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Disruptions, such as closures of businesses during pandemics, not only
affect businesses and amenities directly but also influence how people

move, spreading the impact to other businesses and increasing the overall
economic shock. However, it is unclear how much businesses depend

on each other during disruptions. Leveraging human mobility data and
same-day visits in five US cities, we quantify dependencies between points
of interest encompassing businesses, stores and amenities. We find that
dependency networks computed from human mobility exhibit significantly
higher rates of long-distance connections and biases towards specific

pairs of point-of-interest categories. We show that using behaviour-based
dependency relationships improves the predictability of business resilience
during shocks by around 40% compared with distance-based models, and
that neglecting behaviour-based dependencies canlead to underestimation
of the spatial cascades of disruptions. Our findings underscore the
importance of measuring complex relationships in patterns of human
mobility to foster urban economic resilience to shocks.

Cities are central drivers of economic growth, owing to their agglom-
eration of businesses and amenities connected through dense social
interactions, financial transactions and human activities’. The high
level of complexity enables ideas, innovations and information to
spread across organizations and communities>’. At the same time,
high urban connectivity allows shocks to cascade across time, space
and system components. Examples of urban networks include labour
markets*, global supply chains>®, networks of social encounters’ and
infrastructure networks®. Understanding the spread of shocks across
urban spaces, amongbusinesses and urban amenities, is crucial for resil-
ient urban planning policies, which aim to mitigate disruptions and to
improvethe recovery speed and quality of businesses and organizations
incities’.

Fromthe global'®" to the regionalscale, studies of the economic
resilience ofindustries focus on predicting the interindustry, cascading
along connectionsin the supply chain networks>*'°, However, similar
tosupply chains, the demand side also has anetwork of dependencies,
mediated by human mobility, that can curb or amplify shocks caused by
changesin consumer behaviour. For example, sustained remote work
during the coronavirus disease 2019 (COVID-19) pandemic'”*® has been
associated with decreased foot traffic to cafes near central business
districts”, and surveys have indicated that patronage to office-district
restaurantsis likely to decrease®. Such dependencies between indus-
tries could cause shocks to cascade, thus posing asubstantial threat to
theeconomicresilience of business ecosystems and their correspond-
ing development and design®.
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The household production theory, which holds that households
allocateresources (time and money) to maximize utility, provides the
theoretical basis for our study on patronage behaviour across multiple
stores?. Empirical studies on consumer behaviour have identified a
multitude of factors that affect patronage to multiple stores, including
customers’ sociodemographic characteristics, store characteristics,
available transportation modes and the built environment® . Despite
itsimportance on characterizingeconomicresilience, researchers have
only recently started to examine general patterns of store patronage®.
Duetolack of large-scale evidence of mobility and behaviour patterns
across stores, dependencies among businesses are typically measured
by physical proximity, assuming similar patronage to nearby busi-
nesses. As a result, several studies have investigated the resilience of
business areas based only on the type and diversity of businesses and
amenities” >, These studies fail to incorporate the actual patterns of
howindividuals visit and interact with different businesses and places.

Recently, studies have used large-scale human mobility data (for
example, mobile phone global positioning systems (GPS)***") as scal-
able low-cost proxies for visitation patterns to various placesin urban
environments to study behavioural segregation®, pandemic response™®
and disaster recovery**. Moreover, mobile phone location data have
beenused to estimate the losses of businesses that rely on foot traffic
(forexample, restaurants and cafes) during disaster events®?*°. Analysis
of humanbehaviour patterns using mobility and credit card purchasing
data have revealed that activity patterns are clustered into a mixture
of behaviourallifestyles (for example, health and exercise, local trips,
shopping weekends and so on)*”*%, suggesting that certain industries
or place categories could have a high dependency on visitors arriving
fromother specificindustries or places. For example, a gas station on
a commuting route to business districts might be affected, as well as
the cafein that business district, if people change their visitation pat-
terns to offices. However, studies on economic resilience have so far
neglected such interdependent relationships that human behaviour
patterns may generate between businesses and other amenities.

Thisstudy investigates theinterdependencies between urbanbusi-
nesses and amenities using human mobility dataand presentsa quan-
titative framework to measuring economic resilience to large-scale
behavioural changes. Using a large and longitudinal dataset of GPS
location records in five major metropolitan areasin the United States
(New York, Boston, Los Angeles, Seattle and Dallas), we construct and
analyse behaviour-based dependency networks between businesses
and amenities and further use the empirical networks to analyse and
simulate the cascades of urban shocks. We find that empirical depend-
ency networks generated via movements between points of interest
(POIs) contain asignificantly higher rate of long-distance connections
between places and are biased towards specific POI category pairs in
comparison with abaseline network based on the gravity model. This
means shocks in one part of the economy have a greater potential to
cascade across a city than would be expected. Analysis reveals that
using the behaviour-based dependency networkimproves the predict-
ability of the resilience of businesses during shocks, such as COVID-19,
compared with dependency networks based on physical proximity.
We further predict the propagation of changes in visits to POIs under
hypothetical external shock scenarios via network simulations and
demonstrate how neglecting such dependency relationships may
underestimate the extent of the shock. Behaviour-based dependency
networks enable better measurements of the effects of urban shocks,
including natural hazards, new technology and urban development
policies mediated by human behaviour.

