8x0~r2r 8,t2t8!@A2Ddh~r 8,t8!

1F82^F8&dh#, ~10!

where the primed notation denotes dependence on ther 8, t8
variables, and thed-dimensional free propagator reads

x0~r ,t !5E ddk dv

~2p!d11

ei (k•r2vt)

nk21kk42 ivm21
. ~11!
0-3



o
ve

-
-
e
is

ial,

ob-

t

s

RODOLFO CUERNO AND ESTEBAN MORO PHYSICAL REVIEW E65 016110
Due to the nonlinear lattice potential, an explicit solution
Eq. ~9! can only be obtained by performing a perturbati
expansion in powers ofV. Thus, defining

dh~r ,t !5dh(0)~r ,t !1Vdh(1)~r ,t !1O~V2!, ~12!

we obtain

dh(0)~r ,t !5E ddr 8E
2`

t

dt8x0~r2r 8,t2t8!

3A2Ddh~r 8,t8!, ~13!

dh(1)~r ,t !52
4p2

a'
2 E ddr 8E

2`

t

dt8x0~r2r 8,t2t8!

3dh8(0) cosS 2ph̄8

a'
D . ~14!

Using sin(a1b)5sinacosb1cosasinb, and within our per-
turbation expansion, we can now evaluate in Eq.~8!

^F~ h̄,dh!&dh5
2pV

a'
F12

2p2

a'
2 ^~dh(0)!2&dh

2
4p2V

a'
2 ^dh(0)dh(1)&dh1O~V2!G

3sinS 2ph̄

a'
D , ~15!

which has the form

^F&dh~ h̄!5VF (1)~ h̄!1V2F (2)~ h̄!1O~V3!, ~16!

with

F (1)~ h̄!5
2p

a'
F12

~2p!22dSdT Ld22«

2a'
2 ~n1kL2!

GsinS 2ph̄

a'
D ,

~17!

F (2)~ h̄!52
8p3

a'
3 ^dh(0)dh(1)&dh sinS 2ph̄

a'
D , ~18!

whereSd52pd/2/G(d/2) is the surface area of the unit hy
persphere ind dimensions,G(•) being Euler’s Gamma func
tion. The shape of Eq.~17! already reflects the fact that w
have considered an infinitesimal shell of microscopic no
modes of width«. We can write Eq.~18! more explicitly as

F (2)~ h̄!5
32p5

a'
5 E ddr 8E

2`

t

x0~r2r 8,t2t8!

3^dh(0)dh8(0)&dh sinS 2ph̄

a'
D cosS 2ph̄8

a'
D .

~19!
01611
f

e

Neglecting higher order harmonics of the lattice potent
sin(2ph̄/a')cos(2ph̄8/a').1

2sin@2p(h̄2h̄8)/a'#. Further, we
can use the results for the OPE of the lattice potential
tained in Appendix A, and a Taylor expansion to obtain

F (2)~ h̄!.
32p6

a'
6

SdE
0

`

rd21drE
0

`

dtx0~r,t!

3H t
]h̄

]t
2

r2

2d
Dh̄2

r4

8d~d12!
D2h̄J

3^dh(0)dh8(0)&dh expF2
2pT

a'

f~r,t,n,k,m!G ,
~20!

where we have definedr[r2r 8 and t[t2t8, the
d-dimensional free propagator reads

x0~r,t!5
m

~2p!d/2E0

L

dk
kd/2

rd/221
Jd/221~rk!e2(nk21kk4)mt,

~21!

and we have introduced

f~r,t,n,k,m![
Sd

~2p!d21E0

L

dk
kd21

nk21kk4

3F12
G~d/2!Jd/221~rk!

~rk/2!d/221
e2(nk21kk4)mtG ,

~22!

with Jn(x) being thenth order Bessel function of the firs
kind. Finally, using the results of Eqs.~17! and~20!, Eq.~16!
has the form

^F&dh~ h̄!5~V1«dV! sinS 2ph̄

a'
D 2«dm21

]h̄

]t
1«dnDh̄

1«dkD2h̄1O~V3!, ~23!

where the correctionsdn, dk, etc. are implicitly defined.
Inserting the result of Eq.~23! into Eq.~8!, we obtain that, to
V2 order, the long distance modesh̄ obey an equation with
the same shape as Eq.~6!, namely,

m̃21
]h̄

]t
5 ñDh̄2k̃D2h̄2

2pṼ

a'

sinS 2ph̄

a'
D 1A2Dh̄~r ,t !,

~24!

