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Continuous time dynamics of the thermal minority game
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We study the continuous time dynamics of the thermal minority game. We find that the dynamical equations
of the model reduce to a set of stochastic differential equations for an interacting disordered system with
nontrivial random diffusion. This is the simplest microscopic description which accounts for all the features of
the system. Within this framework, we study the phase structure of the model and find that its macroscopic
properties strongly depend on the initial conditions.
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Many of the current challenges for statistical physics havehe MG performs worse than random, the system can be
their origins in problems in biologll] and economic§2,3]. made to perform better than random by allowing a certain
In particular, the application of ideas and techniques of thelegree of individual stochastic error.
statistical mechanics of disordered systems can prove useful In the present Rapid Communication we carefully study
in the study of systems of adaptive and competitive agentshe continuous time limit of the TMG, in order to obtain the
which are relevant, for example, to the microscopic modelsimplest microscopic description which accounts dtirthe
ing of financial markets; and, conversely, such problems camacroscopic features of the system, and as a further step
raise new issues for statistical physics. One of these systemigwards an analytical solution of the model. We confirm that
is the minority gamegMG) [4,5], a simple model based on the external information “integrates-out,” providing simply
Arthur's “El Farol” bar problem[6], which describes the 4 effective coupling between agents. We also show the cru-
behavior of a group of competing heterogeneous agents suBy| dependence of the macroscopic properties of the model
ject to the economic law of supply and demand. Despite it$) the initial conditions. We find that the microscopic equa-

simplicity,hthebMG Is \éery ncr)]ntrivia:., ar_:(/d 9a|thodugh mgch tions of the TMG reduce to a set of disordered stochastic
progress has been made in the qualitalited] and quanti- differential equations with a nontrivial random diffusion ma-

tatlve_ (10,11 under_stan_dmg_ Of. its features, a full analytic trix, and study the phase structure of the model in the
solution of the MG s still missing. temperature-dimension plane
The main hurdles in the way of an analytical study of the The setup of the TMG is as followgl3]. The system

MG in its original formulation were its nonlocality in time . N lavi h A h i
due to the dependence on the game history, its discrete kin§2nSiSts 0N agents playing the game. At each time step

matics and dynamics, and the “best-strategy” rylee, €ach agent reacts to a common piece of “informatidit),
however[10]). The first of these obstacles was overcome inby making a “bid” b;(t) (i=1,... N). The information, de-
[12], where it was shown numerically that the macroscopidined as a unit-length vector iRP, is taken to be a random
behavior of the MG was unchanged if the real history wasoise, 5-correlated in time and uniformly distributed on the
replaced by a random one. This allowed the study of a simunit spherd14]. The bidb(t) is defined to be a real number,
pler stochastic Markovian problem instead of the originalwhich can be interpreted as placing an order in a market, of
deterministic non-Markovian one. size|b(t)| and positive(negativé meaning buy(sell). Bids

In [13] a natural continuous generalization of the MG wasgre prescribed by “strategies”: maps from information to
presented. The “information” to which the agents reactedbid’RD_)R_ For simplicity the strategy spadeof the model

was taken as an external input to the system and it wag regtricted to the subspace of homogeneous linear map-
shown that all the macroscopic features of the MG were . > i D :
ings. A strategyR is defined as a vector iR", subject to

preserved, as long as the external information was ergodic iR J
time, the simplest choice being just noise. To handle théhe constrain{|R| =D, and the prescribed bid is just the
problem of the “best-strategy” rule, the thermal minority scalar producR- i (t). Each agent ha$ strategies, drawn
game(TMG) was introduced, in which a certain degree of randomly and independently froi (with uniform distribu-
stochasticity in the choice of the strategies by the agents wagon) remaining fixed throughout the game. In what follows
allowed, controlled by a parametérthe “temperature,” the e will restrict for simplicity to the case of two strategies per
limits T=0 andT=c corresponding to the original deter- agentS=2, the generalization t&>2 being straightfor-
ministic MG and the case of completely random strategyward. At time stept each agent chooses one of his or her
choices, respectively. The TMG displayed extra nontriVialstrategiesﬁi*(t) to play with. The “total bid” (or “excess