Results

Using a large and longitudinal dataset of GPS location records in five
major US metropolitan areas, we construct the behaviour-based
dependency network at the level of POIs (for example, businesses
and amenities) in cities. Mobility data was provided by Spectus, who

supplied anonymous, privacy-enhanced and high-resolution mobile
location pings for more than 1 million devices across five US Census
core-based statistical areas (CBSAs). All devices within the study opted
intoanonymous datacollection for research purposes under ageneral
data protection regulation and the California Consumer Privacy Act
compliant framework. Our second data source is a collection of over
1 million verified places across five CBSAs, obtained via Safegraph.
Within the mobility dataset, we identified stays at places that were
detected to be between 10 min and 10 h in duration, and we spatially
matched those stays with the closest place locations within 100 m to
infer visits to specific POIs. Detailed methods for visit attribution are
showninSupplementary Note 1. Weimplemented poststratification to
ensure the representativeness of the data across regions and income
levels (Supplementary Note 1).

Inthisstudy, the dependence of aPOlion another POIljis defined
asw;=n,/n;, where n,denotes the number of individuals who visit POl
iand n;denotes the number of occurrences thatboth POIsiandjwere
visited onthe same day, withina 6 h period and visited directly before
or after, without any intermediate visits to other POIs (Fig. 1). Because
the denominator is based on the number of users who visit the target
POI, w;# w;. This simple but intuitive measure considers the asym-
metric nature of dependencies between POls, for example, a cafe could
have the majority of the customers coming fromanearby college, but
the oppositeisrarely the case. Our dependency metricis the simplest
way to encode the complex joint probability of visitation patterns to
POIsinurbanareas; however, it does not capture the causal mechanism
of covisitations. By computing the dependency weights w; Vi, j, we
obtainthe adjacency matrix of the behaviour-based dependency net-
workW e RMN, where Nis the total number of POls presentin the CBSA.
The network is weighted and directed with directions indicating
dependence (for example, a link from POl i to POl indicates that i
depends onj). Abootstrap method was used to compute the standard
errors for each w;and to remove the edges with statistically insignifi-
cant weights from the dependency network (Supplementary Note 2).
We demonstrate the robustness of the dependency network against
the choice of the visit attribution parameters and the choice of the POI
dataset in Supplementary Note 3. Furthermore, we show that the net-
work characteristics are not sensitive to the choice of covisit detection
parameters, including the time interval between visits, and the number
of intermediate stops in the sequence of visits.

Behaviour-based dependency networks

The behaviour-based dependency networks embed the complex spatial
and functional dependencies between businesses and amenities. For
eachplace i, we compute the totalin-weight w}“ = thq-,- and out-weight
witt = ijij ,across the five cities. The total in-weight of each place
measures to what extent the placeis depended by other placesinterms
of customer visitation patterns, and the out-weight measures how much
the place depends its customers on other places. Figure 1a visualizes
the total in-weight of all nodes in the behaviour-based dependency
network inthe Manhattan area of New York, showing the total in-weight
wi." with node sizes, coloured by place categories. Areas such as Times
Square, Hudson Yards and the Financial District and places such as the
Metropolitan Museum of Art, New York University and Mount Sinai
Hospital have a high concentration of in-dependency from other places.
To obtainamore qualitative understanding of the dependency network,
the network diagraminFig.1b shows the average dependencies between
POlsubcategoriesin Boston (see Supplementary Note 2 for other cities).
Each node represents a POl subcategory (there are 96 of them in the
dataset), and the three largest outgoing dependency edges are shown
foreachnode.Node sizes show thein-degree of the constructed network
(that is, how many other POI categories depend on that node). Many
shopping subcategories including supercentres, department stores,
malls and clothing stores, and colleges, cafes and restaurants are
depended by many other subcategories.
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Fig.1| Behaviour-based dependency networks between placesin cities. for each node. The node sizes show the in-degree of the constructed network.

a, The dependency w;; of POl (for example, arestaurant) on POl (for example, c,d, A probability density distribution of the in-weight w}" (c) and out-weight
acollege) is computed as the proportion of the intersection of individuals that (w;‘”t = ij,-j) (d) per node ip the five cities, labeled with different marker

visit both the college i and cafe,j (n;) on the same day within 6 h (T,) and within shapes. The totalin-weight w}" has a substantially larger variance compared with
1step (N,), out of the total count of individuals who visit cafe j, n;. Note that the out-weight w;’“‘, indicating the existence of nodes with a large attraction of
dependencies w;and w; are asymmetrical and bidirectional. A visualization of dependencies, such as New York University (NYU, annotated in a). e, Average
total in-weight (w}" = Zj”&‘i) for all POls in the Manhattan areain New York is dependency w; of all POls iand jwith a Haversine distance of d;. Average

shown. The colours show the POl category and the node sizes show the total dependency decays with d;with aslope of w;; « ;1-49. awasdesigned using