but with new coefficientsñ[n1«dn, k̃[k1«dk, m̃21

[m211«dm21, and Ṽ[V1«dV. In order to recover the
original Fourier mode cutoffL, we now rescale variables a

r→r 85r /b, ~25!

h̄→h̄85h̄b2a, ~26!
0-4
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t→t85b2zt, ~27!

whereb5e«, and we thus get

m̄21
]h̄

]t
5 n̄Dh̄2k̄D2h̄2

2pV̄

a'

sinS 2ph̄

a'
D 1A2D̄h̄~r ,t !,

~28!

with coefficients n̄5 ñbz22, k̄5k̃bz24, V̄5Ṽbz22a, m̄21

5m̃21, and D̄5D bz22a2d. Finally, for an infinitesimal«
5dl and expandingn̄(«), etc., to first order in«, we obtain
the dynamic RG flow toV2 order

dn

dl
5~z22!n1

~2p!62dSdT Ld26

4da'
6 ~n1kL2!2

V2B(2,0)~n,k!,

~29!

dk

dl
5~z24!k2

~2p!62dSdT Ld28

16d~d12!a'
6 ~n1kL2!2

V2B(4,0)~n,k!,

~30!

dV

dl
5~z22a!V2

~2p!22dSdT Ld22

2a'
2 ~n1kL2!

V, ~31!

dm21

dl
5

~2p!62dSdT Ld26

2a'
6 ~n1kL2!3

V2m21B(0,1)~n,k!, ~32!

dD

dl
5~z22a2d!D, ~33!

da'

dl
52aa' , ~34!

with

B(n,m)~n,k![E
0

`

dr̃ r̃n11E
0

`

dte2ttmJd/221~ r̃ !

3G~ r̃,t,n,k!expF2
2pT

a'
2

3f~r̃,t,n,k,m!G , ~35!

G~ r̃,t,n,k![E
0

1

dk̃k̃d/2Jd/221~ r̃ k̃!expF2t
n k̃21kL2k̃4

n1kL2 G ,

~36!

wherer̃[rL. It is worth noting that the flow of the mobility
m is enslaved to that of all other system parameters, wh
allows us to neglect its evolution under Eqs.~29!–~34! in the
rest of the paper. Moreover, in order to preserve fluctuati
dissipation by this RG procedure@8,9# we need to impose the
exponent relationz52a1d in the flow ~29!–~34!. Note that
this relation~termedhyperscaling@40# in the studies of ki-
01611
h

-

netic roughening! holds exactly at two fixed lines of Eqs
~29!–~34!, which are the two linear limits of Eq.~6!, namely
the EW @V5k50, see Eq.~2!# and lMBE @V5n50, see
Eq. ~5!# equations. Both systems can be interpreted as
scribing equilibrium fluctuations, governed by the corr
sponding Hamiltonians. We also remark that, as anticipa
in Sec. I, it is clear from Eq.~29! that, if we consider the RG
flow for the xMBE model~3!–~4! in which there is no bare
surface tension, the lattice potential does generate it un
RG iterarion.

Finally, we find it more convenient to express the flow
the dimensionless variables

x[
2a'

2

pT
~n1kL2!, y[

4pV

TL2
, K[

ka'
2 L2

pT
. ~37!

Thus, we have

dx

dl
5~d22!x24K1

4

d

y2

x2 F B̃(2)~x,K !

2
1

4~d12!
B̃(4)~x,K !G , ~38!

dy

dl
52yFd

2
2

Sd

~2p!d21

Ld22

x G , ~39!

dK

dl
5~d24!K2

1

2d~d12!

y2

x2
B̃(4)~x,K !, ~40!

where

B̃(n)~x,K ![
SdLd22

~2p!d21E0

`

dr̃ r̃n11E
0

`

dte2tJd/221~ r̃ !

3G̃~ r̃,t,x,K !e22f̃( r̃,t,x,K), ~41!

G̃~ r̃,t,x,K ![E
0

1

dk̃k̃d/2Jd/221~ k̃r̃ !exp$22t@~x/22K !k̃2

1Kk̃4#/x%, ~42!

f̃~ r̃,t,x,K ![
SdLd22

~2p!d21E0

1

dk̃
k̃d21

~x/22K !k̃21Kk̃4

3F12
G~d/2!Jd/221~ k̃r̃ !

