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Abstract

A new model is introduced for two-dimensional crystalline interfaces with negligible surface tension. The model is given
by a discrete version of the linear molecular beam epitaxy (MBE) equation plus an additional term periodic in the interface
height variable. Langevin dynamics simulations and analytical arguments show that the model exhibits a roughening
transition to the high temperature phase of the sine-Gordon model, whose initial stages are nevertheless described by the
scaling of the linear MBE equation. Out of equilibrium, the model can have three different behaviors depending on
temperature and deviation from equilibrium: A non-moving flat interface, a moving interface with oscillatory roughness, and
a moving interface which shows scaling. Possible connections to experiments are discussed.  1998 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Surface and interface roughness are exceedingly important problems in the fabrication of low
dimensional semiconductor devices [1,2]. Rough surfaces develop as a consequence of competition
among different effects, such as surface tension, surface diffusion, thermal fluctuations, lattice effects,
applied forces, and so on. Thus, in equilibrium, a particular surface can be rough under certain
conditions and macroscopically ‘‘flat’’ under some other ones, these two regimes being separated in
many cases by a roughening transition [1,3]. Out of equilibrium, which is usually the case when
growing micro and nanoelectronic devices, surfaces can grow in many different modes, ranging from
layer by layer (LBL) to rough growth morphologies: Experimentally, ordered LBL growth is detected
as oscillations in the reflection high-energy electron diffraction (RHEED) specular intensity [4],
whereas for a growing rough interface the coherence leading to RHEED oscillations is lost.

Among the studies of surface dynamics, systems with negligible surface tension have received a lot
of attention lately. Relevant instances of tensionless surfaces are thin films grown by, e.g. thermal
evaporation, sputter deposition or Molecular Beam Epitaxy (MBE). Generically, we will refer to these
as MBE growth [1,4,5]. Villain [6] and Lai and Das Sarma [7], elaborating on classic works by
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Herring and Mullins [8,9], proposed that surfaces grown in MBE-like conditions obey relaxation
mechanisms (namely, surface diffusion) that locally minimize surface curvature. To linear order this is
described by the so called linear MBE equation for surface height h(x,t):

≠h 4
]5 2 k= h 1 I 1 j(x,t), (1)
≠t

where k is a constant and j is a random fluctuation around the average flux I. This equation leads to
scale invariant behavior of the growing surface both in time and space [1], which has been recently
demostrated in real MBE systems [10,11].

Besides the above relaxation mechanism, there are other processes which break this scale free
picture of surface growth. One of them is the Schwoebel effect: a diffusion barrier at step edges which
prevents an atom from jumping downward to a terrace, and therefore would generate a rough surface
containing mounds, whose typical size provides a length scale [6]. On the other hand, lattice effects
can also introduce a characteristic length scale equal to the distance between the surface coarse-
grained units. There are several experimental situations in which the Schwoebel effect is absent, such
as the dynamics of policrystalline interfaces, or surface growth at high enough temperatures. In this
work we will neglect Schwoebel barriers and study the interplay between lattice effects and surface
diffusion. In principle at high enough temperatures lattice effects are expected to become negligible so
that the surface would evolve according to Eq. (1). However, we will see that lattice effects modify
the scaling behavior at high temperatures so that Eq. (1) only holds up to a certain crossover time and
therefore is not asymptotic.

The model we propose is hence given by the Hamiltonian

2

H 5 kOFSOh D2 nh G 2V Ocos(h /a) 2OIh , (2)j i 0 i i
n.n.i i i

where the functions h (t) give the surface height above site i in a two-dimensional (2D) square (L3L)i

lattice, and the sum in the brackets runs over the nearest neighbors of site i, n54 being the lattice
coordination number; we emphasize that the values of h are real numbers not restricted to beingi

integers. The first term in Eq. (2) is a discrete version of the Laplacian squared of the height, which
4favors small surface curvatures and leads to the biharmonic term (= h) in the evolution equations

(see Eqs. (3) and (4) below). The second term in Eq. (2) is a weighting function which favors h to bei

2npa, with a the lattice spacing. Such a pinning potential was first introduced by Chui and Weeks
[12] to study a continuous version of the discrete Gaussian model, which in this way becomes a
sine-Gordon (sG) model [13]. Finally, the third term in Eq. (2) explicitly includes non-equilibrium
effects through the interaction of the surface with applied driving fields I which represent, e.g., the
chemical potential due to the flux of incoming particles in MBE [14].

