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Abstract
Urban density, in the form of residents’ and visitors’ concentration, is long considered to foster diverse exchanges of interpersonal 
knowledge and skills, which are intrinsic to sustainable human settlements. However, with current urban studies primarily devoted 
to city- and district-level analyses, we cannot unveil the elemental connection between urban density and diversity. Here we use an 
anonymized and privacy-enhanced mobile dataset of 0.5 million opted-in users from three metropolitan areas in the United States to 
show that at the scale of urban streets, density is not the only path to diversity. We represent the diversity of each street with the 
experienced social mixing (ESM), which describes the chances of people meeting diverse income groups throughout their daily 
experience. We conduct multiple experiments and show that the concentration of visitors only explains 26% of street-level ESM. 
However, adjacent amenities, residential diversity, and income level account for 44% of the ESM. Moreover, using longitudinal 
business data, we show that streets with an increased number of food businesses have seen an increased ESM from 2016 to 2018. 
Lastly, although streets with more visitors are more likely to have crime, diverse streets tend to have fewer crimes. These findings 
suggest that cities can leverage many tools beyond density to curate a diverse and safe street experience for people.
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Significance

The concern about rising inequality has intensified the interest in how cities can build a socially mixed environment. With the current 
progress in urban studies, we still cannot unveil the elemental connection between urban environment, density, and diversity. This 
study leverages a mobile dataset that contains 0.5 million users to measure income mixing at the street level. We show that the con
centration of visitors only explains up to 26% of street mixing, while the adjacent amenities, residential mixing, and income level 
would account for more than 44% of social diversity. Our results highlight the importance of street-level factors that influence social 
mixing and diversity and can be useful for urban planners and policymakers to create more socially mixed environments.
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Introduction
Diversity is intrinsic to a sustainable, resilient, and inclusive city 
(1, 2). Within many forms of diversity, the diverse collection of 
people, socially and economically, is one of the crucial precondi
tions of economic urban vitality (3) and creativity (4–6). On the 
contrary, the segregation of people was shown to impact child
ren’s economic outcomes (7), widening the digital gap and hinder
ing access to public health services (8). Correspondingly, 

researchers across the fields of economics, sociology, urban plan

ning, and mobility have devoted themselves to explaining the lev

el of social mixing and segregation across space and time.
Although most studies of vitality and mixing in our cities has 

been done using static, residential-only, and sometimes outdated 
census data, recent studies of human mobility draw our attention 
to the activity space in cities beyond where people live. It is clear 
that people do not only stay where they live but also work, travel, 
and relax in places other than their homes. Therefore, people 
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living in less diverse neighborhoods may still have chances to en
counter people with different demographics and knowledge dur
ing their daily life. Recent studies have measured how well 
people with different backgrounds are mixed during their daily 
travel activities (9–11), online communications, and purchase ac
tivities (12). It is shown that the likelihood of people meeting di
verse others is related to an individual’s demographic 
characteristics, lifestyle, and travel habits (10). However, beyond 
an individual’s behavior choices, what remains unanswered is 
how a city as a system could build an environment that cultivates 
social mixing in the long run.

We yet still face one gap in addressing this question. While 
most studies on social mixing, segregation, and diversity were 
conducted at the city or district level, planning in practice con
cerns more with the fine spatial resolution of public space in cities. 
Building on the work that creates an activity-based measure of di
versity and segregation, we address this study gap by focusing on 
the space of street sidewalks. Theoretically, street sidewalks are 
critical urban open spaces advocated by sociologist William 
H. (Holly) Whyte (13), journalist Jane Jacobs (1), architect Jan 
Gehl (14), and New Urbanism scholars (15). Practically, the 
United Nations Sustainable Development Goals’ target 11 empha
sizes the vital role of urban public spaces in social and economic 
life.

To understand the vital elements leading to socially mixed 
street experience, we first create a measure of experienced social 
mixing (ESM) that estimates the income aspect of mixing in cities 
using a large collection of micro-scale mobility data across 40 
counties and 3 metropolitan areas in the United States. The ESM 
measures the evenness of time spent at each street segment by 
people from different income groups. This measure describes 
the experience of diversity when people visit a street segment 
that is not immediate in their living neighborhood. It is different 
from the “vitality” described by Jane Jacobs (2) as we do not ob
serve the various types of activities people conduct together. 
Instead, we capture the likelihood of people from different income 
groups co-presence at a street segment in their daily life.

Many urban theories and practices have argued the importance 
of density, or the concentration of people, in leading towards more 
urban vibrancy (2, 3, 16, 17), and thus favoring a more socially 
mixed urban environment (4, 18, 19). If we view the desired out
come as the diverse admix of human knowledge, abilities, prefer
ences, interaction, and so forth, using density as the only tool has 
its limitations—city blocks with a high density of office buildings 
could still only see people with similar income levels and skill 
sets. With the relationship between density and diversity inevit
ably being non-linear, we should further unpack what other 
tools cities could leverage to curate a socially mixed urban 
environment.

Therefore, here we examine what factors beyond density could 
further contribute to social mixing. Here we represent density 
with the total number of visitors to each street segment. Two 
main sets of factors connected with human mobility and social in
teractions are examined in this study. We first discuss the import
ance of socioeconomic factors, including income, residential 
density, and residential mixing. These variables are learned 
from the human mobility and segregation literature that people 
tend to visit places at a given income segregation level (10), and 
residential segregation correlates with experienced segregation 
at a city scale (9). The second set of factors describes venues along 
the streets and how safe the street looks. These variables resonate 
with the city planning literature that advocates the mixed-use de
velopment (20–22) and street environment safety (2, 23, 24).