~ k̃r̃/2!d/221

3exp$22t@~x/22K !k̃21Kk̃4#/x%G .

~43!

Note that the convergence properties of the integ
f̃( r̃,t,x,K) defined above depend on the substrate dim
sionality d and on the parameter values. Specifically, ford
0-5
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52 and the condition associated with the xMBE model~3!,
namely,x52K, the integral diverges logarithmically at th
lower limit. This divergence originates in the fact that corr
lation functions do not have a well-defined thermodynam
limit for the lMBE model ind52 @14#.

The dynamic RG flow~38!–~40! just obtained generalize
that in @8,9# for the case of a finite surface diffusion term
and for any value of the substrate dimensiond. The sine-
Gordon case is retrieved simply by settingk50 and neglect-
ing the higher order contributionB̃(4)(x,0), related with the
RG flow of the surface diffusion term. Actually, this integr
will allow us to study in the next section the effect of su
relaxation mechanism on the sG roughening transition.

III. DISCUSSION OF THE RG FLOW

The fixed point structure of the RG flow~38!–~40! de-
pends on substrate dimensionalityd, and thus so do the criti
cal properties of model~6!,~7!. In what follows we will re-
strict ourselves to dimensionsd>2 in which phase
transitions are expected to occur.

For general values ofd, there are no proper nontrivia
fixed points of~38!–~40!, but rather regions in the (x,y,K)
phase space that are invariant under the RG flow. These
respond to the two significant linear limits of the generaliz
model, namely, the EW line,GEW, and the lMBE line,
G lMBE , defined by

GEW5$~x,y,K !:y5K50,xÞ0%,

G lMBE5$~x,y,K !:x52K,y50%.

However, for the special dimensionsd52 andd54, respec-
tively, these regions become lines of fixed points.

A. Generalized model

We start by analyzing generic features of the RG flow
a function of substrate dimensiond, in the case in which the
bare values of surface diffusion and surface tension areboth
nonzero. The special initial condition~for the RG flow! in
which there is no bare surface tension~xMBE model! will be
considered in detail in Sec. III B.

1. dÄ2 case

Obviously, the case which is most interesting from t
physical point of view is that of a two-dimensional substra
As stated above, now the invariant EW regionGEW actually
becomes the well-known sG line of fixed points@5,9#. An
important point along this line isx51, where the flow of the
lattice potentialy changes stability, see Appendix B. If th
bare value of the surface diffusionk( l 50)50, as in the sG
model, numerical integration of Eqs.~38!–~40! shows that
the flow essentially remains on the (x,y) plane and thus
completely reduces to that of the sG system, as seen in p
~a! of Fig. 1: for highT the flow is towards they50 axis, the
interface being rough and characterized by the scaling p
erties of the EW equation. For lowT values, the lattice po-
tential y grows indefinitely upon iteration of the RG flow
01611
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drawing the system into theT50 limit for which the inter-
face is flat. Thus, there exists a roughening transition
tween these flat and rough phases. Numerically, we estim
the critical temperature as the value characterizing the tra
tory that separates between flow onto they50 line and flow
towards increasingy. We thus obtainTR

sG.0.72560.05 for
V51,a'51,n51,k50, which is close to the value for th
flow equations of the pure sG model@5,8#, TR

sG52/p.0.64.
On the other hand, as we see in panels~b! and~c! of Fig. 1,
in general a small initial surface diffusion shifts the roug
ening temperature to higher values. The reason for this ef
is that, as studied in Ref.@14,28# when V50, even though
surface diffusion is irrelevant relative to surface tension
the hydrodynamic limit, an initial valuek(0)Þ0 introduces
a crossover length scale,L3( l )5@k( l )/n( l )#1/2, below
which surface diffusion is the relevant relaxation mechanis
Once the coarse-graining procedure has overcome this s
k( l ) renormalizes to zero~see Appendix B! and the flow
takes place on the sG (x,y) plane with an coefficient that
differs from its bare value. From there on the flow is effe
tively as that of the pure sG model. The results shown
panel~d! of Fig. 1 correspond to a numerical simulation
the sG model@Eq. ~6! with k[0,F50# for m5n5V5a'

51, and of Eq.~6! for k50.5, for both of which we have
computed the specific heat@defined as xE[(^Eg

2&
2^Eg&

2)/(TL2), with Eg as in Eq.~7!# for several substrate
lateral sizesL and periodic boundary conditions. Clearly, th
roughening transition temperature —which is preceded b
peak inxE as in the pure sG model@42#—shifts to higher
values forkÞ0. Integrating numerically the RG flow~38!–
~40!, we obtainTR

sG(k50.5).1.3560.05.