We study model Eq. (2) by Langevin dynamics simulations, i.e., by integrating the corresponding
overdamped equations of motion for h [rescaled as to have k 5a5V 51]:i 0

≠hi 2 2
]5 2= (= h ) 2 sinh 1 I 1 j (t). (3)d d i i i≠t

2
= stands for the discrete Laplacian in the square lattice and j (t) are independent Gaussian whited i

noises of zero mean and kj (t)j (t9)l52Td d(t2t9), T being the temperature. Thus, Eq. (3) reproducesi j ij

the long distance behavior of the continuum equation
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≠h 4
]5 2= h 2 sinh 1 I(x) 1 j(x,t), (4)
≠t

Langevin dynamics has been very successful in the analysis of related models, such as the discrete 2D
sG equation [15]: For instance, in [16], the equilibrium roughening temperature was determined,
confirming the renormalization group (RG) results of Chui and Weeks [17], whereas in [18] it allowed
to explain the system behavior near and far from equilibrium. From the MBE viewpoint, the study we
carry out in this paper is interesting, as it is clear that if lattice (epitaxial) effects are important, an
equation like Eq. (4) could belong in a general description of crystal growth by MBE [19–21].

The outline of this paper is as follows. In Section 2 we present the simulation results of our model
in equilibrium and discuss the existence for Eq. (3) of a scaling behavior different from that of Eq. (1)
due to the lattice effects. Section 3 is devoted to non-equilibrium results and the driving-temperature
phase diagram. The final section is dedicated to a summary of our main conclusions and possible
experimental implications.

2. Equilibrium behavior

Our study begins with the main question about the equilibrium (I50) of our model: The existence
or not of a roughening transition. As we know of no previous analytical or numerical results for Eqs.
(3) and (4), we recall the main RG ideas as applied to the sG equation [14,17,22]: There exists a
roughening temperature T above which the energy of a step on the surface becomes zero, becauseR

temperature ‘‘renormalizes’’ the sine term, effectively suppresing it at T ; along this process, theR

lattice potential modifies the effective value of the surface tension coefficient [15]. We find similar
features in the equilibrium properties of model Eq. (2). In Fig. 1, we plot results of numerical
simulations of Eq. (3) [with h (t50)50]; specifically, we represent the surface structure factori

ˆ ˆS(k,t) ; kh(k,t)h(2k,t)l, (5)
] ]

ĥ(k,t) being the Fourier transform of (h (t) 2h(t)), with h(t) the mean height. We find that, abovei

T ¯10, S(k,t) scales in the stationary regime in the same fashion as for the linear MBE equationR

T
]]]]S(k,t → `) 5 .416 sin (k /2)

In the inset of Fig. 1 we plot the effective a exponent defined from the relationship
aW (L) ; W(L,t → `) | L ,sat

] 2where W (L,t) 5 k(h(x,t) 2h(t)) l is the surface roughness. For the linear MBE Eq. (1) we have a 51,2

as occurs in our model for T $10. We thus identify T as the temperature above which the sine termR

renormalizes to zero and Eq. (3) effectively behaves as the linear MBE equation. Note also in Fig. 1
that the smaller slope of S(k,t) for small k below T indicates the momenta range still dominated byR

the sine term, which shrinks as T →T . Furthermore, for model Eq. (2) we have carried out [23] aR

variational calculation (which closely follows that presented in [3] for the sG equation), which leads
to a prediction of T ¯12, in very good qualitative agreement with Langevin dynamics. For the sakeR

sGof comparison, in our units the roughening transition for the sG model takes place at T 58pR
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Fig. 1. S(k,t) vs k in the stationary regime for, bottom to top, T52,7,8,10, and 20 (the last two ones overlap) and L564.
4Dashed lines are guides to the eye. Solid line is the scaling of the discrete linear MBE equation, S(k,t→`) /T51/ [16 sin

a(k /2)]. Inset: Roughness exponent a (defined effectively from W |L ) vs T. Error bars are of the symbol size or smaller.sat

