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Continuous time dynamics of the thermal minority game
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We study the continuous time dynamics of the thermal minority game. We find that the dynamical equations
of the model reduce to a set of stochastic differential equations for an interacting disordered system with
nontrivial random diffusion. This is the simplest microscopic description which accounts for all the features of
the system. Within this framework, we study the phase structure of the model and find that its macroscopic
properties strongly depend on the initial conditions.

PACS number~s!: 02.50.Le, 05.65.1b, 05.70.Fh, 87.23.Ge
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Many of the current challenges for statistical physics ha
their origins in problems in biology@1# and economics@2,3#.
In particular, the application of ideas and techniques of
statistical mechanics of disordered systems can prove us
in the study of systems of adaptive and competitive age
which are relevant, for example, to the microscopic mod
ing of financial markets; and, conversely, such problems
raise new issues for statistical physics. One of these sys
is the minority game~MG! @4,5#, a simple model based o
Arthur’s ‘‘El Farol’’ bar problem @6#, which describes the
behavior of a group of competing heterogeneous agents
ject to the economic law of supply and demand. Despite
simplicity, the MG is very nontrivial, and although muc
progress has been made in the qualitative@7–9# and quanti-
tative @10,11# understanding of its features, a full analyt
solution of the MG is still missing.

The main hurdles in the way of an analytical study of t
MG in its original formulation were its nonlocality in time
due to the dependence on the game history, its discrete k
matics and dynamics, and the ‘‘best-strategy’’ rule~see,
however,@10#!. The first of these obstacles was overcome
@12#, where it was shown numerically that the macrosco
behavior of the MG was unchanged if the real history w
replaced by a random one. This allowed the study of a s
pler stochastic Markovian problem instead of the origin
deterministic non-Markovian one.

In @13# a natural continuous generalization of the MG w
presented. The ‘‘information’’ to which the agents react
was taken as an external input to the system and it
shown that all the macroscopic features of the MG w
preserved, as long as the external information was ergod
time, the simplest choice being just noise. To handle
problem of the ‘‘best-strategy’’ rule, the thermal minori
game~TMG! was introduced, in which a certain degree
stochasticity in the choice of the strategies by the agents
allowed, controlled by a parameterT, the ‘‘temperature,’’ the
limits T50 andT5` corresponding to the original dete
ministic MG and the case of completely random strate
choices, respectively. The TMG displayed extra nontriv
structure as a function ofT, notably that in the region wher
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the MG performs worse than random, the system can
made to perform better than random by allowing a cert
degree of individual stochastic error.

In the present Rapid Communication we carefully stu
the continuous time limit of the TMG, in order to obtain th
simplest microscopic description which accounts forall the
macroscopic features of the system, and as a further
towards an analytical solution of the model. We confirm th
the external information ‘‘integrates-out,’’ providing simpl
an effective coupling between agents. We also show the
cial dependence of the macroscopic properties of the mo
on the initial conditions. We find that the microscopic equ
tions of the TMG reduce to a set of disordered stocha
differential equations with a nontrivial random diffusion m
trix, and study the phase structure of the model in
temperature-dimension plane.

The setup of the TMG is as follows@13#. The system
consists ofN agents playing the game. At each time stept,

each agent reacts to a common piece of ‘‘information’’IW(t),
by making a ‘‘bid’’ bi(t) ( i 51, . . . ,N). The information, de-
fined as a unit-length vector inRD, is taken to be a random
noise,d-correlated in time and uniformly distributed on th
unit sphere@14#. The bidb(t) is defined to be a real numbe
which can be interpreted as placing an order in a market
size ub(t)u and positive~negative! meaning buy~sell!. Bids
are prescribed by ‘‘strategies’’: maps from information
bid, RD→R. For simplicity the strategy spaceG of the model
is restricted to the subspace of homogeneous linear m

pings. A strategyRW is defined as a vector inRD, subject to

the constraintiRW i5AD, and the prescribed bid is just th

scalar productRW • IW(t). Each agent hasS strategies, drawn
randomly and independently fromG ~with uniform distribu-
tion! remaining fixed throughout the game. In what follow
we will restrict for simplicity to the case of two strategies p
agent S52, the generalization toS.2 being straightfor-
ward. At time stept each agenti chooses one of his or he
strategiesRW i

!(t) to play with. The ‘‘total bid’’ ~or ‘‘excess

demand’’! is thenA(t)[( jbj (t)5( jRW j
!(t)• IW(t). The agents

keep track of the potential success of the strategies by
signing points to them, which are updated according
P(RW ,t11)5P(RW ,t)2A(t)b(RW )/N, where P(RW ,t) repre-
sents the points of strategyRW at time t.
R9 ©2000 The American Physical Society
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In the original formulation of the MG the agents played
a deterministic fashion using their ‘‘best’’ strategies, t
ones with the highest number of points. In the TMG t
natural generalization to nondeterministic behavior is
lowed. At time stept, each agenti choosesRW i* (t) randomly

from his or her$RW i
1 ,RW i

2% with probabilities$p i
1(t),p i

2(t)%.
The probabilitiesp i

a(t) are functions of the points param
eterized by a temperatureT, defined so as to interpolate be
tween the MG case atT50, all the way up to the totally
random casep i