2. dÌ2 cases

In order to inquire about the upper critical dimension,dc ,
of model~6!,~7!, we consider values ofd above the physica
two-dimensional case. An important consequence of thi
that the points on the EW lineGEW are not fixed any longer
under the RG iteration. This already signals the final res
that, in these dimensions, there is no proper phase transi
Rather, the only existing phase is the flat low-temperat
one. Before justifying this result in detail, let us note that t
EW equation already predicts a flat surface ford.2 @1,2,12#,
and therefore when adding a lattice potential to the surf
tension term in the sG equation, the result thatdc52 is the
corresponding upper critical dimension@32,43# does not
come as a surprise. In the generalized model~6!,~7!, similar
results to those in the previous section indicate that the s
value dc52 actually occurs: for 2,d,4, it is clear from
Eq. ~40! thatK( l ) still decreases exponentially under the R
iterarion, and again the flow becomes essentially that of
sG model in the corresponding dimension, thus predictin
flat morphology. In Fig. 2~a! we show as an illustration re
sults of a numerical integration of Eqs.~38!–~40! for d53.
As is clear from the figure@for this, it is useful to note the
projection of the RG flow lines onto the (x,y) plane#, the
flow is eventually towards largey values for all temperatures
Note also that theK( l ) value may in some cases becom
negative, signalling a nonphysical instability. We attribu
0-6
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FIG. 1. Panels~a!–~c! (x,y) projection of the RG flow~38!–~40! for d52, usingn(0)5V(0)515a'5L51, and~a! k(0)50, ~b!
k(0)51022, ~c! k(0)51021. In panels~a!–~c!, initial conditions lie on the dashed line and the dotted line is the separatrix for the pu
flow. Solid lines correspond toT50.5, 0.6, 0.7, 0.8, 0.9, andT51 right to left in~a! and~b!, and top to bottom in~c!. Panel~d! specific heat
for the sG model~left curves! and for model~6! with m5n51 andk50.5 ~right curves! for different system sizes. All units employed a
arbitrary.
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this effect@also apparent on panels~b! and ~c! of Fig. 2# to
limitations of ourO(V2) approximation to the RG flow.

The valued54 is marginal for the surface diffusion term
in Eq. ~6!. In an analogous way to the roˆle of d52 for the
EW equation@see Eq.~2!#, the lMBE equation predicts a
roughness exponenta50 for d54 @logarithmic behavior of
G(r ,t), see Eq.~5!# and a flat morphology ford.4 @1,2#.
Even though the decay ofK( l ) under the RG flow~38!–~40!
might not be so fast as in smaller dimensions, it neverthe
occurs, see Fig. 2~b!, with the result of an effective sG be
havior in d54 dimensions, again corresponding to a fl
morphology. Finally, as illustrated in Fig. 2~c! for d55, if
d.4 all coefficients in the RG flow grow under iteration.
particular, the lattice potentialy increases indefinitely and
thus the surface morphology is dictated by the behavio
the T→0 limit, namely, again there is no phase transiti
and the surface is flat.

B. Crystalline tensionless surfaces

As remarked above, within the RG flow of the generaliz
model ~6!,~7!, the case corresponding to the xMBE mod
01611
ss

t

f

d
l

~3!,~4! simply amounts to a specific condition on the ba
parameters, namely, they lie on the planex(0)52K(0),
y(0)Þ0, thus implyingn(0)50. In this section we thus
study the RG flow for the xMBE model separately for d
ferent values of the substrate dimension.

1. dÄ2 case

In the physicald52 case, and due to the divergencies
the correlation functions mentioned above, this very con

tion induces a trivial RG flow, since theB̃(n) integrals in Eq.
~41! become identically zero. The linear combinationx
22K—which is proportional to the surface tension—, is
constant under the RG flow. Equations~38!–~40! can be ex-
actly solved to show that any initial condition on thex
52K plane tends to the origin forl→`. For large enough
but finite l, the surface scales as thelMBE equationindepen-
dently of the value ofT, and thus there is no temperatu
driven phase transition, which contradicts the results of, e
numerical simulations of Eq.~3! for two-dimensional sub-
strates@15#. Thus, some kind of integral regularization
needed whend52. Here we introduce a lower momentu
0-7
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RODOLFO CUERNO AND ESTEBAN MORO PHYSICAL REVIEW E65 016110
cutoff 1/(LL) in the integrals~42!, ~43!, with L being a
measure of the lateral dimension of the two-dimensional s
strate. Proceeding in this way, it can be seen that the integ
~41! now vanish as a power law of 1/L. In this regularization
scheme, the RG iteration has to be stopped onceel5L. An-
other possible procedure like that of dimensional regular
tion can be employed with the same conclusions as those
follow, similar to the RG analysis of tensionless membran
@44#.