We present three main results. First, conditioning on density, 
ESM can still be explained by adjacent neighborhoods’ residential 
mixing, income level, and venues along the street. Density, in our 
measure, the number of visitors visiting a street segment at any 
specified time, only explains around 26% of the model estimation, 
while residential mixing, income level, and venues contribute to 
44% of the model estimation.

Second, ESM measured at different hours of a day is closely re
lated to different types of venues along a street segment, high
lighting the importance of a mixed-use environment. Among the 
venues, food-related businesses exert the highest contribution 
to explaining the ESM at different times of the day. Meanwhile, 
when controlling for the total number of visitors, the streets 
with more coffee and tea venues can attract more diverse groups 
of people.

Moreover, we found that the street segments with an increase 
in food-related business from 2016 to 2018 are likely to see an in
crease in the ESM. This longitudinal effect holds conditioning on 
the increase of total visitors.

The well-being of urban dwellers is a multi-dimensional con
cept that goes beyond diversity and economic status and involves 
health, crimes, and other aspects of life. Beyond the daily ESM, a 
body of recent literature indicates that mobility patterns also pre
dict crimes (25–27)—where residents visit is also a source of neigh
borhood (dis)advantage (28). To further understand the effect of 
the ESM, the last part of our study analyzes the relationship be
tween visitor volumes, ESM, and different types of crime incidents 
around each street segment. We show that although denser cities 
attract more crime incidents, conditioning the visitor volumes, 
street-level ESM has a negative association with crime count.

This study highlights the importance of a high-resolution 
measure of social mixing as a spatial-temporal dynamic urban 
phenomenon—streets adjacent to each other could present dra
matically different levels of ESM at different times of the day. 
Furthermore, we illustrate how cities could leverage the open 
space of the street sidewalks to increase the chance for different 
people to meet each other and thus mitigate the existing downfall 
of residential segregation. Lastly, our result also shows that di
verse visitor experience does not always go in parallel with high 
volumes of crime incidents. Large cities can leverage many policy 
tools beyond density to curate a diverse and safe street experience 
for people.

Results
Street-level ESM
We create a measure of ESM for three large metropolitan areas of 
Boston, New York, and Philadelphia, which involves more than 40 
counties across 5 states (MA, NY, DL, NJ, PA). The privacy- 
enhanced mobility data are provided by Cuebiq, which includes 
3-month long records across 2 years of anonymized device-level 
location pings for 0.5 million users who opted into data sharing 
for research purposes under a General Data Protection 
Regulation (GDPR) and California Consumer Privacy Act 
(CCPA)-compliant framework.

To construct the ESM, we pre-process the data to identify each 
device’s home census block group (CBG) and stay locations using 
the same method in a previous work by Moro et al. (10). We first 
associate each device from the mobility dataset with an approxi
mate socioeconomic status by their inferred home CBG. Each indi
vidual’s home CBG is obtained from their most commonly visited 
location between 10 PM and 6 AM (see Methods section). Then, 
all individuals are grouped into four quantiles of income groups 
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according to their home CBG’s median household income’s re
lation to the metropolitan area distribution of median house
hold income (see Methods section). We then extract visits an 
individual made to a given street segment for at least 5 minutes 
but a maximum of 2 hours. This is to prioritize sidewalk activ
ities that have the potential for meaningful interaction among 
pedestrians. Activities such as visiting cafes, restaurants, and 
parks, or simply resting along the streets are emphasized. 
Other activities such as working in an office building or watch
ing movies, which usually take a long time but offer little 
chances for people to meet each other, are dropped. The post- 
stratification process reduces sample bias regarding population 
and income level (see Supplementary Note 2 and Figs. S2 
and S3a).

We compute the street-level ESM with the proportion of total 
time spent at that street by each income quartile (see Fig. 1a). The 
ESM is defined as the Shannon entropy (29) of each income group’s 
activity time spent at a given street segment (see Methods section). 
ESM quantifies income mixing from 0 to 1. A street segment that is 
fully mixed (ESMs = 1) when the total time across all individuals 
spent at the street segment is split evenly among the four income 
quartiles, while a street segment with ESMs = 0 indicates that the 
street segment is only visited by one income group. Fig. 2b shows 
several examples. The bar chart of each street represents the accu
mulated time spent by each income group at the sample street. The 
dashed line demonstrates when the street would be fully mixed 
(ESMs = 1). For example, 63 Cambridge Street in Boston has a lower 
ESM (0.767) in comparison to 27 Tremont Street (0.975), as the time 
spent by each income group along 27 Tremont Street is more evenly 
distributed. We note that there are other choices for mixing and seg
regation metrics. We also examine the robustness of our measure of 
social mixing against other metrics (see Supplementary Note 3 and 
Fig. S3b).