15p i
251/2 atT5`. The qualitative behavior

of the system does not depend on the specific functio
form of thep i

a(t). In @13# the probabilities were defined a

p i
1,2(t)}exp@bP(RW i

1,2,t)# @with p i
1(t)1p i

2(t)51 and b
51/T], while an alternative convenient form is given b
p i

1,2(t)}exp@6bzi(t)#, where zi(t)[sgn@pi(t)#, with pi(t)

[@P(RW i
1 ,t)2P(RW i

2 ,t)#/2. The consequential difference b
tween these two definitions will be discussed below.

The set of unconstrained degrees of freedom of the T
is given by the differencepi(t) of the points of the two
strategies of each agent. The choice of strategies can the
defined by RW i* (t)5hW i1jW i sgn@si(t)1m(t)#, where si(t)

[p i
1(t)2p i

2(t), vW i[(Ri
11Ri

2)/2, jW i[(Ri
12Ri

2)/2, and
m(t) is a stochastic random variable uniformly distribut
between21 and 1 and independently distributed in tim
The equations for the point differences then read,

pi~ t11!5pi~ t !2aW ~ t !• IW~ t !jW i• IW~ t !, ~1!

where aW (t)[( iRW i
!(t)/N. Equations~1!, together with the

random processes forIW(t) andRi* (t), define the dynamics o
the TMG.

The average of the total bidA(t) over time and quenche
disorder is zero, so the first relevant macroscopic observ
of the TMG is its normalized standard deviations ~or ‘‘vola-
tility’’ ! s2[N21^A2(t)&, where the overline means disord
average, and̂ •&[ limt→` 1/t* t0

t01t(•) dt8. In @13# it was

found thats had a nontrivial structure both as a function
the reduced dimension of the strategy spaced5D/N and of
the temperature. The second important observable is the
tion f of ‘‘frozen’’ agents, defined as those for whic
one of the strategies always outperforms the other,f
[N21( id(u^zi(t)&u21), with the normalizationd(0)51. It
was introduced in@10# as an order parameter for the MG
where it was found thatf(d) changed from zero to a finite
value atd5dc .

We now consider the continuous time limit of Eqs.~1!
in such a way as to preserve all the macroscopic feat
of the TMG. To this end we introduce an arbitrary time st
Dt. We deal first with the informationIW(t). Let us assume
that IW(t) is a differential random motion in the space
strategies, i.e.,IW(t)5DWW (t), with zero mean and varianc
Dt. Replacing in Eqs.~1! we obtain pi(t1Dt)5pi(t)
2aW (t)•DWW (t)jW i•DWW (t). In the limit Dt→0, and using the
Kramers-Moyal expansion@15#, we get

dpi~ t !52aW ~ t !•jW idt/D1O~dt2!. ~2!
l-

al
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Note that toO(dt) the noise has been eliminated in favor
an effective interaction among the agents, and thes becomes

s25(ND)21^aW (t)•aW (t)&.
At T50, corresponding to the MG, Eqs.~2! are com-

pletely deterministic. To first order indt we have

dpi~ t !52Fhi1(
j

Ji j sj~ t !Gdt, ~3!

wherehi[( jvW j•jW i /ND andJi j [jW j•jW i /ND, while the vola-
tility reads

s25V̄12(
i

hi^zi~ t !&1(
i j

Ji j ^zi~ t !zj~ t !&, ~4!

and V[( i j vW i•vW j /ND. In order to check the continuou
time approximation atT50 we have simulated Eqs.~3!. Re-
sults are presented in Fig. 1. We can see that this appr
mation reproduces all the features of the original MG. No
that in Eqs.~3! all stochasticity coming from the informatio
has dropped out, the only effect being a small quantitat
deviation in the lowd region.

Equations~3! can be rewritten asdp/dt52¹sH, where
p[(p1 , . . . ,pN), similarly for s, and

H5
1

2
V1(

i
hisi1

1

2 (
i j

Ji j sisj . ~5!