FIG. 2. RG trajectories from a numerical integration of Eq
~38!–~40! for d53 ~a!, d54 ~b!, and d55 ~c! with n(0)50.5,
k(0)50.25, andV(0)50.1. Thick solid lines correspond, right t
left, to ~a! T51.5, 2, 2.5, 3, 3.5, 10;~b! T510, 15, 20, 30, 40;~c!
T55, 10, 15, 20, 25. Thin solid lines on the (x,y) planes are pro-
jections of the RG flow lines above them. Thick dots on thex axis
denote both the origin and the pointx52S dLd22/@d(2p)d21# at
which the rhs of the flow equation fory vanishes. Other paramete
are as in Fig. 1. All units employed are arbitrary.
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In any case, the regularized integralsB̃(n)(x,x/2) are no
longer identically zero. This leads us to expect the RG fl
to escape from thex52K plane, which would mean a finite
surface tension has been generated under renormaliza
and thus the occurence oftemperature dependentbehavior.
Nevertheless, the flow may take many iterations before
appreciably deviates from thex52K plane, given that, in its
neighborhood, the integralsB̃(n) can be rather small number
for largeL values.

In Fig. 3 we show the numerical integration of the R
flow ~38!–~40! for various initial conditions on the xMBE
plane andL5128. Indeed, three different types of behavi
can be distinguished. For high enough values ofT, the vari-
ablesx, y, K are very small and the RG flow escapes from t
x52K plane very slowly. Under these conditions, the syst
flows towards the origin while featuring the scale invaria
behavior of thelMBE line G lMBE . An example is trajectory
~1! on Fig. 3. For intermediate temperatures,n;x22K be-
comes non-negligible and the flow is attracted by the (x,0,0)
segment withx,1, where the behavior is described by th
EW equation, see trajectory~2! on the figure. Finally, for
high values ofT, the flow falls rapidly onto the (x,y) plane
with x.1, see trajectory~3! on the figure. This behavior is
described by the low-temperature massive phase of the
model, where the lattice potential is dominant and the s
face is flat, see Appendix B.

In order to examine this behavior more closely, we c
focus on the crossover lengthL3 introduced in Sec. III A.
By coarse-graining the system with the RG transformat
for scales up to the system size (l * 5 ln L), and if the lattice
potential turns out to become irrelevant, we can dec
whether the system scaling is of thelMBE or EW type by
evaluatingL3( l * ) to be larger or smaller thanL( l * )[1,

.

FIG. 3. RG trajectories from a numerical integration of Eq
~38!–~40! for the xMBE model@i.e., n(0)50# with L5128, k(0)
51, andV(0)50.1. Solid lines exemplify the three types of beha
ior depending onT: ~1! high T phase,lMBE scale invariant behav-
ior (T510); ~2! intermediateT phase, EW scale invariant behavio
(T50.46); ~3! low T massive phase (T50.45). For the sake of
clarity, all three coordinates along line~1! have been artificially
expanded by a factor of 10. Thex52K plane of initial conditions
appears shaded, and both the origin and the (1,0,0) point are
nalled with thick dots. Other parameters are as in Fig. 1. All un
employed are arbitrary.
0-8
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respectively. Note that, for a zero lattice potential, the R
flow of L3 is easily computed from Eqs.~29!,~30! to be
given by L3( l )5L3(0)exp(2l), hence an exponential be
havior ofL3( l ) will be a sign of the irrelevance of the lattic
potential at scalel. In Fig. 4 we show the RG flow ofL3( l )
for the same temperature conditions as in Fig. 3 andL( l
50)5128. As we see, for high enough temperatures@lines
~1!, ~2! in the figure#, indeedy( l ) is seen to decay very
rapidly to zero,L3( l ) displaying an exponential behavio
However, while for the highest temperature condition@line
~1!# the scaling behavior is of thelMBE type sinceL3( l * )
.1, we observe that there are lower temperatures for wh
the lattice potential is irrelevant, but the long distance beh
ior is rather of the EW type, sinceL3( l * ),1. This is the
case of, e.g., the RG flow line~2! on Figs. 3 and 4, for which
the system falls onto the high-temperature line of fix
points of the sG model. Finally, for low enough temperatu
the lattice potential dominates the asymptotic properties
the system, as signalled in Fig. 4 by the complex nonex
nential behavior ofL3( l ) for T50.45. These temperatur
condition corresponds in Fig. 4 to the RG flow of line~3!,
along which the system falls onto the flat low temperat
phase of the sG model. In analogy with the sG case,
dynamic RG flow~38!–~40! thus predicts a roughening tran
sition at a temperature

