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Abstract
We discuss recent work in the study of a simple model for the collective
behaviour of diverse speculative agents in an idealized stockmarket,
considered from the perspective of the statistical physics of many-body
systems. The only information about other agents available to any one is the
total trade at time steps. Evidence is presented for correlated adaptation and
phase transitions/crossovers in the global volatility of the system as a function
of appropriate information scaling dimension. Stochastically controlled
irrationality of individual agents is shown to be globally advantageous. We
describe the derivation of the underlying effective stochastic differential
equations which govern the dynamics, and make an interpretation of the
results from the point of view of the statistical physics of disordered systems.

1. Introduction
There is currently much interest in the physics community in
complex cooperative behaviour of systems of many individual
entities influencing one another competitively. In particular,
when combined with non-uniformity in the inclinations of
the individuals, the behaviour of the whole can exhibit much
greater complexity, richness and subtlety than is present
in the rules governing individuals; in the words of P W
Anderson ‘more is different’ [1]. Examples are found in
spin glasses (disordered magnetic alloys), neural networks
and hard optimization problems (for recent reviews see [2,
3]). Economic markets also involve many individuals whose
desires are not all simultaneously satisfiable and who often
have different inclinations and strategies. It is therefore natural
to ask to what extent the problems in physics and in economics
are similar or different, to what extent the techniques and
concepts developed for the physics problems can be applied
to those in economics, to what extent the economics problems
pose new challenges for the physicists, and to search for fruitful
symbiosis of understanding, quantification and application. To
this end we discuss in this paper recent developments in the
study of a model inspired by economics, but analysed from
the perspective of physics, finding unexpected new results and

subtleties, and concluding that both subjects have something to
teach each other and that there is potential for further transfers
and discoveries. We make no attempt to be encyclopaedic or
chronologically historical.

Before discussing the specific model, some general
remarks are appropriate. Much of the progress in physics
has come from starting with the simplest but non-trivial
microscopic entities and interaction rules which can still lead
to complex behaviour at the macroscopic1 level. Greater
‘reality’ at the microscopic level can be added later. Many
results are robust to the microscopic details, although new
features can also arise with sufficient qualitative change. We
apply a similar philosophy here, deliberately oversimplifying
at the individual level to expose novel consequences of
cooperation uncluttered by microscopic complication. Thus,
we concentrate on systems with simple microscopic dynamical
rules and minimal number of control parameters. In the spirit
of statistical many-body theory we concentrate on systems with
many (N � 1) microscopic players, with particular regard to
the leading large-N behaviour of macroscopic quantities. We
allow for temporally-fixed variation among individuals but,

1 By ‘macroscopic’ we refer to quantities which are averaged over the
behaviour of all the ‘microscopic’ individuals.
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in the spirit of statistical relevance, we draw their individual
characteristics independently from identical distributions. We
also allow for stochasticity (temporal indeterminacy) at the
individual operational level, but again in a statistically relevant
and minimal parameter fashion. As usual in statistical physics,
we expect self-averaging2 of normal macroscopic observables,
although non-self-averaging might be envisaged at a more
sophisticated level [3, 4].

It is also appropriate to contrast our study with those
of conventional economics theory. A typical assumption
used in neoclassical economic theory [5]—especially game
theory [6]—is that agents are hyper-rational. They know
the utility functions of other agents, they are fully aware
of the process they are embedded in, they make optimum
long-run plans, and so forth. This is a rather extravagant
and implausible model of human behaviour, especially in
situations like a stock market. Moreover, in neoclassical
economic theory, microscopic equilibrium is the reigning
paradigm [5]. Individual strategies are assumed to be optimal
given expectations, and expectations are assumed to be justified
given the evidence. Equilibrium is thus reached in one-step
dynamics once hyper-rationality is assumed. In this paper
we consider a different, perhaps more realistic, scenario in
which the only information available to any agent about the
others is of the macroscopic consequences of the multiplicity
of their actions (i.e. the analogues of market indices). We
allow for diversity and irrationality in that they do not all
draw the same conclusions from this information [7], nor do
they necessarily operate deterministically. In general there
will not be microscopic equilibrium although there may be
macroscopic equilibrium3.