Street-level ESM presents spatial heterogeneity in each city 
(Fig. 1c). However, it also has a very fine-grained spatial resolution. 
We illustrate this observation in Fig. 2a and b. Fig. 2a presents the 

proportion of time spent by each income group to each street seg
ment in the Boston downtown area. Each dot represents 0.5% of 
time spent by each income group. Fig. 2b demonstrates the street 
view samples and their associated distribution of time spent by 
each income group. Even two adjacent streets with the same 
intersection could present drastically different levels of social 
mixing. This finding shows that understanding vitality, density, 
or mixing in our cities at larger scales (e.g. Census Tracts or dis
tricts (30)) misses the fine-grained structure of how people inter
act and encounter in our cities and the relationship of the 
diversity of encounters and urban environment.

Explain the street-level ESM
To understand the relationship between the streets and ESM, we 
model the ESM of each street using a spatial autoregressive model 
with generalized spatial two-stage least-square (G2SLS) esti
mates. The explanatory variables include the street segment’s 
length, the segment’s distance from the closest metropolitan cen
ter, the street type (one-way vs. two-way), street sinuosity, a series 
of residential factors that describe the adjacent neighborhood in 
which the street segment is located, the number of venues (such 
as restaurants, cafes, grocery stores, schools, etc.) located along 
the street, and how safe a street segment look. The residential fac
tors include population density, median household income, and 
residential income mixing. In addition, considering the geograph
ical differences of all samples included in the study, we also add 
county-level fixed effects. To compute the residential factors, 
we obtain a collection of CBGs that fall within a street segment’s 
800-m buffer and use the median household income and popula
tion size of each CBG accordingly (see Methods section and 
Supplementary Note 4.4). The residential income mixing mirrors 
the calculation of ESM. It measures the level of income mixing 
of the four income groups, where 0 indicates that all residents 
within the 800-m buffer belong to the same income group, 

Fig. 1. Measure the ESM. a) Street-level ESM is calculated based on the time spent by each income group at each street segment. Basemap is exported 
from Google Earth. b) Distribution of daily ESM of Boston. Only street segments with at least 1 POI within the 100-m buffer area are visualized on the map. 
c) Regional map visualizing the ESM around Boston metropolitan area. d) Distribution of the ESM by metropolitan area. e) Distribution of log-transformed 
visitor counts during the study period by metropolitan area. Basemaps are from QGIS HCMGIS plugin.
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whereas 1 implies a fully mixed street residential neighborhood 
(see Methods section).

The venues on each street are obtained from Foursquares’ 
point of interest (POI) API. A collection of 0.1 million verified ven
ues across the study areas are used. Lastly, given that the sense of 
safety is one of the significant concerns determining the street ac
tivity (2), we measure how safe each street looks through the Street 
Score. The Street Score of each street segment is predicted from the 
Google Street View (GSV) images taken along the street segment. 
The Street Score model was adapted from Ref. (31), which is a con
volutional neural network trained with the data from Place Pulse 
(32). We collected 1.6 million street view images through Google 
API across the study areas, and images taken from winter were 
dropped to avoid seasonal inconsistency. A similar method was 
used by Naik et al. (24) in describing the inequality of urban safety 
perception.

Fig. 2c summarizes the regression coefficients of the above- 
mentioned linear regression. Besides the geographical fixed effect, 
street segments close to a higher level of residential mixing and 
more venues tend to be more socially mixed. One standard devi
ation (SD) increase in residential income mixing is associated 
with a 0.17 SD increase in ESM. We test if this relationship holds 

at the different spatial units by repeating the experiment at 
Census Tract (CT) level. Fig. 2d and e plots the results in parallel. 
We find that the CTs with more mixed residential composition 
and venues also tend to be more mixed.

We also find that population density and Street Score are nega
tively associated with the street-level ESM. One SD increase in 
population density is associated with a 0.14 SD decrease in ESM. 
The former indicates that neighborhoods with more residents do 
not guarantee more chances of cross-group mixing during their 
daily activities. To further unpack the negative association be
tween the Street Score and the street-level ESM, we included a 
quadratic term of the safety score in the same model and identify 
a non-linear relationship between the Street Score and the ESM (see 
Fig. 2f). This could reflect a number of forces, including gentrifica
tion and fear of crime in cities. People tend to avoid places that 
look very unsafe (33), but in the meantime, streets with luxury set
tings, well-planted groves of trees, and fine furniture also indicate 
a sense of gentrification do not welcome social mixing (34). It is 
worth noting that the effect of Street Score diminishes at CT-level 
study, implying that the perception of street view matters more 
at a scale of the street segment rather than in larger spatial unit 
(see Supplementary Table S1).

Fig. 2. Explain the ESM. a) Street-level ESM representation. Each dot represents 0.5% of time spent at a street segment by a group of visitors. b) Street view 
examples of streets that are adjacent to each other yet present different ESM levels. Street view images were downloaded from Mapillary. Each barplot 
presents the hour of visits from each income group. The total number of unique visitors is shown accordingly. c) Coefficients of all variables estimating 
street-level social mixing (all shown variables have P- value < 0.005) based on Eq. 5. d) Compare the effect of residential mixing on ESM at street and CT 
levels. Binned scatter plot with 100 quantiles. e) Compare the effect of the number of POI on ESM at the street and CT levels. f) A non-linear relationship 
between the Street Score and the street-level ESM (see the full table in Supplementary Table S1).
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ESM and density
As many current urban theories indicate, urban density is one of 
the important instruments that foster diversity (2, 3, 16, 17). A 
street segment with more visitors could naturally have a higher 
chance of being more socially mixed. Could it be that the factors 
we discussed above are associated with the ESM through the 
channel of density?