structure as a function df, notably that in the region where . N -
y g demand’) is thenA(t)=ZX;b;(t) =EJ-Rj*(t) -1(t). The agents
keep track of the potential success of the strategies by as-
*Email address: j.garrahan1@physics.ox.ac.uk signing points »to them, wtuch are updateq according to
"Email address: e.morol@physics.ox.ac.uk P(R,t+1)=P(R,t) =A(t)b(R)/N, where P(R,t) repre-
*Email address: d.sherrington1@physics.ox.ac.uk sents the points of stratedy at timet.
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In the original formulation of the MG the agents played in 3.0
a deterministic fashion using their “best” strategies, the
ones with the highest number of points. In the TMG the
natural generalization to nondeterministic behavior is al-
lowed. At time stept, each agenit choosesﬁi* (t) randomly 20 |
from his or her{R ,R?} with probabilities{w(t),w3(t)}.
The probabilities7f(t) are functions of the points param- c
eterized by a temperatuig defined so as to interpolate be-
tween the MG case aI=0, all the way up to the totally

1.0 |
random caser; = 7?=1/2 atT=. The qualitative behavior
of the system does not depend on the specific functional
form of the w2(t). In [13] the probabilities were defined as
At cexd P(R,1)] [with #i(t)+ 7 (t)=1 and 8 00 . .
=1/T], while an alternative convenient form is given by ) 10™ 10° 10’
mh At cexd = Bz(t)], where z(t)=sgrp;(t)], with p;(t) d
— 31 32 . .
=[P(Ri,t) —P(R7,1)]/2. The consequential difference be- kg 1. volatility o as a function of the reduced dimensidn
tween these two definitions will be discussed below. =D/N. Squares M) correspond to the original dynamics Eq$);

The set of unconstrained degrees of freedom of the TMGircles (©) to simulations of Eqs(3), where an Euler algorithm has
is given by the differencep;(t) of the points of the two been used with time stegt=0.05; diamonds ¢ ) to the approxi-
strategies of each agent. The choice of strategies can then hetion of[11]. In the inset we show as a function ofl. Average
defined by R*(t)=h;+& sgrs;(t)+u(t)], where s/(t)  over 100 sampledy=100; t=to=10".
=ai )= (1), o=RI+R)2, &E=(R'-R)/2, and
u(t) is a stochastic random variable uniformly distributed
between—1 and 1 and independently distributed in time.

The equations for the point differences then read, o?=(ND) Xa(t)-a(t)).
At T=0, corresponding to the MG, Eg$§2) are com-
pletely deterministic. To first order idt we have

Note that toO(dt) the noise has been eliminated in favor of
an effective interaction among the agents, andsth®comes

pi(t+1)=pi(t)—a(t) - [(t)&-1(1), (1)

dpi(t)=— dt, 3

where a(t)=3;R*(t)/N. Equations(1), together with the hi+§j: Jisi(H

random processes fd?(t) andRf (t), define the dynamics of

the TMG. WherehiEch:;]— . éi IND andJ; EEI- . Ei /ND, while the vola-
The average of the total bitl(t) over time and quenched tility reads

disorder is zero, so the first relevant macroscopic observable

of the TMG is its normalized standard deviatior{or “vola- y =

tility” ) o>=N"1(A%(t)), where the overline means disorder o :Q“LZZ hi(zi(t)>+i§j: Ji{z(Hz;(1)), 4)

average, and-)=lim._,.. 1/tf:g+t(-) dt’. In [13] it was

found thato had a nontrivial structure both as a function of and Q=3;;w;- w;/ND. In order to check the continuous
the reduced dimension of the strategy spdeeD/N and of  time approximation al =0 we have simulated Eq&3). Re-

the temperature. The second important observable is the frasults are presented in Fig. 1. We can see that this approxi-
tion ¢ of “frozen” agents, defined as those for which mation reproduces all the features of the original MG. Note
one of the strategies always outperforms the othgr, thatin Egs(3) all stochasticity coming from the information
=N"13;6(](z(t))|— 1), with the normalizations(0)=1. It ~ has dropped out, the only effect being a small quantitative
was introduced iff10] as an order parameter for the MG, deviation in the lowd region.