This is similar to what was done in@11# for the time and
information averages ofzi . There the value ofs was related
to the average extrema ofH by assuming that the system
equilibrated. A good agreement with the numerics was fou
in the phased.dc , but this method failed to reproduce th
behavior in thed,dc phase~see Fig. 1!. This disagreemen
was speculated as due to the need for terms with higher o
time derivatives in the continuous time equations. This

FIG. 1. Volatility s as a function of the reduced dimensiond
5D/N. Squares (j) correspond to the original dynamics Eqs.~1!;
circles (s) to simulations of Eqs.~3!, where an Euler algorithm ha
been used with time stepdt50.05; diamonds (L) to the approxi-
mation of@11#. In the inset we showf as a function ofd. Average
over 100 samples;N5100; t5t05104.
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however, not the case since, as we have just shown, Eqs~3!
describe correctly the dynamics of the model forall values
of d ~see Fig. 1!.

The phased,dc of the MG is very sensitive to the initia
conditions. In Fig. 2 we show the results of simulating bo
the original dynamics Eqs.~1! and the continuous time ap
proximation Eqs.~3! starting from random initial conditions
upi(0)u5O(1). From Fig. 2, we see that the behavior of bo
s and f is different from that of Fig. 1 in the regiond
,dc : the system stays in the better-than-random phase
all values ofd. Again the continuous time dynamics is ve
close to the original discrete one. This sensitivity of the
sults to the initial conditions is a clear indication that t
system does not equilibrate ford,dc , and raises a questio
on the existence and character of the ‘‘phase transition’
the MG @10#.

When the temperature is different from zero the TM
Eqs. ~2! still depend on the stochastic choice of strateg
Ri* (t), even at leading order. At each time step,Ri* takes
one of the two possible valuesRi

1,2, defining a stochastic
jump process. In order to write the corresponding mas
equation we need to know the transition probabilities. T
right-hand side of Eq.~2!, which we denoteD i , is a normal-
ized sum ofN random numbersjW i•Rj* (t), each with mean

jW i•vW j1jW i•jW j sj (t), and variance (jW i•jW j )
2@12sj

2(t)#. By the
central limit theorem, we know that forN largeD i will tend
to be normally distributed with mean̂̂D i&&5]H/]si , and
variance^^D i

2&&5( j Ji j
2 @12sj

2(t)#, where ^^•&& stands for
average over realizations of the random processm(t). More-
over,D i andD j Þ i are correlated, the covariance matrix giv
by

Mi j @p~ t !#[^^D iD j&&2^^D i&&^^D j&&5(
k

JikJjk@12sk
2~ t !#.

~6!

Collecting these results, we obtain the transition probabili
in the largeN limit, W(p8up)5F(¹sH;M), whereF corre-

FIG. 2. Volatility as a function ofd for random initial conditions
upi(0)u5O(1), for theoriginal dynamics Eqs.~1! and the continu-
ous time approximation Eqs.~3!. Dotted lines correspond to zer
initial conditions and the approximation of@11#. In the inset we
show the fraction of frozen agentsf. Symbols and details of the
simulations are the same as in Fig. 1.
or

-

n

s

r
e

s

sponds to the normal distribution with mean¹sH and cova-
riance matrixM[$Mi j %. Note that]H/]si;O(1), andMi j
;O(1/N), so that fluctuations are also ofO(1) and thus are
not suppressed whenN→`.

The Ri* (t) are chosen independently at each time. If w
make the natural assumption that in the limitdt→0 their
correlation at different times is ad-function, the master
equation becomes a Fokker-Planck equation by mean
Kramers-Moyal expansion@15#

]P
]t

52(
i

]

]pi
S ]H

]si
PD1

1

2 (
i j

]2

]pi]pj
~Mi j P!. ~7!

We therefore conclude that the dynamics of the TMG is
fectively described by a set of stochastic differential eq
tions for the point differences

dp52¹sH dt1M•dW, ~8!

where W(t) is an N-dimensional Wiener process, and th
volatility is given bys252^H&1( i Jii 2( iJii ^si

2&.
We have checked by means of extensive numerical si

lations that Eqs.~8! give thesameresults as Eqs.~2!, up to
statistical errors. Figures 3 and 4 present the results from
continuous time dynamics Eqs.~8!. For these simulations we
have chosen for the strategy-use probabilities the fo
p i

1,2(t)}exp@6bzi(t)#, which makes the numerics simple
Similar results can be obtained with the formp i

1,2(t)

}exp@bP(RW i
1,2,t)#, but a small-p cutoff of O(dt) is required

to avoid the system getting trapped in thep50 region. In
Fig. 3 we plot the volatility as a function of the temperatu
showing that the behavior is the same as the one foun
@13#: for d,dc , as T is increaseds first drops to a mini-
mum, and then increases towards the random cases51; for
d.dc , the optimum value is the MG one, ands simply
grows monotonically to 1. In the inset we gives as a func-
tion of d for different temperatures.

