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Defect formation in the Swift-Hohenberg equation
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We study numerically and analytically the dynamics of defect formation during a finite-time quench of the
two-dimensional Swift-Hohenber@H) model of Rayleigh-Beard convection. We find that the Kibble-Zurek
picture of defect formation can be applied to describe the density of defects produced during the quench. Our
study reveals the relevance of two factors: the effect of local variations of the striped patterns within defect-free
domains and the presence of both pointlike and extended defects. Taking into account these two aspects we are
able to identify the characteristic length scale selected during the quench and to relate it to the density of
defects. We discuss possible consequences of our study for the analysis of the coarsening process of the SH
model.
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The formation of topological defects in symmetry- =0. Our study is thus related to earlier papers on defect
breaking phase transitions is a very generic phenomenon iformation in nonequilibrium second-order phase transitions
physics, and can be studied analytically and experimentally16—18. The theoretical picture which is believed to be ap-
in different condensed matter systefiis2]. An example is  plicable in this case is the Kibble-Zurek mechanih]:
the onset and formation of stripe patterns in the Rayleighbecause of critical slowing down close to the transition point,
Benard convection[2,3]. In this paper, we focus on the the system cannot follow the external change of the critical
Swift-Hohenberg(SH) model [4] for this process. Once parameter and the dynamics are suspended in an interval
above the convective threshold, the system develops a Iaby——;;,;] around the transition. After this suspension a char-
rinthine morphology, consisting of domains of stripes thatacteristic length¢ is selected and is found to scale with the
3re orienteﬁ along artéi_trazy directiorﬁél]- Betwefen thc?se_ rate of increaseu of the critical parameter likg~ 7. In
defocts, such a8 grain boundaries, discinations, and cioloo2" ioular, mean-field theory predicis- 1% and ¢-—yu 2"

. i A A -~for models of the Ginzburg-Landau type with(N) symme-
tions. This struc.ture orders with t.'”.‘e .ba3|cally by gralntry [16]. This length& sets an initial density of defectp,
boundary rela>_<at|on. and defeqt ann|h|Iat|on. S|m|lqr to Otherdirectly after the quench. Within a Gaussian approximation
models, in which this coarsening process is self-simiédr o expectp~ &2 for pointlike defects ang~ & ! for line

any linear scale of thﬁz structure is expected t0 grow as fefects in two dimension§19]. Thus, the Kibble-Zurek
power law in time¢~t™*. However, simulations of sudden mechanism predicts that the density of defects observed di-

qgencheds of the SH equatllcﬁﬂ—%Z] have revealled tZatI ;he rectly after the quench scales withas well, as confirmed in
observed exponentis sensitive to nonuniversal model fea- | o 0 model§17,18.2Q.

tures such as the quench depth or noise strength. Moreover
different definitions of the length scale have led to differentK
exponents with values reported in the intervad 2<5. This
apparent absence of self-similarity in the coarsening is als
found in related experiments of electroconvectjd3] and
diblock copolymerg14]. Multiscaling[10,13 and/or defect
pinning[11] have been proposed as being responsible for th
scattered value df, but no general picture has been reache
so far about the true nature of the coarsening process.
In this paper we consider a complementary, but related ﬁt¢=8(t)¢—(q§+ V2)2¢— ¢+ 7, )
aspect of the nonequilibrium dynamics of the SH equation.
Namely, we are interested in the formation of defects in a
finite-time quench(annealing. Interestingly, some features wheree(t)=ut. This corresponds to an experimental situa-
of finite-time quenches were considered in some early work§on where the temperature difference between the upper and
comparing the SH model with the RayleighsBed experi- the lower plate of the convection cell is increased linearly in
ments[15]. Specifically, we study situations in which the time. The order parameter fiel¢i(x,t) is related to the ver-
control parameter, the reduced Rayleigh numbers(R tical fluid velocity. The last term in Eq.l) is a stochastic
—R.)/R;, is swept smoothly over the bifurcation poirt, forcing term, with{7(x,t) n(x’,t"))=2F 8(x—x") 5(t—t"),
where the noise strengthi=5x10*" is compatible with
typical experimental valueigt,15). Our simulations are per-
*Electronic address: galla@thphys.ox.ac.uk formed on a square lattice of 5%¥512 nodes with lattice
"Electronic address: emoro@math.uc3m.es spacingAx= 7/4, corresponding to eight lattice points per