TR5
2a'

2 ~n1kL2!

p
, ~44!

at which the flow of the lattice potential changes stabili
Note bothn andk in Eq. ~44! are renormalized, rather tha
bare values. ForT,TR , the system is in the sG massive lo
temperature phase, within which the surface is flat. FoT
>TR , the surface is rough and should asymptotically feat
the EW scale invariant behavior. However, crossover beh
ior exists; specifically, for a small system size~for which the
asymptotic behavior may not be reached! or for very high
temperatures@for which the RG flow needs many iteration

FIG. 4. Linear-log plot of the numerical RG flow ofL3( l ) for
d52, L5128. Other parameters are as in Fig. 3. Solid lines are
T510, 0.46, andT50.45, top to bottom. For the sake of compa
son, the dashed line depicts the RG flow ofL3( l ) for the linear
systemV(0)50. In all cases the flow is terminated forl 5 ln 128
.4.85. All units employed are arbitrary. Inset: Blowup of the sa
plot for small l values, in log-log representation.
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in order to escape the xMBE plane of initial conditions, s
line ~1! in Fig. 3#, the scaling behavior observed in the sy
tem will be of thelMBE type.

2. dÌ2 cases

We have also considered the RG flow of the xMBE mod
for higher substrate dimensions, finding a behavior tha
qualitatively consistent with all the above analysis. Mor
over, given that for anyd.2 the integralf̃ in Eq. ~43! is
always a finite number, the results that follow can be taken
additional support for those presented ind52 employing
lattice cut-off regularization. As can be seen in Fig. 5, f
d.2 the RG flow of the xMBE model does take on the exa
shape of the generalized model studied in Sec. III A, and
the conclusions drawn there become applicable also for
specific initial condition we are now considering. Name
the RG flow escapes from thex52K plane, and thereon the
behavior is similar to that of the sG model. In particula
there is no phase transition and the surface morpholog
flat for any valued.2. Therefore, the upper critical dimen

r

FIG. 5. RG trajectories from a numerical integration of Eq
~38!–~40! for the xMBE model@i.e., n(0)50# with k(0)51, and
V(0)50.1. Panel~a! @~b!# corresponds tod53 @d54#. On each
panel, solid lines correspond to temperature valuesT51.5, 2, 2.5,
3, 3.5, andT510, right to left. Thin solid lines on the (x,y) plane
are projections of the RG flow lines above them. As in Fig. 3,
x(0)52K(0) plane of initial conditions appears shaded. Thick d
on the x axis denote both the origin and the pointx
52S dLd22/@d(2p)d21# at which the rhs of the flow equation fory
vanishes. Other parameters are as in Fig. 1. All units employed
arbitrary.
0-9
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RODOLFO CUERNO AND ESTEBAN MORO PHYSICAL REVIEW E65 016110
sion of the xMBE model~3!,~4! is also predicted to bedc
52. Specifically, in Fig. 5, we plot results of a numeric
integration of Eqs.~38!–~40! starting from the xMBE mode
initial condition for substrate dimensionsd53 @panel ~a!#
and d54 @panel~b!#. As can be seen in the figure, for an
initial condition on the xMBE plane —that is, for any tem
perature value—, the RG flow is towards the sG plane
towards increasingy values, which is the behavior that co
responds to the low-temperature flat phase, as in the
model for the corresponding substrate dimension. Fo
given value ofd, the higher the temperature is, the long
will it take for the RG flow to escape from the plane of initi
conditions, since the crossover lengthL3 is larger. In this
very high temperature conditions, the initiallMBE behavior
will be relevant for a longer time in the dynamics of Eq.~3!.