The paper is organized as follows. In section 2 we present
the Minority Game [8] and review its main features. This
model is a specific realization of Arthur’s ‘El Farol’ Bar
Problem [7], and is the starting point of our investigations. In
section 3 we consider a continuous generalization of the model,
and study the effect of allowing for stochastic decision making
on the part of the agents. The derivation of a fundamental
analytic theory is discussed in section 4, where the underlying
stochastic differential equations for the dynamics of the system
are presented. Section 5 contains an interpretation of the results
and we give our conclusions in section 6.

2. The Minority Game
The model system we consider is one known as the Minority
Game (MG) [8] and is intended to mimic in a simplified way a
market of agents bidding to profit by buying when the majority
wish to sell (so that the price can be lowered) and selling
when the majority wish to buy (so that a higher price can be
negotiated) [7]. It comprises a large number of agents each of

2 By ‘self-averaging’ we mean that, in the limit N → ∞, the value in a
typical realization is the same as the average over realizations.
3 By ‘microscopic equilibrium’ we mean a situation in which it is
disadvantageous for any individual to change his state, whereas ‘macroscopic
equilibrium’ refers to a situation in which the thermodynamically relevant
(leading N ) macroscopic observables do not change with time, even though
individual microscopic states do change.

whom can act as buyer or seller, deciding on how to play at
each time step through the application of a personal strategy
to commonly available information4. Each agent has a small
set of available strategies, drawn randomly, independently and
immutably with identical probabilities from a large suite of
strategies. At each time step each agent picks one of his or
her strategies, based on points allocated cumulatively to the
strategies according to their (virtual) performance in predicting
the minority action. For simplicity no other rewards are given.

The system has quenched (fixed in time) randomness
in the set of strategies picked at the start of the game by
each agent, and it has frustration5 in that the rewards are
for minority action, so not all the individual inclinations can
be satisfied simultaneously. There is no direct interaction
between agents. Nevertheless, correlation does arise through
the adaptive evolution of the use of strategies and manifests
itself in the interesting non-trivial macroscopic behaviour of
the system.

In the original formulation of the MG [8] agents could
only make two choices, buy or sell, with no weight attributed
to the size of the order. Conventionally, the strategy points are
set initially to zero and thus the agents start making their first
choice at random. The common information on which they
based their decisions was the minority choice (buy or sell) over
the last m time steps. The strategies were quenched randomly
chosen Boolean functions acting on this information, the
binary output determining the buy/sell decision. The strategy
used by any agent at any time was the one with the currently
greatest point-score from those at his/her disposal. Numerical
simulations showed [9] that while the average in time (and over
the realizations of the disorder) of the total action was just an
equality of buyers and sellers, due to the symmetric nature
of the model, the standard deviation of its fluctuations away
from this value (the analogue of the volatility of a conventional
stockmarket) displayed remarkable structure. As a function of
the ‘memory’m, the volatility has two regimes: for low values
of m, the volatility is larger than the value corresponding to
all agents just playing randomly; it decreases monotonically
with increasing m, crosses the value corresponding to random
behaviour, and reaches a minimum at a critical value of the
memory mc; it then starts to grow monotonically with m,
asymptotically approaching the random value from below.
This non-trivial behaviour of the fluctuations was interpreted
as an indication of a cooperative ‘phase transition’ in the
system [9, 10] (see, e.g., [11], for a introduction to phase
transitions). Simulations also showed [9] that the relevant
scaling variable was the reduced dimension of the space of
strategies d = 2m/N , and that the volatility scaled with the
number of agents as

√
N .

A second interesting observation was made in [12], where
it was shown numerically that the macroscopic behaviour
of the MG was unaffected by replacing the time history by

4 A strategy is an operator which acts on a set of data, referred to as the
‘information’, to yield an outcome which is a buy or sell instruction.
5 ‘Frustration’ refers to an inability to satisfy simultaneously all the
inclinations of all the microscopic entities, and is believed to be a fundamental
ingredient in producing the complexity observed in glassy systems (where
quenched disorder is often also present) [2–4].
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an artificial history, chosen randomly and independently at
each time step from the space of all possible histories with
uniform probability, provided all agents received the same
bogus information (and that the point-scores were still updated
on the basis of performance). This is a consequence of the
ergodic nature of the MG [13], and indicates that the principal
role of the information is in providing a correlation mechanism
between the agents in terms of the strategies used. This
observation offers a great simplification for the analysis of the
model, since replacing the true history by just external noise
allows us to study a simpler system which is stochastic but
local in time, instead of the more difficult original problem
which is deterministic but non-local in time (see also [14]). In
fact, we shall also see the consequence of allowing for a further
different kind of stochasticity in the next section.