in-weight. b, A network diagram showing the average dependencies between POI icons from Flaticon.com created by Freepik and Education. The maps were
subcategories in Boston (other cities shown in Supplementary Note 2). Eachnode  produced in Python using the TIGER shapefiles from the US Census Bureau*®.
isaPOIlsubcategory, and the three largest outgoing dependency edges are shown
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Figure 1c,d shows the probability density distribution of w}“ and
w;’”‘, respectively. Despite the geographical, sociodemographic and
economic differences across the five metropolitan areas, we observe
striking similaritiesinthein- and out-weight distributions across cities.
Thetotalin-weight wi."has asubstantially larger variance, ranging from
0.01t0 10, compared with the out-weight w{"*, which mostly ranges
between 0.1and 1. Thisis mainly due to the functional form of w;, which
allows anarbitrary number of places to depend on a specific place but
limits how much one place candepend on others. The long tail ofP(w:.”)
indicates the existence of nodes with a large attraction of dependen-
cies, such as the Metropolitan Museum of Art in New York City (anno-
tated in Fig. 1a), as well as major retail stores such as Walmart, Market
Basket and Home Depot (Supplementary Note 2.2 shows alist of places
with high wi." and w:?”‘). The stability of dependency networks are
further tested in Supplementary Note 3.1. Supplementary Figs.18-21
show that the in-weights, out-weights and category pairwise weight
proportions are highly correlated (Pearson correlation >0.7) across
different time periods (January-April 2019 and May-August 2019) with
the baseline time period (September-December 2019).

Behaviour-based dependency networks are different from
colocation networks

‘Everything is related to everything else, but near things are more
related than distant things’, according to Tobler’s First Law of Geogra-
phy*. The behaviour-based dependency network is no exception, due
to the spatial limits in human mobility*°. Figure 1e plots the average
dependency w;; ofall POlsiandjseparated by aHaversine distance of
d; (inkilometres). In all five metropolitan areas, the average depend-
ency wj of all POIs i and j with a Haversine distance of dj;is relatively
constant until around 100 m but decays with d;;in a power-law trend
withaslope of wy; o« d;*, estimated by fitting the domain d; € (0.5 km,
100 km). The slow decay shows that dependency between businesses
extends far beyond their local area. However, empirical dependency
cannot be described by distance only. To test that idea, we compare
empirical dependency networks to null networks generated from prin-
ciples of physical colocation.

To generate null networks that have similar density and physical
characteristics, the total in-weight and in-degree of each node were
conserved from the empirical network. The links of the null networks
were generated stochastically according to probabilities proportional
to the gravity law g;; = n;n j/(do + d,j)y , where n; and n; are the total
number of visits to POIsiandj, d;is the physical distance between POIs
iandj,d,isthe distance cutoff parameter and yis the exponent param-
eter of the gravity model (Methods). Parameters d, and y were fitted
empirically to maximize the correlation between g;and ny, whichis the
total number of common visitors between POls i and j, and were esti-
matedasd,=0.2andy=1.5(Supplementary Note 4.1). Figure 2a com-
pares the empirical behaviour-based dependency network (left) and
the simulated null network (right). Despite controlling for thein-degree
andtotalin-weight of each node, the empirical network is more spatially
dispersed compared with the null network, indicating the existence of
longer-distance dependencies between places. Onthe other hand, the
null network exhibits clustered local connections around large hubs
including university campuses and shopping malls as shown quanti-
tatively using the average clustering coefficients in Fig. 2b, even though
allnodes have the samein-degree and in-weight in both networks.

Furthermore, to disentangle the physical and behaviouralfactorsthat
generatethe observed dependency networks, we tested asimpleregression
model with the specification: logw; ~ logd; +n;+n; +n; + 6;+ 6;,
where n;is the total number of visits to placej, and n;and 6;denote the
fixed effects of the place category and Public Use Microdata Area
(PUMA) of place i, respectively. Figure 2c shows the summary of the
regressionresults. Theregressionresults reveal that distance, POl type
and neighbourhood, which are all statistically significant (P < 0.001)
inall cities, only explain around 9-12% of the variance observed in the

dependency weights, suggesting that the empirical behaviour-based
dependency network contains much more nuanced and specificinfor-
mation about therelationships between places, which cannot be fully
captured using physical factors of the places. Full regression results,
aswell as robustness tests against the choice of model parameters and
selected time period, are shown in Supplementary Note 4 and Sup-
plementary Tables 3-7.

Predictability of economic resilience via behaviour-based
dependency

Theresults so far show that the behaviour-based dependency networks
encode place-specific relationships between businesses and urban
amenities that cannot be fully captured by physical characteristics
alone.Here, we empirically investigate whether using the dependency
network could improve the predictability of how shocks cascade across
places in cities, using the COVID-19 pandemic as an example of an
extreme empirical shock. The observed change in visits to different
placesis computed by 7; = (vF°V°/uP™ — 1) x 100%, where v-°VIP and
v}"® denote the number of visits to place i during the pandemic
(March-June 2020) and the prepandemic period (September-Decem-
ber2019), respectively. Figure 3a plots the change in visits J;in the Los
Angeles metropolitan statistical area, which indicates that most but
not all places experienced a negative effect. The probability density
distributions for 7;for each metropolitanareaand for different periods
during the pandemic can be found in Supplementary Note 5.1.

Given the dependency between places, we model the change in
visits to i, U;, as the sum of the direct loss of visits that place i experi-
enced due to the pandemic and the network effects from its network
neighbours. Network neighboursjare defined as the set of nodes that
have a non-zero dependency weight w;. The network effects compo-
nent, whichis the weighted sum of the change in visits thatits depended
network neighboursj experienced, is described as 7; = ij,-jlij, as
depicted in the schematic in Fig. 3a (right). The dependency weights
wyare computed using mobility covisit data from before the pandemic
(September-December 2019). We test whether there is a significant
correlation between the change invisitsto the ego 7;and the weighted
sum of the network neighbours ijijﬁj for different place category
pairs. Indeed, Fig. 3b shows that most coefficients are significant and
positive indicating that loss in visits in the network neighbour nodes
isshared with the egonode. Loss of visits to service and shopping stores
has the most substantial correlation with other nodes through the
behaviour-based dependency network. We further observe that health
and office POls are least affected by the failure of alter nodes, suggest-
ing structural differences in resilience of foot traffic among essential
and non-essential POls.