IV. SUMMARY AND CONCLUSIONS

The dynamic RG study presented for the generali
model of crystalline surfaces~6!,~7! predicts an upper critica
dimensiondc52. Thus, for a two-dimensional surface the
exists a roughening temperature, in such a way that the h
temperature phase exhibits the scaling properties of the
equation. Moreover, the transition properties are contro
by the sG fixed point~see Appendix B!, and is thus expected
to be of a continuous type. If we think of Eqs.~6!,~7! as a
generalization of the sG model in which a~possibly small!
surface diffusion term has been allowed for, we have see
Sec. III A that the consequence is an increase in the
roughening temperature, due to the crossover induced
such an irrelevant perturbation. Moreover, the specific c
of the xMBE model has been seen to share all these pro
ties, its peculiarity of having a zero bare surface tens
merely introducing much more severe crossover effe
From the point of view of applications to epitaxial grow
systems, this result illustrates the relevance of EW scalin
an universality class in MBE: in principle, if the symmetry
the system prohibits nonequilibrium surface currents and
cludes invariance of the dynamics under arbitrary surf
tilts, lMBE scaling is expected@2#. However, we have ob
tained for a system relaxing linearly as in thelMBE equation
that, if a lattice potential influences the dynamics as in
~3!—thereby accounting, e.g., for the discrete characte
deposition events or the influence of an underlying lattice
then asymptotic EW scaling should occur. Admittedly, cro
overs associated withlMBE behavior may be nonetheles
rather long, particularly for high temperatures.

For the case of the xMBE model, the existence of a ph
transition between a flat low-temperature phase and a ro
high-temperature phase as predicted by Eqs.~38!–~40! is
compatible with previous results obtained by the variatio
approximation@24# and numerical simulations@15,25#. How-
ever, while the variational mean field predicts the transit
to be first order, the incorporation of fluctuations by means
the RG is consistent with a phase transition of a continu
type, which is closer to the numerical results. Moreover,
present RG study predicts the upper critical dimension to
that of the sG model,dc52, while mean field predictsdc
54. We note that the absence of nontrivial mode coupling
01611
d

G
a

r

d

h-
W
d

in
G
by
e

er-
n
s.

as

-
e

.
f
,
-

e
gh

l

n
f
s
r
e

n

the variational mean-field approach limits its capabilities
determining correctly both lower and upper critical dime
sions, see, e.g.,@30# and @24# for the case of the sG mode
Concerning numerical simulations@15,25#, EW scaling has
been obtained in the high-temperature phase only for t
peratures that are extremely close to the roughening temp
ture, whereaslMBE behavior has been obtained for all oth
temperature values above the transition. Recall we obta
in Sec. III B 1 that, if the temperature was high enough,
system might need a long time to overcome the crosso
associated withlMBE behavior. Seemingly, the finite syste
sizes thus far employed in the simulations (L&128) are af-
fected by this type of crossover limitations. We also note t
the occurrence of EW scaling for the xMBE model is rem
niscent of the hexatic phase claimed for the Lr model@20–
22#. This is an intermediate phase which features EW sc
ing, and which lies in between the flat low-temperature ph
~the liquid phase in the melting context! and the high-
temperature phase~solid phase! with lMBE scaling, being
separated from both of them by roughening transitions of
KT type @20–22#. On the other hand, as found in Ref.@45#
and references therein, there are also claims on the ine
tence of an hexatic phase in the Lr model and, moreover
the first order type of the only roughening transition ensui
We are currently performing large scale simulations of the
model on the square lattice@29# in order to check the predic
tions of our RG analysis, in particular whether any trace
crossover behavior and EW scaling can be detected in
surface properties at high temperatures.
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APPENDIX A

In this appendix we recall the considerations needed
perform the correct Taylor expansions in Eq.~19!, using
Kadanoff’s operator algebra@32#. We generalize results fo
the static RG analysis of the sine-Gordon nonlinearity@33,8#.
Thus, in our dynamical RG calculation each of the~infinite
number of! nonlinearitiesO2n11(r)5(h̄2h̄8)2n11 appear-
ing in the Taylor expansion of sin@2p(h̄2h̄8)/a'# contributes
a term proportional to the marginal operatorO1(r)5h̄2h̄8,
where, as above,r5r2r 8. In our continuum approach, thi
is the most relevant term originating~via Taylor expansion!
the renormalization ofboth theDh andD2h terms in Eq.~6!.
Thus,