[16,17,22]. The difference in the surface profile above and below the roughening temperature is
evident in Fig. 2 where we show snapshots of the surface profile at saturation.

After finding T , we focus on the asymptotic scaling of the high temperature phase. An extensionR

to our model [23] of the RG calculations for the sG model [22] suggests the presence of an effective,
possibly small, surface tension term generated by the lattice potential [24]. Actually, we have found
that, close enough to T , S(k,t) is best fitted assuming that a Laplacian term has been generated. TheR

Laplacian term should dominate the scaling behavior for T .T after a crossover time t (whichR 3

increases with temperature) observable only for large enough system sizes due to saturation effects.
We stress that for t,t and T .T , our simulations yield the same dynamics as the linear MBE3 R

1 / 4equation, i.e., W(L,t)|t , whereas for t.t (and large L) we have seen evidence for a scaling close3
2 2to that of the high T phase of the sG equation: W (L,t)|log t, W |log L, i.e., of Edwards-Wilkinsonsat

(EW) type [25]. Although our present computing facilities do not allow us to unambiguously confirm
the existence of an asymptotic scaling of EW type (up to L5512), we obtained further evidence from

2the average velocity v of an interface given by the transformation h9(x,t)5h(x,t)2ex . In the presence
of a finite Laplacian with coefficient n, v behaves as v|ne when e →0. We have obtained this
behavior in our simulations, whose results support a small but distinctly nonzero value for n, even for
temperatures around T¯15. Further work to settle this question is in progress [23].

3. Non equilibrium behavior

For the the non equilibrium (I±0) case, Fig. 3 summarizes our results, which lead to a separation
of the (T,I) parameter space into three different regions. In region A, the lattice potential controls the
dynamics, and the surface shows zero average velocity like in the low T phase at equilibrium.
Increasing I further for fixed T within region A, a value of the driving is reached which is strong
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Fig. 2. Surface profiles for temperatures below (T54, top) and above (T512, bottom) the roughening temperature (T ¯10)R

for our model.

enough to pull the surface over the potential barriers, leading to a nonzero average velocity v for the
interface; hence the system is in Region B. What is more interesting, increasing T for fixed I produces
the same effect: This can be appreciated from Fig. 4, where the linear response interface mobility
m 5v /I for I50.1 exhibits a sharp transition from a pinned (region A) to a moving (region B)



502 E. Moro et al. / Microelectronic Engineering 43 –44 (1998) 497 –505

Fig. 3. Sketch of the ‘‘phase-diagram’’ of our model. Lines are approximate and not intended as quantitatively correct, except
for the ends of the line separating region A from B.

interface. The transition temperature decreases with increasing F; in fact, growth occurs for all T
when I$1, that is, region A terminates at T50, I51 [26]; this is seen also in Fig. 3 for I51.1.

The difference between regions B and C relates not only to interface mobility but also to

Fig. 4. Linear mobility m ;v /I vs T for I50.1 (s) and 1.1 (h). Inset: Roughness exponent a vs T for the same values of I.
Error bars are of the symbol size or smaller except where plotted.
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morphology. In region C, the interface mobility is maximum (m ¯1), and the interface displays the
same scaling behavior as in the equilibrium high T phase. On the contrary, region B is characterized
by a temperature dependent mobility: The interface moves nonlinearly, in a way which is reminiscent
of the LBL growth experimentally observed in RHEED oscillations, particulary if one looks at the
roughness dependence on time (upper panels of Fig. 5). To understand this behavior, let us recall that,
for actual surfaces, there is a competition between surface diffusion, that tends to complete layers
before new ones start to form, and the incoming flux, that supplies new material for island nucleation
on top of incomplete layers. Consequently, three time scales arise: a surface diffusion time td