' The purpose of this paper is to confirm the validity of the
ibble-Zurek scenario for the SH model. To this end, we
identify the characteristic length selected during the an-
ﬂealing process and study its relation to the density of de-
fects. We model the annealing protocol of the Rayleigh-
Benard system by the SH equation in two dimensions and in
imensionless variabld®,4]
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FIG. 1. Variance of the order paramete#?) obtained from the FIG. 3. (a) Width of the structure factof” after the quench

simulations(solid line9 compared with the linear approximation compared with the local variations of the wave numie. The
given by Eq.(5) (dashed lineswith x=10"%, x=10"3, and solid line is the approximation of Ed8); dashed lines are fits to
- _2 0.24+0.01 — 0.18+0.01
=102 from left to right. Inset, numerical values ofas a function ~ POWer lawsl'(e=&)~u andl'(e=1)~u - () C°|2'
of u obtained implicitly from( $2)= 55 with 5=1/2. The solid line '2PSINg plots 0fS(q) as a function of the rescaled variabie: (q
is the prediction of Eq(6). —q2)/(qol') ate=g for =102 (dotted ling, u=10"2 (dashed
line), and u=10"* (long dashed ling the solid line is a squared

Lorentzian curve 1/(% x?)2.
ideal wavelength @p=1). Initial conditions are¢(x,tq)

=0 at the instant, given bye(ty) = —1/2. the convection cell was increased linearly in time. This setup
As the critical parametes is increased in time the mag- is similar to the annealing protocol in our simulations sug-
nitude of the order parameter remains closegte O until gesting that the scaling found in those experiments can be

well after the onset of the instability at=0 (see Fig. L At  explained within the Kibble-Zurek scenario as well.

some later instant =& >0 the field abruptly jumps towards Since the order parameter remains small up tee, the
its symmetry-broken quasiequilibrium é$?)=2¢(t)/3 and  observed scaling can be obtained from a simple linear ap-
spatially periodic modulations of the signal are created, seproximation of Eq.(1). Fourier transforming the linearized

Fig. 2. We identify the instant at which dynamics are re- SH-equation yields

sumed as the time whefg?)= e [18] [with §=0(1), ~ 2 2i2q7 ~

meaning that the first and("tﬁirij term on the right-hand side of o) =[pt= (A= a%) I ba(V) + 74(0), @
Eg. (1) are of equgl |Ampor0ti1:t@01laolfesul.ts are presented in wherequ(t) is the Fourier mode of the order parameter field
Fig. 1 where we finds~u ' WhJCh compares well i \vave vector g. Thus, the structure facto5(q,t)
with the Kibble-Zurek predicted scaling~ u*2. It is inter- —(|B4(D)?) is given by

esting to note that the same scaling was found in ramp ex- q

periments of the Rayleigh-Bard convectiof15], where the

t
temperature difference between the upper and lower plate of S(q,t)=2Fe2‘”q(t)ft e 229(9s, )
0

where wq(t) =3 u(t?—t§) — (45— a%)*(t—to). The structure
factor S(q,t) is peaked around=q, [see Fig. 8)] and the
time dependent width of this peak(t) is obtained from
S(qo* 3T°(1),1)=3S(q,t). We find that'(t) satisfies the
implicit equation

r§ . n(2a)) Y2
&\%@/ . ) o= 5] @
DS -
%@%a%\\\\\» ) %\\\\\\}B ) ] -'/ Tt e where a=1+0(I'?). Assuming thatS(q,t) is sharply
e=¢ £=038 e=1 e=1 peaked around, (i.e., '<1) and that it can be approxi-

. ] . . mated by a squared Lorentzian arouggl [8,9] [see Fig.
FIG. 2. Typical configurations of the order parameter field for 3(b)] we write

different values ot. We depict an area of 256256 lattice points.

