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Defect formation in the Swift-Hohenberg equation
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We study numerically and analytically the dynamics of defect formation during a finite-time quench of the
two-dimensional Swift-Hohenberg~SH! model of Rayleigh-Be´nard convection. We find that the Kibble-Zurek
picture of defect formation can be applied to describe the density of defects produced during the quench. Our
study reveals the relevance of two factors: the effect of local variations of the striped patterns within defect-free
domains and the presence of both pointlike and extended defects. Taking into account these two aspects we are
able to identify the characteristic length scale selected during the quench and to relate it to the density of
defects. We discuss possible consequences of our study for the analysis of the coarsening process of the SH
model.
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The formation of topological defects in symmetr
breaking phase transitions is a very generic phenomeno
physics, and can be studied analytically and experiment
in different condensed matter systems@1,2#. An example is
the onset and formation of stripe patterns in the Raylei
Bénard convection@2,3#. In this paper, we focus on th
Swift-Hohenberg~SH! model @4# for this process. Once
above the convective threshold, the system develops a l
rinthine morphology, consisting of domains of stripes th
are oriented along arbitrary directions@5#. Between those
domains, the system displays several types of topolog
defects, such as grain boundaries, disclinations, and disl
tions. This structure orders with time basically by gra
boundary relaxation and defect annihilation. Similar to oth
models, in which this coarsening process is self-similar@6#,
any linear scale of the structure is expected to grow a
power law in timej;t1/z. However, simulations of sudde
quenches of the SH equation@7–12# have revealed that th
observed exponentz is sensitive to nonuniversal model fe
tures such as the quench depth or noise strength. More
different definitions of the length scale have led to differe
exponents with values reported in the interval 2<z<5. This
apparent absence of self-similarity in the coarsening is a
found in related experiments of electroconvection@13# and
diblock copolymers@14#. Multiscaling @10,13# and/or defect
pinning @11# have been proposed as being responsible for
scattered value ofz, but no general picture has been reach
so far about the true nature of the coarsening process.

In this paper we consider a complementary, but rela
aspect of the nonequilibrium dynamics of the SH equati
Namely, we are interested in the formation of defects in
finite-time quench~annealing!. Interestingly, some feature
of finite-time quenches were considered in some early wo
comparing the SH model with the Rayleigh-Be´nard experi-
ments @15#. Specifically, we study situations in which th
control parameter, the reduced Rayleigh number«[(R
2Rc)/Rc , is swept smoothly over the bifurcation point,«
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50. Our study is thus related to earlier papers on def
formation in nonequilibrium second-order phase transitio
@16–18#. The theoretical picture which is believed to be a
plicable in this case is the Kibble-Zurek mechanism@16#:
because of critical slowing down close to the transition po
the system cannot follow the external change of the criti
parameter and the dynamics are suspended in an inte

@2 «̂,«̂ # around the transition. After this suspension a ch
acteristic lengthj is selected and is found to scale with th
rate of increasem of the critical parameter likej;m2g. In
particular, mean-field theory predicts«̂;m1/2 and j;m21/4

for models of the Ginzburg-Landau type withO(N) symme-
try @16#. This lengthj sets an initial density of defects,r,
directly after the quench. Within a Gaussian approximat
one expectsr;j22 for pointlike defects andr;j21 for line
defects in two dimensions@19#. Thus, the Kibble-Zurek
mechanism predicts that the density of defects observed
rectly after the quench scales withm as well, as confirmed in
various models@17,18,20#.

The purpose of this paper is to confirm the validity of t
Kibble-Zurek scenario for the SH model. To this end, w
identify the characteristic lengthj selected during the an
nealing process and study its relation to the density of
fects. We model the annealing protocol of the Rayleig
Bénard system by the SH equation in two dimensions and
dimensionless variables@2,4#

] tf5«~ t !f2~q0
21¹2!2f2f31h, ~1!