where it was found tha#(d) changed from zero to a finite Equations(3) can be rewritten adp/dt=—V/H, where

value atd=d,. p=(p1, - ..,pPn), Similarly for s, and
We now consider the continuous time limit of Eq4)
in such a way as to preserve all the macroscopic features 1 1
of the TMG. To this end we introduce an arbitrary time step H= §Q+§i: hisi+5 %: JijSis; - ®

At. We deal first with the informatiom(t). Let us assume
that I(t) is a differential random motion in the space of This is similar to what was done if1] for the time and
strategies, i.e.](t)=AW(t), with zero mean and variance information averages of . There the value ofr was related
At. Replacing in Egs.(1) we obtain p;(t+At)=p;(t) o the average extrema 6{ by assuming that the system
—a(t)- AW(t) & - AW(t). In the limit At—0, and using the faqunlbrated. A good agregment with the numerics was found
Kramers—MoyaII expansiofiL5], we get in the phasal>d., but this method failed to reproduce the

' behavior in thed<d. phase(see Fig. 1 This disagreement
L was speculated as due to the need for terms with higher order
dpi(t)=—a(t)- &dt/D+O(dt?). (2 time derivatives in the continuous time equations. This is,
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FIG. 2. Volatility as a function ofi for random initial conditions FIG. 3. Volatility as a function of the temperature from the
|pi(0)|=0(1), for theoriginal dynamics Eqs(1) and the continu- continuous dynamics EgE3). Inset: volatility as a function ol for
ous time approximation Eq¢3). Dotted lines correspond to zero different values of the temperatufe=10"%,1, 2,10 @, OJ, 4,
initial conditions and the approximation ¢11]. In the inset we andA, respectively. A second order stochastic Heun algorithm has
show the fraction of frozen agents. Symbols and details of the been used with time stegt=0.02. Average over 20 realizations of
simulations are the same as in Fig. 1. the Wiener process and 50 samplés=100; t=t,=10% initial

conditionsp(t=0)=0.
however, not the case since, as we have just shown,(Bgs.
describe CorreCtly the dynamiCS of the model &ir values Sponds to the normal distribution with meﬁg}—( and cova-
of d (see Fig. 1 _ N . riance matrixM={M;;}. Note thatgH/ds;~O(1), andM;;

The phasel<d, of the MG is very sensitive to the initial ~ (1/N), so that fluctuations are also 61) and thus are
conditions. In Fig. 2 we show the results of simulating bothnot suppressed wheN— .
the original dynamics Eqsl) and the continuous time ap-  The R*(t) are chosen independently at each time. If we
proximation Eqs(3) stz_;lrtlng from random initial cqnd|t|ons make the natural assumption that in the lirdit—0 their
pi(0)|=0(1). From Fig. 2, we see that the behavior of both ¢ rejation at different times is @-function, the master

o and ¢ is different from that of Fig. 1 in the regiod  gqyation becomes a Fokker-Planck equation by means of
<d;: the system stays in the better-than-random phase fQ(ramers—MoyaI expansiofiL5]

all values ofd. Again the continuous time dynamics is very

close to the original discrete one. This sensitivity of the re- aP d

sults to the initial conditions is a clear indication that the e _Ei a_p- + 5 IE W
system does not equilibrate fd<d,, and raises a question ' S

on the existence and character of the “phase transition” inye therefore conclude that the dynamics of the TMG is ef-

the MG [10]. o fectively described by a set of stochastic differential equa-
When the temperature is different from zero the TMGtjons for the point differences

Egs. (2) still depend on the stochastic choice of strategies

R*(t), even at leading order. At each time st&j, takes dp= -V Hdt+M-dW, 8
one of the two possible valueR'?, defining a stochastic . . . .
jump process. In order to write the corresponding masteYVher_e_W_(t) _'S an N-d;me@nal Wiener progess, and the
equation we need to know the transition probabilities. Thevolatility is given by o*=2(H) +2; J;i —2J;(s(). .
right-hand side of Eg(2), which we denoté\, , is a normal- We have checked by means of extensive numerical simu-