As we can see in Fig. 3d, the log-transformed total number of 
visitors visiting each street has a correlation with the street-level 
ESM in different cities. We find this correlation dropped as we se
quentially excluded street segments with too few unique visitors 
to avoid the small sample bias (Fig. 3c). This suggests that the 
ESM is not solely explained by density, albeit they are correlated. 
Fig. 2b also shows specific street segment examples and implies 
that streets with fewer total visitors can still be more mixed 
than others.

To further quantify the factors explaining ESM beyond density, 
we repeat the regression model in the previous section by includ
ing the log-transformed count of visitors as a variable. Fig. 3b 
shows the importance of variable groups in predicting street-level 
ESM. By excluding street segments with too few unique visitors 
(fewer than 20), the count of visitors accounts for around 26% of 
the variance in street-level ESM. Apart from the geographical fixed 
effect and street segment length, the residential income mixing, 
income level, population density, and venues account for around 
44% of the model variance.

Again, Fig. 3a plots the comparison of two models (see 
Supplementary Table S1 for the full result). We show that by in
cluding the log-transformed total visitor count as a variable, the ef
fects of residential income mixing, income level, and population 
density hold. The effect of the total count of venues and the Street 
Score dropped drastically. Specifically, before including the total 
number of visitors, a 1 SD increase in the number of venues is asso
ciated with a 0.14 SD increase in ESM. After including the number of 
visitors, a 1 SD increase in the number of venues is associated with 
a 0.03 SD increase in ESM. These observations lead to two insights: 
one is that the streets with more venues and look less safe tend to 

have more visitors and, therefore, are more socially mixed. The 
other lies in the fact conditioning the ability to attract more visitors, 
street segments within areas that have more mixed residential en
vironments and higher income levels are still more socially mixed. 
One might wonder if the mixed residential environment contrib
utes to the ESM directly as a street segment’s neighborhood resi
dents would visit the street segment very often. We calculate the 
average travel distance from any given street to its visitors’ home 
CBG’s geometry center. We found that more than 95% of the street 
segments’ visitors live more than 800 m away from the street. This 
result confirms that the street segment with a diverse residential 
environment attracts visitors from different income groups even 
though they do not live nearby.

Temporal variation of ESM
Street life has a unique temporal characteristic (2, 35). To better 
understand the temporal variation of ESM throughout the day, 
we reconstruct the model by estimating the ESM at four selected 
time periods of a day. Fig. 4a shows the average street-level ESM 
for each metropolitan area throughout the day. We observe 
that, on average, the ESM is highest around noon and lowest in 
the morning, reflecting the daily activities in cities. In addition, 
we group venues by their categories to test how the category of 
venues might predict ESM dynamically (see Supplementary 
Table S5 for venue summary by types). Similarly, we compare 
the model results by excluding and including the count of visitors 
at different times correspondingly (Fig. 4).

Fig. 4b shows that streets with more venues such as food, cof
fee, and tea are more mixed throughout the day, while the streets 
with more shopping and entertainment (bars and clubs) venues 
become more mixed in the late afternoon. Streets with more 
health-related venues tend to be more mixed before 6 PM, and a 
similar trend is also seen for streets with more work-related ven
ues. We interpret these results to be associated with both the 
schedule of the business and people’s mobility patterns. While 
people mostly visit hospitals and clinics during the day, streets 
with these venues tend to be more mixed during their normal 

Fig. 3. How much does the concentration of visitors explain social mixing? a) Coefficients of all variables estimating the ESM (standardized) with and 
without the number of visitors controlled (spatial network spillover effect of ESM considered). Context variables include the geographical fixed effects, 
segment’s distance from the closest metropolitan center, the street type, and street sinuosity; X include the residential income mixing, income level, 
population density, the number of venues, and Street Score. b) Summary of importance of feature groups in the linear model for social mixing by 
sequentially dropping street samples visited by fewer count of unique users (Eq. 4). c) Correlation of log-transformed number of visitors and daily ESM by 
sequentially dropping street samples visited by fewer count of unique users. d) Relationships between the log-transformed visitor counts and daily ESM 
by different metropolitan areas (see Supplementary Fig. S5 for results comparison).
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operating hours. Since people will be more likely to visit bars and 
go shopping after work, streets with these venues only start to see 
mixed groups of people later in the afternoon. We also find that 
streets with more grocery stores tend to have consistently lower 
levels of mixing throughout the day. This is likely an effect of seg
regated residential neighborhoods, where people tend to go to gro
cery stores closer to where they live.

In parallel, we also add the number of visitors to each street 
segment to test if the impact of density would change the model 
results. Fig. 4c shows that conditioning on the count of visitors 
and the number of coffee, tea, food, entertainment, and health 
care venues are still contributing to more mixed streets through
out the day, while streets with more grocery stores are still less di
verse. We understand that healthcare facilities are naturally more 
integrated, given their unique service role in the city. However, the 
effect of coffee, tea, food, entertainment, and grocery stores re
veals that even on streets with a similar amount of visitors, their 
level of social mixing can still vary considering the different func
tions it provide. After controlling the density, we also found that 
the effect of shopping venues dropped and even reversed. We in
terpret this observation as that shopping venues are more suc
cessful in bringing in a high volume of people, yet the people 
group attracted to these areas might not be as diverse.