where«(t)5mt. This corresponds to an experimental situ
tion where the temperature difference between the upper
the lower plate of the convection cell is increased linearly
time. The order parameter fieldf(x,t) is related to the ver-
tical fluid velocity. The last term in Eq.~1! is a stochastic
forcing term, with^h(x,t)h(x8,t8)&52Fd(x2x8)d(t2t8),
where the noise strengthF55310217 is compatible with
typical experimental values@4,15#. Our simulations are per
formed on a square lattice of 5123512 nodes with lattice
spacingDx5p/4, corresponding to eight lattice points p
©2003 The American Physical Society01-1



-

s

se
-

o
n

e

e

tup
g-
be

ap-
d

ld

-

n

fo

ct

RAPID COMMUNICATIONS

T. GALLA AND E. MORO PHYSICAL REVIEW E 67, 035101~R! ~2003!
ideal wavelength (q051). Initial conditions aref(x,t0)
50 at the instantt0 given by«(t0)521/2.

As the critical parameter« is increased in time the mag
nitude of the order parameter remains close tof50 until
well after the onset of the instability at«50 ~see Fig. 1!. At
some later instant«5 «̂.0 the field abruptly jumps toward
its symmetry-broken quasiequilibrium at^f2&52«(t)/3 and
spatially periodic modulations of the signal are created,
Fig. 2. We identify the instant«̂ at which dynamics are re
sumed as the time when̂f2&5d«̂ @18# @with d5O(1),
meaning that the first and third term on the right-hand side
Eq. ~1! are of equal importance#. Results are presented i
Fig. 1 where we find«̂;m0.4860.01, which compares well
with the Kibble-Zurek predicted scaling«̂;m1/2. It is inter-
esting to note that the same scaling was found in ramp
periments of the Rayleigh-Be´nard convection@15#, where the
temperature difference between the upper and lower plat

FIG. 1. Variance of the order parameter^f2& obtained from the
simulations~solid lines! compared with the linear approximatio
given by Eq.~5! ~dashed lines! with m51024, m51023, and m

51022 from left to right. Inset, numerical values of«̂ as a function

of m obtained implicitly from^f2&5d«̂ with d51/2. The solid line
is the prediction of Eq.~6!.

FIG. 2. Typical configurations of the order parameter field
different values of«. We depict an area of 2563256 lattice points.
Upper row,m51022, lower row m51024. Black ~white! points
correspond tof.0 (f,0). Rightmost panels display the defe
structures obtained from the amplitude signal (q50.25, see text!.
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the convection cell was increased linearly in time. This se
is similar to the annealing protocol in our simulations su
gesting that the scaling found in those experiments can
explained within the Kibble-Zurek scenario as well.

Since the order parameter remains small up to«5 «̂, the
observed scaling can be obtained from a simple linear
proximation of Eq.~1!. Fourier transforming the linearize
SH-equation yields

] tf̂q~ t !5@mt2~q0
22q2!2#f̂q~ t !1ĥq~ t !, ~2!

wheref̂q(t) is the Fourier mode of the order parameter fie
with wave vector q. Thus, the structure factorS(q,t)
[^uf̂q(t)u2& is given by

S~q,t !52Fe2vq(t)E
t0

t

e22vq(s)ds, ~3!

wherevq(t)[ 1
2 m(t22t0

2)2(q0
22q2)2(t2t0). The structure

factorS(q,t) is peaked aroundq.q0 @see Fig. 3~b!# and the
time dependent width of this peakG(t) is obtained from
S„q06 1

2 G(t),t…[ 1
2 S(q0 ,t). We find thatG(t) satisfies the

implicit equation

G~ t !5S ln~2a!

2q0
2t

D 1/2

, ~4!

where a511O(G2). Assuming that S(q,t) is sharply
peaked aroundq0 ~i.e., G!1) and that it can be approxi
mated by a squared Lorentzian aroundq0 @8,9# @see Fig.
3~b!# we write

^f2&5(
q

S~q,t !.
q0S~q0 ,t !