21 21(t |k 51 in our units), a time associated with the flux rate t |I , and a time associated with fluxd I
21 / 2rate fluctuations t |T . As t is fixed, the relevant quantity for the dynamics in region B is theT d

ratio g 5t /t : Indeed, for large g, the height fluctuations due to T grow in a typical time scale t ,T I T

much slower than the time needed by the incoming flux to pull the surface over a potential barrier,
leading to LBL behavior. On the other hand, for small g, temperature fluctuations dominate over the
surface growth as a whole, yielding rough, multilayer growth. This is in perfect agreement with what
we see in Region B, where g decreases when going from Region A to Region C. In addition, region C
shows no sign of oscillations, one more hint that the potential is effectively renormalized to zero by
temperature.

For the purpose of comparison to experiments, we note that roughness oscillations in Region B of
our model and RHEED oscillations can be related through the coverage u of the n-th layer, i.e., then

number of occupied sites in that layer divided by the total number of available sites. The surface
roughness reads

2Fig. 5. W vs t (upper panel) and coverage of the first 7–8 layers vs time (lower panel) for differents values of I and T :
I50.8 and T53, i.e., g 50.46 for the A plot, and I51.1 and T50.1, i.e., g 53.5 fot the B plot.
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2 2 2¯W 5 (2p) O(u 2u )(n 2 h ) ,n n11
n

where we have discretized the surface height values: h 52np. In perfect LBL growth, at any givenn
2 2 2time u is different from 0 or 1 only for one value of n, and W 5(2p) (u 2u ), oscillating between 0n n n

2and p as u goes from 0 to 1. RHEED spectra, which are directly related to coverages [4], behaven

accordingly, oscillating with constant amplitude in time. On the contrary, when two or more layers are
growing at the same time (rough growth), damping terms proportional to u u can be seen to appear ini j

2W , and hence oscillations damp out (see Fig. 5), once again as RHEED oscillations do. In all cases, g

determines the period of oscillations as well as the damping time. This simple analysis shows that the
roughness behavior we see in our model and RHEED oscillations have the same origin and can then
be qualitatively related. Region B is thus the parameter range for which one would expect LBL
growth (close to region A) crossing over to rough growth (as one approaches region C). In region C,
the suppresion of the lattice potential yields the very notion of layer meaningless.

4. Conclusion

We have proposed and studied a model for growth of crystalline tensionless surfaces [Eq. (2)]
whose main features are an equilibrium roughening transition with T ¯10 (dimensionless units) to aR

high temperature phase similar to the sG model, and a non-equilibrium ‘‘phase diagram’’ composed of
three regions where the surface is pinned, moves nonlinearly, or roughens kinetically. The nonlinear
region, B, is in fact a crossover region from LBL growth (close to the pinned phase, A) to rough
growth (close to the rough phase, C). As we have discussed, this characterization is relevant to
experiment and real systems may exhibit measurable signatures of the three regimes. We note that,
among those usually studied in the context of rough surfaces, no other continuum model without
lattice effects has reproduced these oscillations [1]. Presently, reports of RHEED oscillations
dependence on temperature are available and qualitatively agree with our results [27], although of
course much more work is needed to asses the relevance of our model to actual growth processes.
Finally, it is most important to clarify the asymptotic scaling of our model in the high temperature
phase. We have obtained that a tensionless surface roughens at a temperature approximately half of
that required by a system minimizing surface tension. The morphology at T .T is much rougher, atR

least in the early dynamics, for the former case than for the latter. We believe the asymptotic scaling
for T .T , I.0 is the same in the two cases. If confirmed, this result implies that in realistic systemsR

the linear MBE equation scaling can not be asymptotic. However, the crossover time can be large,
presumably observable for appropriate experimental realizations. Work along these lines is in progress
[23].
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