Changes of ESM from 2016 to 2018
The cross-sectional study above highlights the food-related ven
ues in predicting street-level ESM. We further design an experi
ment to test if the relationship holds longitudinally. Here, we 
leverage a crowd-sourced dataset, Boston’s Hidden Restaurant,a 

contributed by local communities from the Boston region to test 
if the open and close of food-related businesses from 2016 to 
2018 cast any impact on the changes of street-level ESM in the cor
responding time, controlling for the changes of residential fea
tures (summary stats included in Supplementary Table S3). 
Understanding that streets with a very high ESM in 2016 would 

have less room to improve than streets that were less mixed, we 
control for the ESM at 2016 for all models. In addition, the model 
also includes the same social and geographical context features in 
2016 to account for the potential trend differences (see the full re
sult in Supplementary Table S4).

Table 1 illustrates the results. Column 1 indicates that among 
all residential variables, the change in the proportion of resi
dents with at least a bachelor’s degree is the only feature that 
contributes to the change in ESM. Specifically, 1 SD increase in 
population with at least a bachelor’s degree is associated with 
a 1.2% SD increase in ESM. With all other features controlled, 
we found little relationship between the changes in residential 
income diversity and changes of ESM. This is partly because 
the residential income diversity only changes very subtly 
between the 2 years.

Columns 2 and 3 indicate that the absolute increase in the 
number of food businesses positively correlates with the change 
in ESM. One SD more food-related business is associated with a 
0.3% SD increase of ESM. The coefficient of change of education 
level still holds by including the change in the food business. 
Column 4 includes an interaction term to test the marginal effect 
of the food business, considering that streets with different origin
al ESM in 2016 might respond to the changes differently. We show 
that the interaction term of ESM 2016×Δ food businesses is nega
tively associated with the change of ESM. It implies that with a 
similar increase of food businesses, the streets with a lower ESM 
in 2016 tend to see more increase of ESM (Fig. 4a). Fig. 4b shows ex
amples of streets with changes in the food business and different 
levels of ESM in 2016. Lastly, we further include the log- 
transformed changes of visitors to each street segment between 
2016 and 2018 in column 5. As expected, the increase in the num
ber of visitors contributes to the increase of ESM. However, the ef
fects of food business and education level still hold with the 
changes in visitor volumes.

We also tested the effect of newly established businesses using 
a different data source (Reference USA) and Street Score on the 

Fig. 4. Time-variant ESM and street venues. a) Mean time-variant ESM for each metropolitan area. Note that we only present the streets with at least 20 
unique visitors at each time period of time. CI∗ stands for the confidence interval. Ninety-eight percent of the confidence interval is shaded. b) 
Time-variant effects of the number of venues by their categories. c) Time-variant effects of the number of venues by their categories conditioning on the 
visitor count (spatial network spillover effect of ESM considered in b and c. Only coefficients with P value smaller than 0.05 are shown as significant. Full 
table results and the coefficient matrix are shown in Supplementary Table S2 and Fig. S6.
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changes of ESM. Supplementary Table S4 reports all results. The 
change of Street Score does not have a significant connection 
with the change of ESM. This is also potentially due to the fact 
that the change in urban appearance between the 2 years is rela
tively subtle. Consistent with the result of the change in the food 
business, the establishment of new business has a positive effect 
on the change of ESM.

ESM and crime
One of the main concerns with dense cities is crime (19, 36). If a 
higher ESM indicates a higher chance for people with diverse 
backgrounds to meet each other, will it lead to more crime inci
dents? To understand the potential connection, we obtain crime 
reports from four sample cities within our study areas: 
New York City, Boston, Cambridge, and Philadelphia. Fig. 5a and 
b plots the relationships between crimes and the street-level 
ESM, conditioning on the number of visitors. We found that the 
number of petty and violent crimes (see Methods section for de
tailed definition) has a negative relationship with ESM. 
Conditioning on residential population, income level, number of 
visitors, residential diversity, and the number of POI, the street 

segments with 1 SD higher ESM is associated with around 1% few
er violent crimes and pretty crime (see Supplemental Note 8 and 
Tables S7–S9 for the full results). This result implies that social 
mixing does not need to come at the price of more crimes. On 
the contrary, we can still create a socially mixed street environ
ment with fewer crimes.

Discussion
Many forces like gentrification, redlining, housing, or income in
equality tend to segregate people in our cities. Curating a socially 
mixed urban environment is a common challenge for cities that 
aim at the overall goal of sustainability. Our study contributes 
to the current literature in this context from three perspectives. 
First, we investigate how the street sidewalk, as one of the most 
significant urban public spaces, can bring people from different 
income backgrounds together. The social mixing measured at 
street segment level rather than neighborhood or city represents 
the direct environment people will encounter throughout their 
day of life in cities. Second, we show that a city as a system has 
tools to leverage and curate a socially mixed environment in the 
urban activity space. Previous literature has largely focused on 

Table 1. Change of ESM 2016–2018 (street-level).