; e ; lations that Eqs(8) give thesameresults as Eq92), up to
ized sum ofN random numbers; - R} (t), each with mean statistical errors. Figures 3 and 4 present the results from the

&i- ot &+ ¢5i(t), and variance & - §)1-s{()]. By the  continuous time dynamics Eq@). For these simulations we
central limit theorem, we know that fo¥ largeA; will tend  have chosen for the strategy-use probabilities the form
to be normally distributed with meaf{A;))=dH/ds;, and  ;l3t)cexd = Bz(t)], which makes the numerics simpler.
variance((A7))=2;J;[1-sj(t)], where((-)) stands for  gjmilar results can be obtained with the form>(t)
average over realizations of the random proqess). M.ore.— xexp{ﬂP(ﬁil'z,t)], but a smallp cutoff of O(dt) is required
over,A; andAj.; are correlated, the covariance matrix given, id th : di 0 . |
by 0 avol the system g_e_ttlng trappe n thes 0 region. In
Fig. 3 we plot the volatility as a function of the temperature,
showing that the behavior is the same as the one found in
Mii PO 1= CAA N = ((ANAN) = Judi[1-SE(D].  [13]: for d<d., asT is increasedr first drops to a mini-
: 6) mum, and then increases towards the random aasg; for
d>d;, the optimum value is the MG one, and simply
Collecting these results, we obtain the transition probabilitiegrows monotonically to 1. In the inset we giveas a func-
in the largeN limit, W(p'|p)=®(VH; M), whered corre- tion of d for different temperatures.

IH 1 92
—P

3 (Mj;P). (1)
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In the case where the probabilities are definedra§(t)

«exfd BP(RM2,t)], the monotonic increase af to the ran-
dom value at largd reported in[13] is due to finite waiting
times, as pointed out ifl7]: for t=>NT the volatility stays at
the minimum value for any finitd>1. This phenomenon is
easily understood from Eqg€8). For large values of, there

is first a transient in whick; =tanhgp; are close to zero, and
Egs. (8) reduce tOdpi%_hidt‘FEijik\]jde', i.e., the
point differences of all the agents do a randomly biased
Brownian motion, and the system performs as in the random
case. Eventually, howevep; become ofO(T) ands; finite,
and the system effectively behaves as Tor O(1). Note
that this cannot happen whep=tanhgz .

Equationsg(8) are much simpler than the original ones for
the microscopic description of the TMG. The external infor-
mation has been replaced by an interaction among the agents
and the random strategy choice has given rise to the diffusive
term. They describe a dynamics which is different from the
relaxation of disordered systems usually found in physical

Figure 4 shows how the fraction of frozen agents varies aproblems: the random forc€;H can be written as the gra-
the temperature is increased. For all valuegidhere is a dient of a potential function only up to a factor, which
clear jump atT=0(1) from the MG value togp=1 [16]. amounts to a metric in the space pf and the nontrivial
Figures 3 and 4 determine the phase diagram of the TMG iuliffusion matrix M depends both on the variablpsand on
the d,T) plane. It is schematically depicted in the inset of the quenched disorder of the problem. Finding adequate ana-
Fig. 4. For lowd and T the system performs worse than |ytic asymptotic solutions to this dynamics is the next chal-
random, while for large enough values Bfthe system be- |enging task.
comes random, independently afBetter than random per-
formance is achieved between these two regions. It is impor-
tant to note that, as in the case of the MG, the phase structure We thank J.-P. Bouchaud, A. Cavagna, |. Giardina, G.
of the TMG depends strongly on the initial conditions. In Lythe, and D. Williams for useful discussions. This work
particular, the low ¢, T) part of the phase diagram shrinks to was supported by EC Grant No. ARG/B7-3011/94/27 and
zero for finite random initial conditions. EPSRC Grant No. GR/M04426.

FIG. 4. Fraction of frozen agent as a function ofT. Inset:
schematic phase diagram of the TMG in tlieT) plane. Dashed
lines indicate crossovers rather than sharp transitions.
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