8~A221!1/2
G~ t !. ~5!

r

FIG. 3. ~a! Width of the structure factorG after the quench
compared with the local variations of the wave numberDq. The
solid line is the approximation of Eq.~8!; dashed lines are fits to

power lawsG(«5 «̂);m0.2460.01 andG(«51);m0.1860.01. ~b! Col-
lapsing plots ofS(q) as a function of the rescaled variablex5(q2

2q0
2)/(q0G) at «5 «̂ for m51022 ~dotted line!, m51023 ~dashed

line!, andm51024 ~long dashed line!; the solid line is a squared
Lorentzian curve 1/(11x2)2.
1-2
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Combining this result with the implicit equation̂f2&5d«̂,
we find that«̂ satisfies

«̂2.m ln@~2F !21dq0C0«̂3/2#, ~6!

where C0.4.93 is a numerical constant. Thus, the line
approximation leads, up to logarithmic corrections, to
scaling behavior«̂;m1/2 predicted by the Kibble-Zurek sce
nario and confirmed by our simulations~see Fig. 1!.

We now proceed to identify the typical length scale s
lected by the dynamics during the quench. A canonical m
sure for this length is the width of the structure fact
@7–12#: in a defect-free domain the order parameter fi
takes the form

f~x,t !.A~x,t !cos@q~x,t !•x#1higher harmonics, ~7!

where A(x,t) and q(x,t) vary slowly within the domain.
Thus, in the absence of any defects one expects the stru
factor S(q,t)5^uf̂q(t)u2& of an infinite system to be a delt
function centered aroundq5q0. When defects are presen
the structure factor broadens aroundq0 and the widthG at
half height can be used as a proxy for the length, i.e.,
definej[G21. Figure 3~a! shows the data forG at «5 «̂ and
«51 numerically obtained from a circular average of t
structure factor. We find thatS(q,t) has a scaling form
S(q,t)/S(q0 ,t). f „(q22q0

2)/(q0G)… @see Fig. 3~b!# at least
for a given~scaling! interval aroundq5q0.1. Results are
thus independent of the threshold~half height! used to obtain
G, provided the analysis is performed within this scali
region. At«5 «̂ we findj;m20.2460.01which again confirms
the Kibble-Zurek predictionj;m21/4. Note that this scaling
can be recovered within the linear approximation by comb
ing Eqs.~4! and ~6! to obtain

G~«̂ !.m1/4Aln 2

2q0
2@ ln„dq0C0«̂3/2~2F !21

…#21/4, ~8!

which agrees with the Kibble-Zurek result up to logarithm
corrections and compares quantitatively well with the n
merical data@see Fig. 3~a!#.

We find, however, that right after the jump the absolu
value of j decreases and then rapidly saturates to a va
smaller than that at the jump. The data at any later ins
~e.g.,«51) deviates from the Kibble-Zurek prediction in th
regime of smallm, in fact in the interval 1024<m<1023 it
can be fitted toj;G21;m20.1860.01. To understand this ap
parent inconsistency, we first note that coarsening of the
fect structure cannot be responsible for this effect, si
j(«5 «̂).j(«51). Instead, a possible explanation is giv
in Refs.@13,21#: the broadening of the spectrum, and hen
the observed value ofG is not only related to the spatia
distribution of defects, but also to variations of the loc
wave numberq(x,t) within the defect-free domains. Usin
the numerical procedure suggested in Ref.@21# we find that
although the distribution of local wave numbersq(x,t) in
Eq. ~7! is centered around the expected valueq(x,t)5q0, it
exhibits a finite width indicating variations in the actual va
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ues ofq(x,t). To quantify this effect we measure the RMS
those fluctuations,Dq[^@q(x,t)2q0#2&1/2, where the aver-
age extends over defect-free domains only. We find thatDq
is a significant fraction ofG for small values ofm, whereG
is small @see Fig. 3~a!#. Although, in principle, the observed
value of G can be a complicated convolution of both th
local variations of the value ofq(x,t) and the presence o
defects, we have tried a simple linear ansatz to disenta
both contributions, i.e.,G5Gdef1Dq, where we assume tha
Gdef is directly related to the spatial distribution of defects.
fact, the data forGdef at «51 obtained using this simple
ansatz can be fitted to a power lawGdef;m20.2460.01 and
rescaled by a constant factor to collapse well withG taken at
«5 «̂ as shown in Fig. 3~a!. This indicates that the Kibble
Zurek scalingj;m21/4 might still hold at«51, although it
appears to be masked by local variations of the wave num
@22#.