3. The thermal Minority Game
As discussed in the introduction, it is natural to expect that
the qualitative features of the MG are robust under changes
in the microscopic detail of the model. In this section we
present a generalization of the MG to continuous degrees of
freedom and to allow for stochastic decision making on the part
of the agents, known as the thermal Minority Game (TMG),
and first introduced in [13]. This generalization not only
preserves the main features of the MG discussed so far, but
also gives interesting and advantageous new behaviour, and
enables a simpler analytic description of the coarse-grained
microdynamics of the system.

3.1. Continuous MG

The continuous version of the MG is as follows [13]. The
system consists again of N agents playing the game. At
each time step t , each agent reacts to a common piece of
‘information’ �I(t), by taking an action or bid bi(t) (i =
1, . . . , N). Following the observation of [12] the information
�I(t) is taken to be a random noise, defined as a unit-
length vector in a D-dimensional space6, for instance R

D , δ-
correlated in time and uniformly distributed on the unit sphere7.
The bid b(t) is defined to be a real number, which can be
interpreted as placing an order in a market, of size |b(t)| and
positive/negative meaning buy/sell. Bids are prescribed by
strategies: maps from information to bid, R

D → R. For
simplicity the strategy space � of the model is restricted to the
subspace of homogeneous linear mappings, in contrast to the
whole space of binary functions in the MG. Thus a strategy
�R is defined as a vector in R

D , subject for normalization
to the constraint ‖ �R‖ = √

D, and the prescribed bid is the
scalar product �R · �I(t). Each agent has S strategies, drawn
randomly and independently from�with uniform distribution,
remaining fixed throughout the game. In what follows we will
focus for simplicity on the case of two strategies per agent,
S = 2, the generalization to S > 2 being straightforward (and

6 Here D is the analogue of 2m in the original model.
7 This is a convenient choice. Any other normalized isotropic distribution in
R
D , e.g. a Gaussian, would be qualitatively equally suitable. The same applies

to the strategies.
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Figure 1. Continuous formulation of the MG [13]: the scaled
volatility σ/

√
N as a function of the reduced dimension D/N , at

S = 2 and S = 4. The horizontal line is the variance in the random
case. The total time t and the initial time t0 are 10 000 steps.
Average over 100 samples, N = 100.

the case S = 1 being trivial, since there is no possibility of
adaptation on the part of the agents). At time step t each agent
i chooses one of his/her strategies �R�i (t) to play with. The
‘total bid’ (or ‘excess demand’) is then A(t) ≡ ∑

j bj (t) =∑
j

�R�j (t) · �I(t). The agents keep track of the potential success
of the strategies by assigning points to them, which are updated
according to P( �R, t + 1) = P( �R, t) − A(t) b( �R)/N , where
P( �R, t) represents the points of strategy �R at time t .

Let us now see whether the results obtained with this
continuous formulation of the MG are the same as in the
original binary setup. To this end we first review the results of
simulations. The average of the total bid A(t) over time and
quenched disorder is zero, as is expected from the symmetric
nature of the model. As discussed in the previous section, the
first relevant macroscopic observable is the standard deviation
σ of the total bid, or volatility, σ 2 ≡ N−1〈A2(t)〉, where the
overline means disorder average, 〈·〉 ≡ limt→∞ 1

t

∫ t0+t
t0

(·) dt ′,
and we have normalized σ by

√
N according to the findings

of [9]. In figure 1 we show that the main features of the MG
are reproduced: first, the relevant scaling parameter is the
reduced dimension of the strategy space d = D/N ; second,
the volatility starts for low d at a value larger than the one
corresponding to the agents choosing randomly, σr = 1 in
this case, decreases monotonically until it reaches a minimum
at d = dc(S), the minimum being shallower the higher is
the number of strategies S [15], and then it approaches σr

asymptotically from below. It is easy to check that all the
other standard features of the binary model are reproduced in
the continuous formulation.