To demonstrate that these correlations between POl types are not
the result of the blanket impact of COVID on all POls, we consider
several alternative nullmodels to predict §; and find that the empirical
dependency network is most predictive. Combining the network
effects with the fixed effects of the place i’s subcategory n; and the
PUMA 6,, we model the change in visits of i, J; as

0;=Po+Bw) wyli + ni+6; +e ()
J ego fixed effects
network effects

where ,and B, are the estimated coefficients of this regressionmode.
As abaseline for comparison, we also prepare an alternative model
that models the dependency between places based on the gravity-based
null network weights w; instead of the empirical dependency
weightw;.

Figure 3¢ shows the adjusted R? of the normalized visits using (1)
areaand category fixed effects, (2) fixed effects and gravity-based null
model w; and (3) fixed effects with behaviour-based dependency w;.
Using the behaviour-based dependency network substantially
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Fig.2|Behaviour-based dependency networks are different from colocation
networks. a, A visual comparison of the empirical behaviour-based dependency
network (left) and the simulated null network (right) that stochastically
generates network weights between places based on the fitted gravity law, while
controlling for the in-degree and the total in-weight of the nodes. Although the
number of links and the total weight of each node are consistent, the empirical
network is more spatially dispersed compared with the null, indicating the
existence of long-distance dependencies between places. On the other hand, the
null network exhibits clustered local connections around large hubs, including
university campuses and shopping malls. b, The null network has a higher
average clustering coefficient compared with the empirical network. NY, New
York; BOS, Boston; SEA, Seattle; LA, Los Angeles; DAL, Dallas. ¢, Adjusted R? of the
ordinary least squares (OLS) regression model that regresses logged dependency

weight log w;; by physical factors, including the logged distance between POls
iandj, the total number of visits and POl subcategories of POls i and j. The low
R*between 0.09 and 0.12 indicates that the dependency weights have distinct
characteristics other than physical factors.  coefficients of the size of the node
n;and the physical distance d;between nodes iandjin the OLS model are
statistically significant using a two-sided test (P < 0.001). The error bars around
the B coefficientsindicate the 95% confidence intervals. Dependency weights are
larger when the node has more visitors and when the distance is shorter. Full
regressionresults, as well as exact Pvalues and robustness tests against the
choice of model parameters and selected time period, are shown in
Supplementary Note 4 and Supplementary Tables 3-7. The maps were produced
in Python using the TIGER shapefiles from the US Census Bureau*.

improves the R? by at least 40% compared with using the physical
proximity-based network model, from an average of 0.148 to 0.228.
Figure 3d shows the estimated regression coefficients for the physical
distance-based dependency ( B,,) and behaviour-based dependency
(By) for the five cities and the pooled model. All variables were stand-
ardized by subtracting the mean and dividing by the standard deviation
for the coefficients to be comparable. Full regression tables are shown
inSupplementary Note 5.3. The effects of the behaviour-based depend-
ency are two to three times in magnitude and statistically significant
(P<0.001) compared with the physical distance-based dependency,
as shown in the regression tables in Supplementary Tables 8-12.
Supplementary Note 5.4 shows the estimation results for the different
time periods, which all showed better predictability using the
behaviour-based dependency network. Additional analysis in Sup-
plementary Note 5.5 showed that using the dependency network fur-
ther improves the predictability of visitation recovery patterns

(forexample, visitation during September-November 2020 compared
with March-May 2020). Furthermore, similar results were obtained
when using summer breaks as exogenous shocks. The dependency
network was able to predict the changes in visits to places that have
high dependency on college campuses (Supplementary Note 5.8).

Cascading impacts of hypothetical urban shocks

Besides the COVID-19 pandemic, what can the behaviour-based depend-
ency network tell us about other types of future shock, such as the
increase in online education, remote health services and fewer visits
togasstations due to higher adoption of electrical vehicles? To explore
these questions, we apply the network effects model (equation (1)) to
simulate the spatial cascades of such shocks in different cities. More
specifically, rewriting and reorganizing equation (1) in matrix form,
we obtain v = Wv + f, where vis a vector of ; for all N places, Wis an

N x N matrix where each element is i; = Byw; and vector fis an
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Fig. 3| Behaviour-based dependency networks shape economicresilience.

a, Amap visualizing the change in visitation patterns to places

7; = (UFOVIP /1™ — 1) X 100%, during the pandemic (March-May 2020)
compared with the prepandemic period (September-December 2019) in Los
Angeles (LA).LAX, Los Angeles International Airport. Right: the specification of
the model, where the normalized visits at place { are regressed using the sum of
dependency weights weighted by the normalized visits of the network neighbour
nodes, ijgﬁ}, and PUMAs and place category fixed effects for POIL .

b, A correlation between the change in visits to the ego ¥,.,, which belongs to
category A, and the weighted sum of the network neighbours, which belong to
category B, Zjeswij’Tj' Indeed, most coefficients are significant and positive
indicating thatloss in visits in the network neighbours is shared with the ego.