FIG. 3. Volatility as a function of the temperature from th
continuous dynamics Eqs.~8!. Inset: volatility as a function ofd for
different values of the temperatureT51023, 1, 2, 10 (d, h, l,
andn, respectively!. A second order stochastic Heun algorithm h
been used with time stepdt50.02. Average over 20 realizations o
the Wiener process and 50 samples;N5100; t5t05104; initial
conditionsp(t50)50.
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Figure 4 shows how the fraction of frozen agents varies
the temperature is increased. For all values ofd there is a
clear jump atT5O(1) from the MG value tof51 @16#.
Figures 3 and 4 determine the phase diagram of the TMG
the (d,T) plane. It is schematically depicted in the inset
Fig. 4. For low d and T the system performs worse tha
random, while for large enough values ofT the system be-
comes random, independently ofd. Better than random per
formance is achieved between these two regions. It is imp
tant to note that, as in the case of the MG, the phase struc
of the TMG depends strongly on the initial conditions.
particular, the low (d,T) part of the phase diagram shrinks
zero for finite random initial conditions.

FIG. 4. Fraction of frozen agentsf as a function ofT. Inset:
schematic phase diagram of the TMG in the (d,T) plane. Dashed
lines indicate crossovers rather than sharp transitions.
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In the case where the probabilities are defined asp i
1,2(t)

}exp@bP(RW i
1,2,t)#, the monotonic increase ofs to the ran-

dom value at largeT reported in@13# is due to finite waiting
times, as pointed out in@17#: for t@NT the volatility stays at
the minimum value for any finiteT@1. This phenomenon is
easily understood from Eqs.~8!. For large values ofT, there
is first a transient in whichsi5tanhbpi are close to zero, and
Eqs. ~8! reduce to dpi'2hidt1( jkJikJjkdWj , i.e., the
point differences of all the agents do a randomly bias
Brownian motion, and the system performs as in the rand
case. Eventually, however,pi become ofO(T) andsi finite,
and the system effectively behaves as forT;O(1). Note
that this cannot happen whensi5tanhbzi .

Equations~8! are much simpler than the original ones f
the microscopic description of the TMG. The external info
mation has been replaced by an interaction among the ag
and the random strategy choice has given rise to the diffu
term. They describe a dynamics which is different from t
relaxation of disordered systems usually found in physi
problems: the random force¹sH can be written as the gra
dient of a potential function only up to a factor, whic
amounts to a metric in the space ofp, and the nontrivial
diffusion matrixM depends both on the variablesp and on
the quenched disorder of the problem. Finding adequate
lytic asymptotic solutions to this dynamics is the next ch
lenging task.

We thank J.-P. Bouchaud, A. Cavagna, I. Giardina,
Lythe, and D. Williams for useful discussions. This wo
was supported by EC Grant No. ARG/B7-3011/94/27 a
EPSRC Grant No. GR/M04426.
ton,

the

m-

e

, I.
34.
@1# See, for example,Landscape Paradigms in Physics and Bio
ogy, edited by H. Frauenfelderet al. ~North-Holland, Amster-
dam, 1997!.

@2# The Economy as an Evolving Complex System, edited by P.W.
Anderson, K. Arrow, and D. Pines~Addison-Wesley, Red-
wood City, CA, 1988!.

@3# J.D. Farmer, e-print adap-org/9912002.
@4# D. Challet and Y.-C. Zhang, Physica A246, 407 ~1997!.
@5# R. Savit, R. Manuca, and R. Riolo, Phys. Rev. Lett.82, 2203

~1999!.
@6# W.B. Arthur, Science284, 107 ~1999!.
@7# N.F. Johnson, M. Hart, and P.M. Hui, Physica A269, 1

~1999!.
@8# R. D’hulst and G.J. Rodgers, Physica A270, 222 ~1999!.
@9# M. Hart, P. Jefferies, N.F. Johnson, and P.M. Hui, e-pr

cond-mat/0003486.

t

@10# D. Challet and M. Marsili, Phys. Rev. E60, R6271~1999!.
@11# D. Challet, M. Marsili, and R. Zecchina, Phys. Rev. Lett.84,

1824 ~2000!.
@12# A. Cavagna, Phys. Rev. E59, R3783~1999!.
@13# A. Cavagna, J.P. Garrahan, I. Giardina, and D. Sherring

Phys. Rev. Lett.83, 4429~1999!.
@14# Any other normalized isotropic distribution inRD, e.g., a

Gaussian, would be equally suitable. The same applies to
strategies.

@15# N.G. van Kampen,Stochastic Processes in Physics and Che
istry ~North-Holland, Amsterdam, 1992!.

@16# When T.0, the fraction of agents playing always the sam
strategy is not given byf but rather byu^s&u}f tanhb.

@17# D. Challet, M. Marsili, and R. Zecchina, Comment to@13#
e-print cond-mat/0004308; A. Cavagna, J.P. Garrahan
Giardina, and D. Sherrington, Reply e-print cond-mat/0051