Δ ESM

(1) (2) (3) (4)

Δ Pop Den 0.004∗ 0.004∗ 0.004∗

(0.002) (0.002) (0.002)
Δ MH income −0.001 −0.001 −0.001

(0.002) (0.002) (0.002)
Δ% bachelor 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.002) (0.002) (0.002)
Δ Resi. diversity 0.000 −0.000 −0.000

(0.002) (0.002) (0.002)
Δ food business 0.003∗∗ 0.003∗∗ 0.006∗∗∗

(0.001) (0.001) (0.002)
Δ food business× ESM 2016 −0.006∗∗

(0.002)
Observations 3865 3865 3865 3865
R2 0.5586 0.5559 0.5591 0.5598
Fixed effect (county) Yes Yes Yes Yes
Spillover effect Yes Yes Yes Yes
Trend control Yes Yes Yes Yes

OLS estimates on change of ESM from 2016 to 2018. Only streets with at least 20 unique visitors in both observation periods (84 days in each year) are included. 
Clustered standard errors in parentheses. # refers to count. Each street segment contains at least three POIs in year 2016. MH Income stands for Median Household 
Income. Resi. stands for residential. Extended table results in Supplemental Note and Table S3. 
∗∗∗Coefficient significant at the 0.5% level, ∗∗at the 5% level, and ∗at the 10% level.

Fig. 5. ESM and crime. a) Binned scatter plot between ESM and log-transformed number of petty crimes (with the number of visitors by street segment 
controlled). b) Binned scatter plot between ESM and log-transformed number of violent crimes (with the number of visitors by street segment controlled). 
c) Kernel density illustration of petty crime density in New York City. d) Kernel density illustration of violent crime density in New York City 
(see Supplemental Fig. S9 for other cities).
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using density as an instrument to foster diversity. Our cross- 
sectional models indicate that the residential social mixing can 
explain a large amount of ESM. This result implies that policy in
terventions such as mixed-income housing and affordable hous
ing may have a profound impact on the level of diversity 
experienced by citizens beyond their residential areas. We also 
found that various types of venues might contribute to ESM at a 
different time of day—while coffee and tea shops contribute 
most to the ESM throughout the day, bars, restaurants, and retails 
contribute more ESM in the later afternoon. This result suggests 
that cities should consider both functional and temporal mix of 
venues when planning for a diverse urban environment. In add
ition, our longitudinal models reveal that by increasing the num
ber of food businesses and attracting residents with higher 
education, the city could further improve street-level diversity. 
Lastly, we also found a potential connection between crime and 
ESM. Even though large cities with higher amount of visitors 
tend to have higher crime rates, we show that the streets with 
higher ESM tend to have lower crime counts when conditioning 
on the total number of visitors.

To this end, we also need to clarify a series of keywords in this 
study that might have been used differently in other literature. 
Our definition of ESM refers to the diverse income group of people 
one might encounter at a given street sidewalk segment. This def
inition stems from the overarching concept of “diversity” in to
day’s urban planning practice, commonly describing land uses, 
architecture styles, street types, social classes, and skill sets. 
Similarly, the “density” in our study is also composed of different 
measures. Our study’s core measure of density focuses on the 
number of visitors visiting a street segment. This measure is 
used as it is directly related to the ESM. In today’s planning litera
ture, scholars mostly use “density” to describe residential density. 
It is highly supported that diversity in cities necessitates a high 
density (18, 19). In this study, we use the residential density as a 
factor to test if it also contributes to the ESM and found that at 
our study scale (street segment), the streets with high residential 
density are less socially mixed. However, we should note that Jane 
Jacobs’ observation of street “vitality” can still exist in residential 
street sidewalks with high residential density (2). Her observation 
of street vitality refers to a variety of activities happening on street 
sidewalks, such as playing soccer, conversing with neighbors, and 
eating and drinking.

Our study has several limitations. First, this study only dis
cusses social mixing from the income aspect. Other forms of so
cial mixing, measured from race, or occupation, might have a 
different presentation from income mixing. Our measure of social 
mixing uses proximity as a proxy, thus cannot determine if people 
staying at the same street segment are having meaningful inter
action or not. In this regard, studies direct leveraging video footage 
in smaller urban spaces could further reveal the different kinds of 
interaction along the streets. Lastly, in this study, we used a lon
gitudinal study to reveal the potential causal relationship 

between the change of urban venues and ESM. However, as our 
data only have a two-year difference, factors such as residential 
income mixing and income level might not yet have changed. 
Future studies with longer time-span could further help identify 
the potential cause of ESM changes in cities, at a fine spatial scale.

Methods
Street segment
All street segments are downloaded from the OpenStreetMap 
through the python OSMnx package. Each street segment is de
fined as a segment of a street between two intersections. Each 
street segment contains an ID from the OpenStreetMap, a pair 
of u and v values representing the intersection node and the func
tion type of the street segment. Duplicated geometries are re
moved from the original dataset. We also remove the major 
highway, primary links, secondary links, trunks, services streets, 
footpaths, steps, and slopes from the original dataset. (Note 
here that although we focus on the pedestrian network, footpaths 
are removed from the original dataset given its complexity and 
potential duplicates in a small space.) Only street segments with 
at least one POI within a 100-m buffer radius are included in the 
study. A total of 151,680 street segments from 3 cities are included 
in the study.