Upper row, u=10"2, lower row u=10 *. Black (white) points

correspond top>0 (¢$<0). Rightmost panels display the defect <¢,2>:2 S(g,t)=
structures obtained from the amplitude sign&H=0.25, see text a

0oS(do,t)

T l)lle(t). (5)
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Combining this result with the implicit equatignp?)= Se, ues ofq(x,t). To quantify this effect we measure the RMS of

we find thate satisfies those fluctuationsAg=([q(x,t) — qo]?)”?, where the aver-
age extends over defect-free domains only. We find MNwat
e2=u In[(2F)150,Coe ¥, (6) s a significant fraction of® for small values ofu, wherel

is small[see Fig. 8a)]. Although, in principle, the observed

where Cy=4.93 is a numerical constant. Thus, the linearyalue of I' can be a complicated convolution of both the
approximation leads, up to logarithmic corrections, to thejgcal variations of the value odi(x,t) and the presence of
scaling behavioe ~ 1.2 predicted by the Kibble-Zurek sce- defects, we have tried a simple linear ansatz to disentangle
nario and confirmed by our simulatiofsee Fig. 1 both contributions, i.el'=T 4+ Aq, where we assume that

We now proceed to identify the typical length scale se-I"is directly related to the spatial distribution of defects. In
lected by the dynamics during the quench. A canonical meafact, the data forl 4 at e=1 obtained using this simple
sure for this length is the width of the structure factoransatz can be fitted to a power laier~ = °2# % and
[7-12: in a defect-free domain the order parameter fieldrescaled by a constant factor to collapse well Witkaken at

takes the form e=¢ as shown in Fig. @). This indicates that the Kibble-
_ ' . . Zurek scalingé~ .~ Y* might still hold ate =1, although it

PO =A(x,H)codq(x.t)-x]+higher harmonics, (7) appears to be masked by local variations of the wave number
where A(x,t) and g(x,t) vary slowly within the domain. [22)- _ .
Thus, in the absence of any defects one expects the structure An independent wa);] Odehe?k'”?dthfe K|bbl(:-(zju(;ek. pre-

7 Con tions is to measure the density of defeetsreated during

factor S(q,t) =(|p4(1)|?) of an infinite system to be a delta Ic : A
function centered aroung=g,. When defects are present the quench. Several methods have been devised to identify

the structure factor broadens arouggl and the widthl" at ' defects numerically8—12. Here we present resuits for'tvvo
half height can be used as a proxy for the length, i.e Wéndependent measures of the number of defects: the first one