¢, Adjusted R? of the normalized visits using (1) area and category fixed effects,
(2) fixed effects and gravity model-based dependency weights wj; and (3) fixed
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effects with behaviour-based dependency weights w;. Using the behaviour-based
dependency network significantly improves the adjusted R*by 40% (from 0.148
to 0.228) compared with using the distance-based null network. The full results
areshownintheregression tables in Supplementary Tables 8-12. NY, New York;
BOS, Boston; SEA, Seattle; LA, Los Angeles; DAL, Dallas; FE, fixed effects.

d, Regression coefficients for the physical distance-based dependency (8,,,) and
behaviour-based dependency (83,) for the five cities and the pooled model. All
variables were centred and standardized. The error bars show the 95% confidence
interval of the coefficient estimates. The effects of the behaviour-based
dependency are two to three times in magnitude compared with the physical
distance-based dependency and are statistically significant using a two-sided test
at P<0.001. The full results are shown in the regression tables in Supplementary
Tables 8-12. The maps were produced in Python using the TIGER shapefiles from
the US Census Bureau*.

aggregation of all fixed effects S, 7;and 8,. This model specificationis
known as the Leontief open model, which is a simplified and linear
economic model for an economy in which input equals output*’. To
predict the propagation of shocks throughout places in the city, the
shocks aremodelled in the fixed effect vector f(for example, all colleges
experience an external shock where visits are reduced by 50% due to
uptake of online education), and the production vector vis computed
by solving the linear system v = (/ — W)_lf.

The shift to online education, which occurred during the pan-
demic, is reported to have a continuing effect, with roughly 20% of
school systems planning to or have already started online school pro-
grammes*'. Previous studies*?, as well as analysisin Fig. 2, have pointed
outthat college campuses have a substantialimpact on the localecon-
omy. If online learning and remote education were permanent and
increased with the help of advanced technology (for example, aug-
mented reality), what impacts would it have on other businesses and
amenities? Figure 4a shows the simulated effects of a 50% reduction

in visits to college POIs (grey points) on nearby non-college POIs (red
points, the darker red indicates larger negative impacts). Impacted
POls are limited to those not only in proximity to college POIs but also
inlocations that are popular with college students, for example, Mas-
sachusetts Avenue, which connects the Massachusetts Institute of
Technology and Harvard University. For comparison, we simulated the
shocks to non-college POIs using the physical distance network W,
where w;; is used as the matrix elements instead of behaviour-based
dependency w; (Supplementary Note 6.1). Comparing the simulation
results using the dependency network and the null network shows that
neglecting the behaviour-based dependencies results in a substantial
underestimation of the effects on POlIs that are located further away
from colleges.

The effects of online education were heterogeneous for different
place categories located at different distances from colleges. Figure 4b
shows the 90th percentile ofimpacts on POls by category and distance
(logscaled). While most substantialimpacts occur within 0.5 km, places
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Fig. 4| Cascading impacts of hypothetical urban shocks. a, Simulated effects
of a50% reduction in visits to college POls (grey points) on nearby non-college
POIs (red points, the darker red indicates larger negative impacts), using the
fitted Leontief open model. Impacted POls are limited to those not only in
proximity to college POIs but also in locations that are popular with college
students. Neglecting the behaviour-based dependencies results in a substantial
underestimation of the effects on POls that are located further away from
colleges. MIT, Massachusetts Institute of Technology; BU, Boston University;

U Mass, University of Massachusetts. b, The impacts of the 50% visit reduction
to colleges on places by category and distance (90th percentile decrease in

(km)

category

visits are shown, log scaled). While most significantimpacts occur within

0.5 km, places such as arts and museums, food and service locations experience
substantial long-distance impacts. ¢, Total cascading impact of closing places on
other locations, relative to its own size (x axis) and the weighted distance range
of theimpact (y axis) for different POl subcategories. The node sizes indicate
the average number of visitors per POI. Supercentres and colleges have high
cascading effects but are focused locally (-1.5 km around the POI). On the other
hand, theimpacts of airports, stadiums, theme parks and gas stations are both
large and far reaching (around 2.5-3.5 km). The maps were produced in Python
using the TIGER shapefiles from the US Census Bureau*.

such as arts and museums, food and service places experience sub-
stantial long-distance impacts. Simulations assuming different levels
of visit decrease to colleges (for example, -100%, —25%) show a similar
long-distance cascade of shocks (Supplementary Note 6.1). These
persistent spatial cascades emphasize theimportance of considering
behaviour-based dependency relationships between places to grasp
the holisticimpact of such urban shocks for resilient urban planning.

Further leveraging the network model, we are able to simulate the
impacts of POI closure scenarios and identify the seed nodes (POls)
that have the largest cascading effects on other POIs if inflicted by other
urban shocks. For each node, we simulate the cascading impacts of a
100% visit change to a single POI i, by computing v = (/— W) 'e®,
where e is aone-hot encoding vector of the initial shock that assigns
achangein visits of +1tonode iand O otherwise, and ¥(is the resulting
vector of the cascading impacts, where each element measures the
impacts of the initial shock to all nodes. The total impacts of changes

in the number of visits to all nodes can be computed by multiplying
v = (Oi’), ,\”/,(\7) with the vector of total visits to each POI,
n = (ny, -+ ,ny). Thus, the total impacts of the initial shock to node
icanbe computedbyC; = Ej#i\?@nj. By further scaling the iInpactto
itsownssize n;, we obtain the total relative cascading effectas C; = C;/n;.
For example, C; = 0.3 would indicate that increasing the number of
visits to node i by 100% (or equal to n;) results in a total of 30% x n;
increase in visits across all other nodes. The mean relative cascading
impacts of each POI category, Ccategory are shown in the y axis of
Fig. 4c. POl categories such as airports, supercentres, colleges, furni-
ture stores, theme parks, railway stations and sports stadiums have a
high impact on other POlIs in urban areas propagated through
behaviour-based dependency networks.