3.2. Stochastic decision making

In the original formulation of the MG the agents played in a
deterministic fashion using their ‘best’ strategies, the ones with
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the highest number of points. In this subsection we introduce
indeterminacy (irrationality) on the part of the agents and show
that it can be advantageous.

In the TMG a natural generalization to non-deterministic
behaviour is allowed [13]. At time step t , each agent i chooses
�R�i (t) randomly from his/her { �Rai } with probabilities {πai (t)}

(a = 1, . . . , S). The probabilities πai (t) are functions of the
points parametrized by a ‘temperature’ T , defined so as to
interpolate between the MG case at T = 0, all the way up to
the totally random case πai = 1/S at T = ∞. The temperature
can be thought of as a measure of the power of resolution of
the agents: when T = 0 they are perfectly able to distinguish
which are their best strategies, while for increasing T they
are more and more confused, until for T = ∞ they choose
their strategy completely at random. In the language of Game
Theory, when T = 0 agents play ‘pure’ strategies, while at
T > 0 they play ‘mixed’ ones [6].

We now consider the consequences of having introduced
the temperature. For simplicity we assume S = 2.
For the probabilities we choose the form π

1,2
i (t) ∝

exp [±β sgn(pi(t))] (with
∑

a π
a
i (t) = 1 and β = 1/T ) [19],

which satisfies the requirements of the previous paragraph.
Consider now a value of d belonging to the worse-than-random
region of the MG (see figure 1) and let us see what happens
to the volatility σ when we switch on the temperature. We
know that for T = 0 we must recover the same value as in the
ordinary MG, while for T → ∞ we expect to obtain the value
σr of random choice. But in between a very interesting thing
occurs: σ(T ) is not a monotonically decreasing function of T ,
but there is a large intermediate temperature regime where σ is
smaller than the random value σr; see figure 2. The meaning of
this result is the following: even if the system is in a MG phase
which is worse than random, there is a way to significantly
decrease the volatility σ below the random value σr by not
always using the best strategy, but rather allowing a certain
degree of individual error.

Furthermore, even if we fix d at a value belonging to
the better-than-random region, but with d < dc, a similar
range of temperature still improves the behaviour of the
system, decreasing the volatility even below the MG value
(see figure 2). In the phase d > dc the behaviour changes;
the optimal value of σ is at T = 0, and the volatility simply
increases with increasing temperature towards σr, as shown in
figure 2.

Another possible functional form for the probabilities is
πai (t) ∝ exp [βP ( �Rai , t)]. For long but finite simulation time
this yields the results shown in figure 3(a) [13], which are
analogous to those of figure 2. However, the upturn of σ for
large temperatures for this choice of probabilities is only a
transient [16–18]: for any T � 1, if one waits for times of
orderNT the volatility stays at its smallest possible value; see
figure 3(b). Thus, we see that in the d < dc phase, for any finite
temperature the performance of the system will be better than
the original MG, and for any finite temperature T > O(1) the
performance will be optimal, provided one waits long enough.
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Figure 2. TMG: volatility as a function of the temperature for the
case of probabilities π1,2

i (t) ∝ exp [±β sgn(pi(t))]. Inset: volatility
as a function of d for different values of the temperature
T = 10−3, 1, 2, 10.

4. Continuous time dynamics of the
TMG
In this section we derive the continuous time limit of the TMG
as a starting point for the analytical study of its dynamics [19].
We do this in two steps. We first show that, to a good
approximation, the external information can be eliminated in
favour of an effective interaction between the agents. We then
cast the dynamical equations of the TMG as a set of stochastic
differential equations for an interacting disordered system
with non-trivial random diffusion. Again, for simplicity, we
consider explicitly S = 2.

The set of unconstrained degrees of freedom of the TMG
is given by the differences {pi(t)} of the points of the two
strategies of each agent. The choice of strategies used at each
stage is given by �R�i (t) = �ωi+�ξi sgn [si(t) + µ(t)], where �ωi ≡(

�R1
i + �R2

i

)
/2, �ξi ≡

(
�R1
i − �R2

i

)
/2, si(t) ≡ π1

i (t) − π2
i (t),

and µ(t) is a stochastic random variable uniformly distributed
between −1 and 1 and independently distributed in time. The
equations for the point differences then read

pi(t + 1) = pi(t)− (�a(t) · �I(t)) (�ξi · �I(t)), (1)

where �a(t) ≡ ∑
i

�R�i (t)/N . Equation (1), together with the
random processes for �I(t) and �R�i (t), define the dynamics of
the TMG.