T A is based on the local amplitude of the order parameter field
define¢=I""". Figure 3a) shows the data fdf ats =& and  [g] hile the second one relies on the local curvature of the
e=1 numerically obtqmed from a circular average of thegpserved stripell]. Far away from any defect the order
structure factor. We f'”g thag(q,t) has a scaling form s ameter fieldp(x,t) is of sinusoidal form(7), so that the
S(a,1)/S(do,t) = (9>~ dp)/(qol")) [see Fig. )] at least  |ocal amplitude can be numerically estimated A& x,t)
for a given(scaling interval aroundq=qy=1. Results are ~ p(X,0)2+[V (x,1)1%q2. In equilibrium, it is found that
thus indgpendent of the FhrgsthhIf heighy .us'ed tq obtaiq Az(x,t)zA§E4s/3 to lowest order irs for a set of parallel
I, provided Ehe analysis is performed within this scallngstripes[Z]. The density of defectp, can thus be calculated
region. Ate =¢ we find é~ u~%2#%% which again confirms  ysing the filter|[ A2(x,t) — AZ]/AZ|> 9, where 9 is some
the Kibble-Zurek predictio~ . ~*. Note that this scaling  threshold. The second method consists in numerically ex-
can be recovered within the linear approximation by combinyracting the probability distributio®(x,t) of the local cur-
ing Eqs.(4) and(6) to obtain vature k(x,t) =|V-n(x,t)| of the stripe patternll]. Here
— n=V ¢/|V ¢| is the unit vector normal to the lines of con-
A s (N4 ~3/2 —1\1—1/4 stant¢. For a defect-free pattern, the curvature is zero, so
F(e)=u V zqg[ln(5q°C°8 2R ® again defect points can be identified as those wifx,t)
>0, where® is a given threshold. Thus the density of
which agrees with the Kibble-Zurek result up to logarithmic defects isp.= [¢P(x,t)d«. In Fig. 2 we display typical
corrections and compares quantitatively well with the nu-configurations of the SH signal and the corresponding defect
merical datdsee Fig. 83)]. structures obtained using the first filter, demonstrating that
We find, however, that right after the jump the absolutethis method can detect the defect structure efficiently. The
value of ¢ decreases and then rapidly saturates to a valughresholds® and ® are carefully chosen to be within the
smaller than that at the jump. The data at any later instarfinite interval, in which our results fos, andp. are(up to a
(e.g.,e=1) deviates from the Kibble-Zurek prediction in the constant prefactoindependent of the particular choice ®f
regime of smallu, in fact in the interval 10*<=x<10%it  and®.
can be fitted t~T "1~ %#%% To understand this ap-  As shown in Fig. 4 the numerical values fpg can be
parent inconsistency, we first note that coarsening of the deescaled to agree very well with the density of defects ob-
fect structure cannot be responsible for this effect, sincgained from the amplitude signah,, so that(up to a con-
é(e=¢)>¢&(e=1). Instead, a possible explanation is givenstant factoy both methods independently yield the same den-
in Refs.[13,21]: the broadening of the spectrum, and hencesity of defects. For relatively large values @f we find that
the observed value of is not only related to the spatial the density scales likp~u? and also thatp~l“§ef, as
distribution of defects, but also to variations of the localshown in Fig. 4. Consequently, Iy is related to the den-
wave numbeg(x,t) within the defect-free domains. Using sity of defects, those should be pointlike for quick quenches.
the numerical procedure suggested in R2l] we find that A simple inspection of the configurations after the jump con-
although the distribution of local wave numbegéx,t) in  firms this picture, see Fig. 2. We observe that for small val-
Eq. (7) is centered around the expected vadife,t) =qq, it ues ofu most of the defects are pointlike, while only a minor
exhibits a finite width indicating variations in the actual val- fraction is spatially extended. Only at small values of the
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FIG. 4. (a) Density of defectsp, and p.. (rescaled to collapse
with p,) obtained ate=1 (the data foru>10 2 are taken at
=2), andl' 4= (e=¢) (in arbitrary unit$ as a function ofx. The
solid line corresponds tp~ x%“% and dashed line i gor~ 1224
(b) Density of defects as a function ®f;. The dashed line ip

2
~ I et

sweep rate does the density of defects deviate frompthe
~T'3.~ u'? scaling, and we observe an increasingly signifi-
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In conclusion, we have confirmed the validity of the
Kibble-Zurek picture for the creation of defects in the an-
nealing of the SH equation. Specifically, we have identified a
length scal£~l“ge% directly related to the density of defects,
and found that it scales with the sweep rat&asu ™Y+ For
large values ofu, where most of the created defects are
pointlike, we expecp~ £~ 2, a result which is observed in
our simulations. However, for slow quenches, where an in-
creasing fraction of extended defects is produced, we expect
a deviation from this scaling law and a possible crossover to
p~ & 1. We hope this work will stimulate other simulations
of the SH model in order to confirm this picture.

Finally, we note that in studies of the coarsening in the SH
model [6,11], it is observed that at large times defects are
extended and that thys~ &~ 1. Our study suggests that the
presence of pointlike defects might be relevant, and thus
some care has to be taken in the SH model when comparing
the density of defects with the characteristic length observed
in the system. We hope that taking into account this aspect
together with the identification of the length scale associated
with the density of defects as suggested in this paper might
be useful to shed some light on the question of self-similarity
in the coarsening process after an sudden quench of the SH

system[23].

cant amount of extended defects. If extended defects domi- We thank G. Lythe for participation in the early stages of
this work and D. Boyer and J. Vats for discussions. Sup-
should be expected for small. Although a departure from port is acknowledged from EPSR@K) Grant No. GR/
the p~ 2 behavior is evident for slow quenches, our com-M04426. E.M. would like to thank the European Commis-
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nate over pointlike defects, a crossover fgo-T" g~ u'*

accurate confirmation of this possible crossover.
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