An independent way of checking the Kibble-Zurek pr
dictions is to measure the density of defectsr created during
the quench. Several methods have been devised to ide
defects numerically@8–12#. Here we present results for tw
independent measures of the number of defects: the first
is based on the local amplitude of the order parameter fi
@9#, while the second one relies on the local curvature of
observed stripes@11#. Far away from any defect the orde
parameter fieldf(x,t) is of sinusoidal form~7!, so that the
local amplitude can be numerically estimated asA2(x,t)
.f(x,t)21@“f(x,t)#2/q0

2. In equilibrium, it is found that
A2(x,t).A0

2[4«/3 to lowest order in« for a set of parallel
stripes@2#. The density of defectsra can thus be calculated
using the filter u@A2(x,t)2A0

2#/A0
2u.q, where q is some

threshold. The second method consists in numerically
tracting the probability distributionP(k,t) of the local cur-
vaturek(x,t)5u“•n(x,t)u of the stripe patterns@11#. Here
n5“f/u“fu is the unit vector normal to the lines of con
stantf. For a defect-free pattern, the curvature is zero,
again defect points can be identified as those withk(x,t)
.Q, where Q is a given threshold. Thus the density
defects isrc5*Q

` P(k,t)dk. In Fig. 2 we display typical
configurations of the SH signal and the corresponding de
structures obtained using the first filter, demonstrating t
this method can detect the defect structure efficiently. T
thresholdsq and Q are carefully chosen to be within th
finite interval, in which our results forra andrc are~up to a
constant prefactor! independent of the particular choice ofq
andQ.

As shown in Fig. 4 the numerical values forrc can be
rescaled to agree very well with the density of defects
tained from the amplitude signal,ra , so that~up to a con-
stant factor! both methods independently yield the same d
sity of defects. For relatively large values ofm, we find that
the density scales liker;m1/2 and also thatr;Gdef

2 , as
shown in Fig. 4. Consequently, ifGdef is related to the den-
sity of defects, those should be pointlike for quick quench
A simple inspection of the configurations after the jump co
firms this picture, see Fig. 2. We observe that for small v
ues ofm most of the defects are pointlike, while only a min
fraction is spatially extended. Only at small values of t
1-3
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sweep rate does the density of defects deviate from thr
;Gdef

2 ;m1/2 scaling, and we observe an increasingly sign
cant amount of extended defects. If extended defects do
nate over pointlike defects, a crossover tor;Gdef;m1/4

should be expected for smallm. Although a departure from
ther;m1/2 behavior is evident for slow quenches, our co
putational facilities at present do not allow us to give
accurate confirmation of this possible crossover.

FIG. 4. ~a! Density of defectsra and rc ~rescaled to collapse
with ra) obtained at«51 ~the data form.1022 are taken at«

52), andGdef5G(«5 «̂) ~in arbitrary units! as a function ofm. The
solid line corresponds tor;m0.48 and dashed line isGdef;m0.24.
~b! Density of defects as a function ofGdef . The dashed line isr
;Gdef

2 .
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In conclusion, we have confirmed the validity of th
Kibble-Zurek picture for the creation of defects in the a
nealing of the SH equation. Specifically, we have identifie
length scalej;Gdef

21 directly related to the density of defect
and found that it scales with the sweep rate asj;m21/4. For
large values ofm, where most of the created defects a
pointlike, we expectr;j22, a result which is observed in
our simulations. However, for slow quenches, where an
creasing fraction of extended defects is produced, we ex
a deviation from this scaling law and a possible crossove
r;j21. We hope this work will stimulate other simulation
of the SH model in order to confirm this picture.

Finally, we note that in studies of the coarsening in the
model @6,11#, it is observed that at large times defects a
extended and that thusr;j21. Our study suggests that th
presence of pointlike defects might be relevant, and t
some care has to be taken in the SH model when compa
the density of defects with the characteristic length obser
in the system. We hope that taking into account this asp
together with the identification of the length scale associa
with the density of defects as suggested in this paper m
be useful to shed some light on the question of self-simila
in the coarsening process after an sudden quench of the
system@23#.
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