We now consider the continuous time limit of equation (1)
in such a way as to preserve all the macroscopic features of the
TMG. To this end we introduce an arbitrary time step !t . We
deal first with the information �I(t). Let us assume that �I(t)
is a differential random motion in the space of strategies, i.e.,
�I(t) = ! �W(t), with zero mean and variance!t . Replacing in
equation (1) we obtain pi(t +!t) = pi(t)− �a(t) ·! �W(t) �ξi ·
! �W(t). In the limit !t → 0, and using the Kramers–Moyal
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Figure 3. (a) TMG: volatility as a function of the temperature T at
d = 0.1, for the case πai (t) ∝ exp [βP ( �Rai , t)], for finite waiting
time. In the inset we show d = 0.25. (b) The same as in (a) for
waiting times larger than NT .

expansion [20], we get

dpi(t) = − 1

ND

∑
j

�R�j (t) · �ξi dt + O(dt2). (2)

Note that to O(dt) the noise has been eliminated in favour
of an effective strategy interaction among the agents, and the
standard deviation becomes

σ 2 = 1

ND

〈 ∑
ij

�R�i (t) · �R�j (t)
〉
. (3)

When the temperature is different from zero the TMG
equation (2) still depends on the stochastic choice of strategies
�R�i (t), even at leading order. At each time step, �R∗

i takes
one of the two possible values �R1,2

i , defining a stochastic
jump process. In order to write the corresponding master

equation we need to know the transition probabilities. The
rhs of equation (2), which we denote !i , is a normalized
sum of N random numbers �ξi · �R�j (t), each with mean mij =
�ξi · �ωj +(�ξi ·�ξj ) sj (t), and variance vij = (�ξi ·�ξj )2[1−s2

j (t)]. By
the central limit theorem, we know that forN large!i will tend
to be normally distributed with mean 〈〈!i〉〉 = ∑

j mij , and
variance 〈!2

i 〉〉 = ∑
j vij , where 〈〈·〉〉 stands for the average

over realizations of the random process µ(t). Moreover, !i

and !j �=i are correlated, the covariance matrix given by

Mij [p(t)] ≡ 〈〈!i!j 〉〉 − 〈〈!i〉〉〈〈!j 〉〉
=

∑
k

(�ξi · �ξk)(�ξj · �ξk)
[
1 − s2

k (t)
]
, (4)

where p ≡ (p1, . . . , pN), etc. Collecting these results,
we obtain the transition probabilities in the large-N limit,
W(p′|p) = &(∇sH; M), where & corresponds to the normal
distribution with mean∇sH and covariance matrix M ≡ {Mij },
where the ‘Hamiltonian’ H is given by8

H = 1

2
' +

∑
i

hisi +
1

2

∑
ij

Jij sisj , (5)

with
hi ≡

∑
j

�ωj · �ξi/ND, Jij ≡ �ξj · �ξi/ND. (6)

Note that ∂H/∂si ∼ O(1), and Mij ∼ O(1/N), so that
fluctuations are also of O(1) and thus are not suppressed when
N → ∞.

The µ(t) are chosen independently at each time. If
we make the natural assumption that in the limit dt → 0
their correlation at different times is a δ-function, the master
equation becomes a Fokker–Planck equation by means of
Kramers–Moyal expansion [20]

∂P
∂t

= −
∑
i

∂

∂pi

(
∂H
∂si

P
)

+
1

2

∑
ij

∂2

∂pi∂pj

(
Mij P)

. (7)

The dynamics of the TMG is therefore effectively
described by a set of stochastic differential equations for the
point differences

dp = −∇sH dt + M · dW , (8)

where W (t) is an N -dimensional Wiener process, and the
volatility is given by σ 2 = 2〈H〉 +

∑
i Jii −

∑
i Jii〈s2

i 〉.
A detailed interpretation of H is given in the next section,

but briefly equation (8) is suggestive of it as a controlling
energy with the ‘motion’ of p given by its derivative. However
we note that for a natural analogue of Newton’s law or its
generalization to a noisy environment, as in the Langevin
equation, the derivative would be with respect to p, whereas
here it is with respect to s (which is a function of p), so that a
metric is needed to relate dp/dt to the natural force ∇sH. At
finite temperature one also has the unusual extra diffusive/noise
term M · dW . An investigation based on replacing ∇sH by
∇pH and ignoring the diffusive term was performed in [26].