Mobility data
Attribution of stays to streets
Each street segment is represented as a line in space. To attribute 
each stay to a street segment, we find the closest street segment 
for each stay. To avoid attributing a stay to a distant street seg
ment, we choose only the street segment within a dmax = 100 m 
from each stay. If a stay is further than dmax from any street seg
ment, we discard it from the dataset. Fifty percent of the stays are 
within a 26.7-m radius from their closest street segment. The 
average distance of a stay to the closest street segment is around 
31.2 m for all three cities. Distance is calculated based on each 
state’s NAD83 state plane projection.b

Street-level activities
As we only focus on street-level activities, all stays that have a lon
ger duration than 2 h are discarded from the dataset. Any stays 
within a dhome = 50 m from the identified home locations are 
also dropped from the study. The total number of stays and 
unique devices are shown in Table 2.

Identifying home and economic status
For each smartphone, we use its stays from 22:00 to 6:00 and spa
tially cluster them using the density-based spatial clustering of 
applications with noise (37) algorithm to detect the most likely 
cluster of stays each individual is located in during nighttime 
and early morning hours. We use 2 as the minimum number of 

Table 2. Summary statistics of the dataset per metropolitan area.

Metropolitan area #Devices #Stays #Street segment #Census tract #POIs #Street images

Boston–Cambridge–Newton (2016) 66k 6.3M 17k 1007 14.4k 0.23M
Boston–Cambridge–Newton (2018) 174k 12.2M 17k 1007 − 0.18M
New York–Jersey City 210k 42.2M 77k 4682 64.5k 0.41M
Philadelphia–Camden–Wilmington 112k 14.8M 26k 1477 19k 0.75M

Statistics summary for three cities included. The number of devices only includes those that are identified with a home CBG. The number of stays only includes the 
stays that are not within a 50-m buffer of their associated home location. D
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points per cluster and ϵ = 50 m as the neighborhood. Then we join 
all detected cluster centers with each CBG geometry. We only con
sider individuals who were at the same CBG geometry for more 
than five nights in the observation period (3 months), and this 
CBG is considered as the home for this user. We use this CBG’s me
dian household income during the associated year to estimate the 
user’s income level. This process leaves us to consider only 0.5 
million users. Although mobile phone users are a large sample 
group, we admit that our data are still a sample of the true popu
lation. Robustness tests on population and income are included in 
Supplemental Note 2. Post-stratification was implemented to as
sure the representatives of the data in terms of income and popu
lation (see Supplemental Note 2).

Measuring ESM
Create income groups
We compare the median household income inferred from each in
dividual’s home CBG with the distribution of income in the metro
politan area so each CBG is assigned to a quartile of economic 
status within each metropolitan area. For each metropolitan 
area, the intervals of median household income for each econom
ic group are different (see Supplementary Fig. S1).

Street-level measure
To measure the ESM of each street s in each city, we compute the 
proportion of total time spent at that street s by each income quar
tile q during the selected period h, τqsh. Then we define ESMhs as the 
Shannon entropy (29) of each income group’s activities at a given 
street segment s’s during a given time frame h:

ESMsh = −
1

log 4

􏽘4

q=1

τqsh log (τqsh), (1) 

where ESMhs equals 0 when all users who visit the street s in time 
period h are from the same income group, while a larger value of 
the ESMhs means users from all four income groups spend a more 
equal amount of time visiting the street s during period h. Only 
street segments with at least 20 users during a given period h 
are included in the study to avoid severe small sample bias. The 
daily ESM only considers stays from 6 AM to 10 PM. The ESM at 
other periods is as specified in the paper.

Census tract-level measure
Like street-level ESM, the CT-level ESM is the entropy of each in
come group’s activities within a CT during a given time frame. 
Each stay is attributed to a CT through a spatial join process 
(see Supplementary Fig. S4 for the CT-level and street-level ESM 
comparison).

POI data
POI to street
POI data are from Foursquare (detail POI types are shown in 
Supplementary Table S6). We assign each POI to a street segment 
if it falls into a street segment’s 100-m buffer. Each POI is also joint 
spatially with a CT that it falls into. The POI distribution within 
each city is shown in Supplementary Table S5.

Change of business
The change in the food business is obtained from Boston’s Hidden 
Restaurant. The data contain the restaurants, cafes, bars, and 
other food-related businesses that are closed or open in each 
month since 2007. For this study, as the mobility data cover 

October to December in 2016 and October to December in 2018, 
we only select the restaurants that are either open or closed 
from 2017 January to 2018 September. The latitude and longitude 
of each restaurant were verified through google geocoding API. 
The chain stores are verified through Yelp. For the open and 
closed months for each recorded store, we also found similar re
sults through the date of yelp reviews (see Supplementary Fig. 
S7 for change of business examples).

Street score
To quantify the physical appearance of the built environment, we 
obtain 360◦ panorama GSV images of streetscapes through Google 
Maps API in all three study areas. Each panorama is associated 
with a unique identifier, latitude, longitude, month, and year of 
when the image was captured. We specify four angles to capture 
the full panorama of each street view location. To avoid the sea
sonal effect, we only keep images taken between April and 
October. GSVs taken from 2015 and 2016 are used in the cross- 
sectional study for the 2016 panel. GSVs taken from 2018 and 
2019 were used for the 2018 panel. Moreover, images that were 
taken interior or highway only were excluded from the dataset. 
A total number of 1.5 million GSVs were used in the study 
(Table 2).