Whenimplementing policies to close down certain POls for emer-
gency response (for example, lockdowns during pandemics), it is
important tounderstand the spatial extent of the cascade. To quantify
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this, we defined the distance range of the cascade by computing the
average distance toimpacted nodes, weighted by the magnitude of the
impacts. More specifically, we compute the weighted distance range
of POl iby d; = Zj;j;ﬁ[i\/;i)dij/zj;j¢iv;i)' The weighted distance range of
impact foreach POl category, ﬁcategoryare showninthexaxis of Fig. 4c.
Supercentres and colleges have high cascading effects but are focused
locally (-1.5 km around the POI). On the other hand, the impacts of
airports, stadiums, theme parks and gas stations are both large and far
reaching (around2.5-3.5 km). Estimation results for all cities are shown
inSupplementary Note 6.2. Understanding the magnitude and spatial
extent of the cascading effects could be applied to design emergency
management policies to effectively close places while minimizing
economiclosses. The large magnitude of the spatial cascades that occur
due to behaviour-based dependency networks calls for new urban
policy-making approaches that balance the benefits of mobility restric-
tion measures (for example, preventing the spread of diseases) while
minimizing the total cascading economic impacts to urban places and
amenities.

Discussion

Fostering the resilience of urban systems to shocks is an urgent chal-
lenge for cities and communities, with increasing risks of climate
change-induced disasters, long-lasting effects of the COVID-19 pan-
demicand unprecedented technological shifts in how we move (electric
vehicles and autonomous vehicles), work*, shop and learn**. Such
urban shocks could induce substantial shifts in human behaviour and
urban activity patterns by changing the various incentive and cost
mechanisms that motivate activities in cities. A plethora of research
has focused on modelling the spillover effects of disruptions onsupply
chains across industries (for example, ref. 5); however, there has been
limited investigationinto the spillover effects that could be mediated
through the movement of people in cities. The broader socioeconomic
impacts that such behavioural changes could have on cities, for exam-
ple, onthesocial fabric of communities’, economic networks and local
businesses and urbaninfrastructure systems, are not well understood.
Motivated by these critical challenges, we used empirical data from
mobile phone devices collected from five major metropolitan areas
in the United States to quantitatively measure and analyse the urban
economic networks mediated by humanbehaviour and their resilience
to potential urban shocks.

Inthis context, our study contains three important contributions
towards understanding the economic network dependenciesincities.
First, our approach measures and reveals that the dependent relation-
ships that exist between businesses and places are highly complex
products of human behavioural preferences and decisions rather than
ameasure determined solely by the urban form, including the physi-
cal distance between places, and their physical locations, popularity
and categories (which only explain around 10% of the variance). We
observe the existence of places that are highly dependent on hundreds
of other places (for example, gas stations and gyms) and others that
are depended by many other locations (for example, major shopping
centres, universities and major hospitals). Our results show that urban
economic networks are determined by the behaviour generated by
individual activity patterns, connecting distant businesses and ameni-
ties due to the combination of work, leisure and shopping activities on
the same day. However, businesses that are next door to each other are
notnecessarily dependent on each other, since they target and attract
people with different interests and lifestyles. Second, using different
periods of the COVID-19 pandemic as external shocks, we showed
that using the prepandemic behaviour-based dependency network
with aLeontiefinput-output formulationimproves the predictability
of the spillover shocks to different businesses, compared with the
distance-based colocation network. Third, simulations of hypotheti-
calurban shocks showed that the dependencies generated by human

behaviour significantly amplify the shocks to places that are located
further away from the origins of the shocks. Our results show that, for
example, while supercentres affect mostly local POls, airports, sports
stadiums and gas stations have asubstantial long-range effect on POIs
across the city. Policies to contain the spread of pandemics or future
urban shocks need to incorporate the spatial extent of the impacts
mediated by the dependency network. This points to the importance
of shifting from a place-based approachto a network-based approach
indesigning urbaninterventions and, ingeneral, inunderstanding the
socioeconomicimpacts of urban changes.