8 This expression was first obtained, by a different procedure and with a
different interpretation, in [10].
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5. Interpretations
Notwithstanding the subtleties mentioned in the last
paragraphs, it is interesting to consider the implications of H
as a controlling function of the dynamics. The form of H
exhibited in equation (5) is a familiar one in statistical physics,
with −Jij interpreted as measuring the strength of correlation
between spins si and sj and −hi as a (magnetic) field acting
on si and trying to ‘orient’ it. Hence is formally justified the
interpretation of common ‘information’, to which all respond,
as providing a mechanism of effective mutual interaction9.
More particularly, taking account of the random character of
{hi} and {Jij }, H is reminiscent of the Sherrington–Kirkpatrick
model [24] of a spin glass and the Hopfield model [25] of a
neural network, in both cases augmented by random fields [2].
In the SK model theJij are chosen randomly from a distribution
with variance scaling asN−1, while for the Hopfield model Jij
is as given in equation (6), but with opposite sign and where
the Cartesian components of {�ξi} correspond to memorized
patterns of activity. In both of these models (SK and Hopfield)
the ground-state energy (minimum of the corresponding H) is
less than the energy associated with a paramagnet (value of
H corresponding to random {si}) due to judicious correlation
of the {Jij } and {si}, even with all the {hi} = 0. It is then
natural to ask whether a similar correlation is responsible for
the reduction of the volatility of the MG below that for random
operation. This is however not the case: in figure 4 [32]
we show the result of numerical simulations of a system in
which the second strategy of each agent �R2

i is exactly the
opposite of its first strategy, that is �R2

i = − �R1
i (with �R1

i still
chosen randomly at the start of the game), so that all the hi
are zero, and we note that σ never falls below the random
value. Clearly, the random field term is crucial in reducing the
volatility advantageously [10, 31].

The first term in the dynamical equations (8) corresponds
(up to a factor) to gradient descent in the surface defined by
H. The natural question then is whether the asymptotic states
reached by the dynamics are given by the typical extrema of
H, which would imply that in the long run the system reaches
macroscopic equilibrium. This issue was explored in [26]
(see also [27]), where H was minimized employing techniques
developed for the statistical mechanics of spin glasses [24,28]
and adapted for neural networks [29] (for reviews see [3,4,30]).
An excellent agreement with the numerics of the MG was found
in the phase d > dc, but this method failed to reproduce the
behaviour in the d < dc phase (see figure 5), although an
equilibrium transition was found at a value of d close to dc

10.
This seems to suggest that the behaviour of the MG in

the d < dc phase is dynamical in nature. A simple test is the

9 In fact, in conventional statistical physics, the converse is often employed in
formal analysis, replacing direct interaction by interaction through randomly
distributed global intermediates [21–23].
10 In the case of the TMG with probabilities πai (t) ∝ exp [βP ( �Rai , t)], the
asymptotic value of the volatility for large T (see figure 3(b)) coincides with
the one predicted from the equilibrium calculation of [26] (see also [17]). This
can be understood from equation (8): for large T , a systematic rescaling of
time and points can be used to eliminate the diffusive term in the equations,
and the effective dynamics becomes independent of T [19]. Note that this is
a consequence of the functional form of the probabilities, and does not hold
in the case π1,2

i (t) ∝ exp [±β sgn(pi(t))].
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Figure 4. Volatility for anticorrelated strategies �R2
i = − �R1

i

(squares) compared with the standard MG (solid line).

sensitivity to initial conditions. In figure 5 we show the results
of simulating the original dynamics equation (1) of the MG
starting from any initial conditions with |pi(0)| ∼ O(1) [19],
instead of the conventional choice of pi(0) = 011. We can
see that the the behaviour of the system is very different in the
regiond < dc: after an initial transient, the variance falls below
the initial random value and stays in the better-than-random
phase for all values of d. This sensitivity of the results to the
initial conditions is a clear indication that the system does not
equilibrate for d < dc. An important open problem in the MG
is finding the relation between the equilibrium (static) phase
transition obtained from minimization of the Hamiltonian
H [26] and the actual dynamical transition observed in the
simulations12.