O2n11~r![@ h̄~r !2h̄~r 8!#2n11

5Õ2n11~r !1a2n11~r!~ h̄2h̄8!, ~A1!
0-10
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whereÕ2n11(r ) is an irrelevant operator. A way to compu
thea2n11 constants is@32,33# by performing all contractions
contributing to the behavior

^O2n11~r !O1~r1r!& h̄;a2n11~r!^O1~r !O1~r1r!& h̄ ,
~A2!

where, within our order of approximation in powers ofV,
averageŝ •••& h̄ are computed with respect to the Gauss
distribution ofh̄ given by theV50 limit of Eq. ~7!. Thus one
obtains

a2n11~r!5~2n11!^~ h̄2h̄8!2n& h̄5
~2n11!!

2nn!
^~ h̄2h̄8!2& h̄

n .

~A3!

Using this result in the Taylor expansion of the sine, one g

sinF2p~ h̄2h̄8!

a'
G5 (

n50

`
~21!n

~2n11!! S 2p

a'
D 2n11

O2n11~r!

; (
n50

`
~21!n

2nn!
S 2p

a'
D 2n11

^~ h̄2h̄8!2& h̄
nO1~r !

5
2p

a'

O1~r !expF2
2p2

a'
2 ^~ h̄2h̄8!2& h̄G .

~A4!

This is the result employed in Eq.~20! of Sec. II.

APPENDIX B

As already stated, the dynamic RG flow~38!–~40! can be
seen as a generalization of that for the sG equation, as
rived, e.g., in@8,9#. In this appendix we explore this relation
ship in some more detail in the physically interesting ca
d52.

Similarly to the sG case, an important point in th
(x,y,K) parameter space is that where the lattice potentiy
changes stability. Actually, the existence in the generali
model of a surface diffusion term does not change this f
in the sense that the point (1,0,0) still controls the behav
of the RG flow to a large extent. This is due to the fact th
the surface diffusion is irrelevant with respect to surface t
sion, and that the latter is generated by the RG flow, as
tained in Sec. II. The simplest way to substantiate this c
clusion is to study the flow~38!–~40! perturbatively near the
point (1,0,0). To this end, we introduce the temperature
variable@8,9# t[2/x22, rewrite Eqs.~38!–~40! in the new
variables (t,y,K), and approximate the corresponding flo
to second order around the fixed point (t,y,K)5(0,0,0). We
obtain

dt

dl
58K~11t !2y2S B(2)2

B(4)

16 D , ~B1!
01611
n

ts

e-

e

d
t,
r
t
-

b-
-

e

dy

dl
52ty, ~B2!

dK

dl
522K2

y2

64
B(4), ~B3!

where we have termedB(n)[B̃(n)(1,0). Introducing new
variables in order to bring flow~B1!–~B3! into normal form
@41#

t5u11
1

2
u1

2 ,

y5u2 ,

K5u32
B(4)

128
u2

2 ,

we finally obtain

du1

dl
58u32B(2)u2

2 , ~B4!

du2

dl
52u1u2 , ~B5!

du3

dl
522u3 . ~B6!

The interesting feature of the approximate flow~B4!–~B6! is
that the third equation can be readily solved for the surf
diffusionlike variable u3, as u3( l )5u3(0)exp(22l), thus
making apparent one of the qualitative features of the or
nal RG flow, namely, the fact that surface diffusion is
irrelevant variable that decouples~exponentially! fast from
the flow for the lattice potential and the surface tension.
the other hand, by taking the ratio between the first and s
ond equations in Eqs.~B4!–~B6! and integrating inl, one can
check that the relation

u1
2~ l !5B(2)u2

2~ l !216E
l

`

u1~ l 8!u3~ l 8!dl8 ~B7!

defines a separatrix for the flow~B4!–~B6!, generalizing the
well-known asymptotes of the sG hyperbolae@9# @see also
panel ~a! of our Fig. 1#. On, e.g., the first quadrant of th
(u1 ,u2) plane, flow lines below the separatrix flow onto th
u250 line of fixed points~irrelevant lattice potential, high
temperature behavior!, whereas flow lines above the separ
trix flow towards large values of the lattice potentialu2 ~low
temperature, massive phase!. Thus, the separatrix marks th
temperature driven phase transition. Unfortunately, we h
not been able to produce a useful simpler expression
locus ~B7!, not even within perturbation theory.
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