Our study has several limitations. First, dependency weights
between places were computed using all mobile phone users that
were observed to visit both places (‘covisit’); however, we were not
able todifferentiate between visitations of different natures. We could
further classify covisits into different types, such as routine and explo-
ration behaviour. Moreover, following recent studies focusing on
the substantial differences in mobility behaviour across sociodemo-
graphic groups (for example, refs. 45,46), we could decompose the
dependenciesinto differentincome ranges to better understand which
sociodemographic segments are contributing to different types of
dependency relationship. Therefore, the dependency metric com-
puted in our study should be interpreted as an aggregated measure
of all covisits that occurin cities, and further decomposition and con-
textualization of the dependency metric could be conducted when
applying this approach to analyse specific urban shocks and policies.
Second, another challenge lies in understanding how the dependency
networks between places reorganize due to various urbanshocks. The
assumptioninthisstudy did not consider such dynamic reorganization
because of the sudden and short-term nature of the shocks we ana-
lysed (for example, COVID-19 and closures of colleges). Modelling the
dynamics of the behaviour-based dependency networks using human
behaviour data observed across alonger time frame, and applying the
method to a broader range of realistic urban disruptions including
climate change-induced disasters could be an interesting topic for
futureresearch. Third, in this study, simple linear models (for example,
the Leontief open model) were used to test the effectiveness of our
approach to modelling economicresilience. Given the advancements
innonlinear and complex models for graph structured data (for exam-
ple, graph neural networks"), there is potential for future works that
develop models that improve the predictability of resilience and are
capable of describing the microscopic temporal dynamics of disrup-
tion and recovery. Four, this method measures the dependency rela-
tionships between places through foot traffic patterns, and this may
not capture the full breadth of economic interactions. This approach
simplifies complex economic relationships and may not capture other
channels of economicinteractions, such as online transactions or ser-
vices not tied to physical visits. Follow-up work using other behaviour
datasets, such as credit card purchase data, would be an interesting
avenue for future research?.

Our findings have implications for our understanding of the resil-
ience of urban systems to shocks. While spillover effects of urban
shocks (for example, disasters and power outages) have been often
studied with afocus on supply chains that connect firms and industries,
our results show that human behaviour and mobility patterns also con-
tribute to the cascade of shocks across businesses and amenities in dif-
ferentindustries. This study shows robust results on the predictability
ofeconomicresilience, laying the groundwork for future investigations
into causal effects of dependencies on economic resilience (for exam-
ple, through natural experiments around natural disasters, rainfall or
construction projects thatimpact mobility). To better understand how
the effects of urban shocks or technological shifts would manifest in
cities, a spatial understanding of risk (which in itself underestimates
the broader impacts of shocks) should be complemented by how the
flow of individuals connects different firms and places. This framework
could be applied to assess the impacts of both negative and positive
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shocks on cities. Examples of negative shocks include natural hazards
and pandemics, while urban transportation (for example, fare-free
bus programmes) and land use policies (for example, pedestrian-only
streets) could have positive shocks on businesses in the neighbour-
hoods. Urban planners could leverage the observed dependency rela-
tionships to target such policies, mitigate potential disruptions better
and amplify the positive impacts onlocal businesses and the wellbeing
of communities. It also calls for amore holistic understanding of shop-
ping, innovation or shopping districts, since the vibrancy of those
places and theirimpact on other areas might depend on business and
amenities across the city.

Methods

Mobility and POI data

We utilize an anonymized location dataset of mobile phones and smart-
phone devices provided by Spectus, alocation dataintelligence com-
pany that collects anonymous, privacy-compliant location data of
mobile devices using their software development kit technology in
mobile applications and privacy framework. Spectus processes data
collected from mobile devices whose owners have actively opted in
tosharetheirlocation and require all application partnersto disclose
their relationship with Spectus, directly or by category, in the privacy
policy. With this commitment to privacy, the dataset contains loca-
tion data for roughly 15 million daily active users in the United States.
All data analysed in this study are aggregated to preserve privacy. To
measure the visitation patterns of individuals in urban environments,
we attribute the stops of individual users to specific places in the city.
To study the stops at different places, we use stops that are longer than
10 minbutshorter than10 h.Inour study, we use location data of places
collected by Safegraph. To protect the users’ privacy, we have removed
various privacy-sensitive places from our places database, including
health-related places, places where the vulnerable population are
located, military-related, religious facilities, places that are related
to sexual orientation and adult-oriented places. As a result, we have
atotal of over 1 million places in the five cities. The home locations of
individual users are estimated at the Census Block Group level using
different variablesincluding the number of days spentinagivenloca-
tioninthelast month, the daily average number of hours spentin that
location and the time of the day spentin thelocation during nighttime
(see Supplementary Note 1.1for more details). The representativeness
ofthis datahasbeentested and corrected in Supplementary Notes1.3
and 1.4 using poststratification techniques. Since the data used were
anonymized and spatially aggregated at places, categories or census
areas, we were granted an exemption by the Massachusetts Institute
of Technology Committee on the Use of Humans as Experimental Sub-
jects (COUHES protocol no.1812635935) and its extension no. E-2962.

Behaviour-based dependency networks

We define the dependence of aPOlionanother POl jas w; = ’;—f where
n; denotes the number of visits to POl i and n; denotes the number of
‘covisits’between POlsiandj. A covisitis defined as aninstance inwhich
POIsiandjwere visited by the same individual (1) on the same day, (2)
within 7, (threshold parameter, 7.= 6 hours used in main results) hours
fromexiting POl (j) to entering POl (i) and (3) within N.intermediate
POIs (threshold parameter; N=1is used in main results). Because the
denominator is based onthe number of visits to the target POl w;; = w;,.
Thissimple butintuitive measure considers the asymmetric nature of
dependencies between POls. By computing the dependency weights
w;V i,j, we obtain the behaviour-based dependency matrix W € RV,
where Nis the total number of POIs present in the CBSA. As a baseline
parameter setting, we use 7.= 6 h and 7,=1POI. The sensitivity and
statistical robustness of the dependency network when using different
covisitdetection threshold parameters 7.and T;, only short non-work
visits and data from different time periods are tested and discussed in
Supplementary Notes 2 and 3.