The differential equations (7) and (8) provide the basis
for development of a macroscopic dynamics, either via the
dynamical replica theory of Coolen and Sherrington [33] or
via the generating functional approach [34]. However, we
defer this discussion to later papers.

Finally we remark on the relationship with the crowd–
anticrowd concept of [35], where a crowd is a group of agents
playing the same strategy and the corresponding anticrowd
play the opposite one. The proposal of [35] is that the
macroscopic properties of the MG can be described by the
behaviour of the crowd–anticrowd pairs. In this approach the
volatility of the system is approximated as the sum over all the
pairs of crowd–anticrowds of the square of the difference of
their sizes. We can formalize this concept in the continuous
formulation of the MG by defining the crowd–anticrowd pairs
in terms of the projection of the strategies used by the agents
on an arbitrary orthonormal basis {êµ} (µ = 1, . . . , D) of

11 Note that with the conventional choice the agents do not prefer initially any
of their strategies, while when |pi(0)| ∼ O(1) agents have initially a preferred
strategy.
12 In the case of anticorrelated strategies of figure 4, minimization of H gives
an equilibrium transition at d = 1 [31] while the d < 1 phase is out-of-
equilibrium.
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Figure 5. Volatility as a function of d for random initial conditions
(squares) compared with the standard MG (solid line). The dotted
line corresponds to the approximation of [26].

the strategy space: Nµ − Nµ̄ ≡ ∑
i êµ · �R�i . This definition

is analogous to that of ‘staggered’ magnetizations in a spin
system or a neural network [29]. If we write the volatility
using the approximation of [35] σ 2 = 1

N

∑
µ(Nµ −Nµ̄)

2, and
make use of the completeness relation of the {êµ}, we recover
equation (3). Moreover, an effective dynamics of crowds–
anticrowds, as proposed in [36], is exactly derivable from the
microscopic dynamical equations (8).

It is of course interesting to ask about the stability of
our conclusions to minor perturbations of the model. We
have already noted the stability of the qualitative features
of the original Minority Game to a change in the number
of strategies per agent (excluding the special case S =
1). This continues to the thermal extension. We have not
investigated explicitly changes to the learning rule but it
seems reasonable to expect qualitatively analogous behaviour
for other generalized minority rules, for example nonlinear
rewards but still favouring minority action [37]. Reward rules
involving capital accumulation and consequent variation of
potential market influence [38] are another natural extension,
as also evolution of the strategies themselves [39, 40]

6. Conclusion
In this paper we have discussed the application of techniques
and philosophy of the statistical physics of complex
cooperative frustrated many-body systems to a simple model
of agents in a competitive market. We have shown that this
can lead to both qualitatively and quantitatively new results
in the economics-inspired model and also, conversely, that
economics models can yield new challenges for statistical
physics. The techniques have included computer simulation
and analysis. In the simulations we have concentrated
on the macroscopic steady-state. In the analysis we have
derived a potentially useful microscopic formulation in
terms of stochastic differential equations, itself different and

more subtle than that normally encountered in conventional
condensed-matter statistical physics at the corresponding
coarse-grained microscopic level. The challenge still remains
to develop a full macrodynamics, both equilibrium and out-of-
equilibrium, but the derived microdynamics is the necessary
ingredient for extension of relevant techniques from statistical
physics.

We have restricted discussion to a model which is clearly
oversimplified from the perspective of a true economic market,
but it is possible to envisage still simplified but more realistic
models which should be capable of more truly analysing the
meaning of ‘efficiency’ and going beyond it.

Acknowledgments
It is a pleasure to thank Andrea Cavagna and Irene Giardina for
collaboration in part of the work reviewed in this paper. This
work was supported by EC Grant no ARG/B7-3011/94/27 and
EPSRC Grant no GR/M04426. We have also benefited from
ESF programme SPHINX.

References
[1] Anderson P W 1972 More is different—broken symmetry and

nature of hierarchical structure in science Science 177 393
[2] Young A P (ed) 1998 Spin Glasses and Random Fields

(Singapore: World Scientific)
[3] Sherrington D 1999 Spin glasses Physics of Novel Materials

ed M P Das (Singapore: World Scientific) p 146
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