We measure the appearance of the built environment with a 
“Street Score,” which indicates the perception of the safety of a 
GSV image. We use a deep learning model (31) pre-trained with 
a crowd-sourced dataset called Place Pulse, which contains mil
lions of ratings on around 110,000 street view images from all 
over the world (24). The image diversity and rating consistency 
were evaluated by previous works (24, 38), indicating no signifi
cant bias depends on raters’ cultural backgrounds in the dataset. 
We predicted the perception of safety for each image by ignoring 
the features of the sky, cars, and people in the dataset to minimize 
effects from time of day and other dynamic events (see 
Supplementary Note 6 and Fig. S8). The predicted continuous 
score ranges from 0 to 10, with 0 being the least safe-looking 
and 10 being the most safe-looking view. Then the “Street Score” 
for each CT and the street segment is the average score of all im
ages associated with the CT and the street segment.

Other data
Demographic data at the level of CBG and CT were obtained from 
the 5-year American Community Survey (ACS; 2012–2016 and 
2014–2018).

Residential income mixing
The residential income mixing is calculated using the same in
come group quartile per metropolitan area. To be consistent 
with the ESM calculation, at street level, we first buffer the street 
for 800 m and extract all CBGs that intersect with the street buffer. 
Then using the pre-assigned income quartile based on each CBG’s 
median household income and population, we calculate the 
street-level residential mixing as the equation below:

Rc = −
1

log 4

􏽘4

q=1

nqc log (nqc), (2) 

where nqc is the population with the median household income 

level belonging to income quartile q. To test the robustness of 
this method, we also repeat the calculation by buffering from 
the street at 400 and 1000 m (see Supplementary Note 4.4).
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Crime incidents
The 2016 crime reports within the four sample cities are down
loaded from each city’s open data website. The original crime 
data come with crime primary types, crime incident date, and ad
dress. All four cities also provide crime incident locations’ lati
tudes and longitudes except Cambridge, MA. We retrieve the 
latitude and longitude of crimes in Cambridge using the Google 
Map API geocoding service. Then we aggregated each crime inci
dent to the street level by associated crimes to a street segment 
within a 30-m buffer distance. Two main types of crimes are sep
arated from the original data. Violent crimes include rape, rob
bery, felony, or aggravated assault, and homicide or murder. 
Petty crimes include theft and larceny. Maps for all three cities 
are shown in Supplementary Fig. S9.

Other
The population density, percentage of people with at least a bach
elor’s degree, and median household income are derived from the 
same CBGs to calculate the residential income diversity.

Regression specification
Cross-sectional model
We first specify the ordinary least-square model (OLS) to explain 
the ESM at the street level and CT level.

Y = {Context} + {X} + ϵ, (3) 

Y = {Context} + {X} + {Density} + ϵ, (4) 

where Y is the estimated ESM of each experiment. {Context} is a set 
of variables to control for the geographical context, including the 
segment length for the street-level experiment, the street seg
ment’s distance from the metropolitan center, and the overall 
sinuosity of the street segment shape (see Supplemental 
Note 4.1 for the method calculating sinuosity), land area size for 
the CT-level experiment, and county-level fixed effects. {X} in
cludes the variables we are interested to test: residential mixing, 
income, population density, venues count, and Street Score 
predicted from street view image data. The median household in
come comes from the ACS (5-year) survey corresponding to the 
mobility data’s associated year. To account for the effect of dens
ity, we include a {Density} term in Eq. 4, which stands for the total 
number of visitors. Finally, ϵ is the error term of the model.

Spillover and network effects
Street segments are inevitably part of a larger network. The level 
of social mixing in one street segment could spill over through the 
network to its adjacent neighbors. To account for this potential 
spatial spillover effects, we estimate a variant of Eqs. 3 and 4 by

Yi = {Context}i + {X}i + YSpillovers,i + ϵ, (5) 

Yi = {Context}i + {X}i + {Density}i + YSpillovers,i + ϵ, (6) 

where the YSpillovers,i is the average ESM of segments that are con

nected with the street segment i. YSpillovers,i is computed via 

YSpillovers,i =
􏽐

i jWYj, where W is the spatial weight matrix similar 

to Queen Continuity for polygon—we consider connected street 
segments as neighbors. Accordingly, we estimate Eqs. 5 and 6
via a G2SLS. The estimates are reported in Supplemental 
Table S1 (columns 5, 6, and 7). We found that the network spill
over effect is an important determinant of the ESM level of a street 
segment. In particular, a 1 SD increase in the average neighbor
hood ESM is associated with a 0.89 SD increase in the segment 

ESM. However, accounting for the spatial spillover effect does 
not change the qualitative results on residential diversity, the 
number of venues, and Street Scores. Robust standard errors are 
clustered at CBGs level.

Difference-in-difference specification
To answer the question of which features contribute to the change 
of ESM, we specify the following equation:

ΔY = {ΔR} + {ΔB} + {X} + Y2016

+ Y2016 × {ΔB}

+ ΔYspillover,

(7) 

where ΔY is the change of ESM from 2016 to 2018. {ΔR} is a set of 
demographic variables that change values from 2016 to 2018. 
The demographic data for 2018 are from ACS 2013–2018 survey. 
The {ΔB} is the change of food business aggregated at street level. 
{X} includes a set of demographic variables in 2016 to control for 
the trend. To test the robustness, we also used the number of 
newly established businesses from the Reference USA 2017 data 
as the {ΔB} in additional tests. Similarly to Eqs. 5 and 6, this equa
tion considers the network spillover effect of changes of ESM from 
2016 to 2018 via the ΔYspillover.
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