Distance-based null networks

To generate null networks that preserve basic structural properties,
(1) the weight w;decays with physical distance and (2) the in-weight w;
is larger for nodes with larger visitation n;, we generated edges based
on the generalized gravity law: g; = n;n ;/(d, + d;)’, where n;and n;are
the total number of visits to POIs i and j, d; is the physical distance
between POIs i andj, d, is the distance cutoff parameter and y is the
exponent parameter of the gravity model. Parameters d, = 0.2 and
y =L.5were fitted empirically to maximize the correlation between g;;
and ny, which is the total number of common visitors between POIs i
andj (Supplementary Note 4.1). For eachedge in the actual dependency
network connectingiandjwithadependency weight w;, we compute
its gravity component using the empirical fit between g; and w; and
selectanalternative node with the same level of corresponding gravity
weight fromits10,000 closest nodes and is assigned the same weight
wj. This algorithm enables us to construct a null network where we (1)
maintainthelinear relationship between w;and g, (2) the same number
of in-edges are selected for each node and (3) the total in-weight for
eachnodeis kept consistent. The details about the null network genera-
tion procedure, as well as statistical analysis of the null network and
their differences from the actual dependency network, can be found
inSupplementary Note 4.

Modelling impacts of COVID-19 using dependency networks
Toinvestigate the utility of the dependency network for predicting the
resilience of businesses, we construct regression models that predict
the changein visitation patterns to a POl using information about the
changein visitation patternstoits alters and the dependency network.
The observed change in visits to different places is computed by
g; = vafter jybefore _ 1 % 100(%), where vPore and vt denote the number
of visits to place i before the pandemic (September-December 2019)
and during different periods of the pandemic period (March-Novem-
ber 2020), respectively. We build a simple linear regression model of
the form:

O Y Wyl + ) Wyl + 1+ 6;, (2)
J J

where 7;denotes the change in visitations to POl i during the different
stages of the pandemicin 2020, 3, w;0;is the sum of the network neigh-
bours’ (POls,) change in visitations (7;) weighted by the dependency
network weights, wy, 371;0; is the sum of the network neighbours’
(POlsj) change in visitations (4;) weighted by the distance-based null
network weights, iy, n; is the fixed effect for POl i’s subcategory, and
6;is the fixed effect for POl i’'s located PUMA. Robustness of regression
results to the choice of the time period used to generate the depend-
ency network, different model parameters and similar results obtained
using the case study of college summer breaks are shown in Supple-
mentary Note 5.

Simulating cascades of hypothetical urban shocks
To simulate the spatial cascades of shocks in different cities, we use the
modelspecification of the Leontief openmodel. Rewriting and reorgan-
izing theregression modelin matrix form, we obtain v = Wv + f, where
visavector of 7; for all Nplaces, Wis an N x N matrix, where each ele-
mentis @ = Bywy, and vector fis an aggregation of all fixed effects j,,
n;and 6,. To predict the propagation of shocks throughout places in
the city, the shocks are modelled in the fixed effect vector f(for exam-
ple, all colleges experience an external shock of -50% visits reduction
due to uptake of online education), and the production vector v is
computed by solving the linear system v = (/ — W) ‘fviathe generalized
minimal residual iteration method. Details and parameter sensitivity
analysis can be found in Supplementary Note 6.1.

Furthermore, we simulate the impacts of POI closure scenarios
and identify the seed nodes (POIs) that have the largest cascading
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effects onother POlsif inflicted by other urban shocks. For each node,
we simulate the cascading impacts of a100% visit change to a single
nodei, by computing v = (/ — W) 'e®, where e®is aone-hot encoding
vector of the initial shock that assigns a change in visits of +1to node i
and O otherwise, and v®@is the resulting vector of the cascadingimpacts,
where each element measures the impacts of the initial shock to all
nodes. The totalimpacts of changes in the number of visits to allnodes
can be computed by multiplying v© = 3, ..., ) with the vector of
total visits to each POI, n = (n;, --- , ny). Thus, the total impacts of the
initial shock to node i can be computed by ¢; = 3, %" n ;. By further
scaling theimpact toits ownsize n;, we obtain the total relative cascad-
ing effect as C; = C;/n;. The distance range of the cascade is computed
astheaverage distance toimpacted nodes, weighted by the magnitude
of the impacts. More specifically, we compute the weighted distance
range of POliby d; = ¥, ., 9" d;/5,, ... Figure 4c plots the relative
cascading impacts and distance ranges of each POI category, Ccyegory
and deyeegory- More details and results for all cities can be found in
Supplementary Note 6.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from
Spectus throughtheir Social Impact programme, butrestrictions apply
totheavailability of these data, which were used under the license for
the current study and are, therefore, not publicly available. Informa-
tion about how to request access to the data and its conditions and
limitations can be found in https://spectus.ai/social-impact/. Data
access requests should be submitted through Spectus’ Social Impact
customer page via https://spectus.ai/lp/book-a-demo/, where the
salesteamat Spectus may be contacted inatimely manner. Data about
the POl locations were provided by Safegraph, who can be contacted
through https://www.safegraph.com/. The Safegraph dataare available
through the Dewey platform through a paid subscription via https://
app.deweydata.io/home. Tiger shapefiles can be downloaded from
the US Census Bureau via https://www.census.gov/programs-surveys/
geography/guidance/tiger-data-products-guide.html.

Code availability

The analysis was conducted using Python. The code to reproduce the
mainresultsinthe figures fromthe aggregated datais publicly available
onGitHub via https://github.com/takayabe0505/dependencynetwork.
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