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Behaviour-based dependency networks 
between places shape urban economic 
resilience
 

Takahiro Yabe    1,2,3  , Bernardo García Bulle Bueno1, Morgan R. Frank    4,5,6, 
Alex Pentland    1,6 & Esteban Moro    1,6,7 

Disruptions, such as closures of businesses during pandemics, not only 
affect businesses and amenities directly but also influence how people 
move, spreading the impact to other businesses and increasing the overall 
economic shock. However, it is unclear how much businesses depend 
on each other during disruptions. Leveraging human mobility data and 
same-day visits in five US cities, we quantify dependencies between points 
of interest encompassing businesses, stores and amenities. We find that 
dependency networks computed from human mobility exhibit significantly 
higher rates of long-distance connections and biases towards specific 
pairs of point-of-interest categories. We show that using behaviour-based 
dependency relationships improves the predictability of business resilience 
during shocks by around 40% compared with distance-based models, and 
that neglecting behaviour-based dependencies can lead to underestimation 
of the spatial cascades of disruptions. Our findings underscore the 
importance of measuring complex relationships in patterns of human 
mobility to foster urban economic resilience to shocks.

Cities are central drivers of economic growth, owing to their agglom-
eration of businesses and amenities connected through dense social 
interactions, financial transactions and human activities1. The high 
level of complexity enables ideas, innovations and information to 
spread across organizations and communities2,3. At the same time, 
high urban connectivity allows shocks to cascade across time, space 
and system components. Examples of urban networks include labour 
markets4, global supply chains5,6, networks of social encounters7 and 
infrastructure networks8. Understanding the spread of shocks across 
urban spaces, among businesses and urban amenities, is crucial for resil-
ient urban planning policies, which aim to mitigate disruptions and to 
improve the recovery speed and quality of businesses and organizations  
in cities9.

From the global10,11 to the regional12 scale, studies of the economic 
resilience of industries focus on predicting the interindustry, cascading 
along connections in the supply chain networks5,13–16. However, similar 
to supply chains, the demand side also has a network of dependencies, 
mediated by human mobility, that can curb or amplify shocks caused by 
changes in consumer behaviour. For example, sustained remote work 
during the coronavirus disease 2019 (COVID-19) pandemic17,18 has been 
associated with decreased foot traffic to cafes near central business 
districts19, and surveys have indicated that patronage to office-district 
restaurants is likely to decrease20. Such dependencies between indus-
tries could cause shocks to cascade, thus posing a substantial threat to 
the economic resilience of business ecosystems and their correspond-
ing development and design21.
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supplied anonymous, privacy-enhanced and high-resolution mobile 
location pings for more than 1 million devices across five US Census 
core-based statistical areas (CBSAs). All devices within the study opted 
in to anonymous data collection for research purposes under a general 
data protection regulation and the California Consumer Privacy Act 
compliant framework. Our second data source is a collection of over 
1 million verified places across five CBSAs, obtained via Safegraph. 
Within the mobility dataset, we identified stays at places that were 
detected to be between 10 min and 10 h in duration, and we spatially 
matched those stays with the closest place locations within 100 m to 
infer visits to specific POIs. Detailed methods for visit attribution are 
shown in Supplementary Note 1. We implemented poststratification to 
ensure the representativeness of the data across regions and income 
levels (Supplementary Note 1).

In this study, the dependence of a POI i on another POI j is defined 
as wij = nij/ni, where ni denotes the number of individuals who visit POI 
i and nij denotes the number of occurrences that both POIs i and j were 
visited on the same day, within a 6 h period and visited directly before 
or after, without any intermediate visits to other POIs (Fig. 1). Because 
the denominator is based on the number of users who visit the target 
POI, wij ≠ wji. This simple but intuitive measure considers the asym-
metric nature of dependencies between POIs, for example, a cafe could 
have the majority of the customers coming from a nearby college, but 
the opposite is rarely the case. Our dependency metric is the simplest 
way to encode the complex joint probability of visitation patterns to 
POIs in urban areas; however, it does not capture the causal mechanism 
of covisitations. By computing the dependency weights wij ∀ i, j, we 
obtain the adjacency matrix of the behaviour-based dependency net-
work W ∈ ℝN×N, where N is the total number of POIs present in the CBSA. 
The network is weighted and directed with directions indicating 
dependence (for example, a link from POI i to POI j indicates that i 
depends on j). A bootstrap method was used to compute the standard 
errors for each wij and to remove the edges with statistically insignifi-
cant weights from the dependency network (Supplementary Note 2). 
We demonstrate the robustness of the dependency network against 
the choice of the visit attribution parameters and the choice of the POI 
dataset in Supplementary Note 3. Furthermore, we show that the net-
work characteristics are not sensitive to the choice of covisit detection 
parameters, including the time interval between visits, and the number 
of intermediate stops in the sequence of visits.

Behaviour-based dependency networks
The behaviour-based dependency networks embed the complex spatial 
and functional dependencies between businesses and amenities. For 
each place i, we compute the total in-weight win

i = ∑jwji and out-weight 
wout

i = ∑jwij , across the five cities. The total in-weight of each place 
measures to what extent the place is depended by other places in terms 
of customer visitation patterns, and the out-weight measures how much 
the place depends its customers on other places. Figure 1a visualizes 
the total in-weight of all nodes in the behaviour-based dependency 
network in the Manhattan area of New York, showing the total in-weight 
win

i  with node sizes, coloured by place categories. Areas such as Times 
Square, Hudson Yards and the Financial District and places such as the 
Metropolitan Museum of Art, New York University and Mount Sinai 
Hospital have a high concentration of in-dependency from other places. 
To obtain a more qualitative understanding of the dependency network, 
the network diagram in Fig. 1b shows the average dependencies between 
POI subcategories in Boston (see Supplementary Note 2 for other cities). 
Each node represents a POI subcategory (there are 96 of them in the 
dataset), and the three largest outgoing dependency edges are shown 
for each node. Node sizes show the in-degree of the constructed network 
(that is, how many other POI categories depend on that node). Many 
shopping subcategories including supercentres, department stores, 
malls and clothing stores, and colleges, cafes and restaurants are 
depended by many other subcategories.

The household production theory, which holds that households 
allocate resources (time and money) to maximize utility, provides the 
theoretical basis for our study on patronage behaviour across multiple 
stores22. Empirical studies on consumer behaviour have identified a 
multitude of factors that affect patronage to multiple stores, including 
customers’ sociodemographic characteristics, store characteristics, 
available transportation modes and the built environment23–25. Despite 
its importance on characterizing economic resilience, researchers have 
only recently started to examine general patterns of store patronage26. 
Due to lack of large-scale evidence of mobility and behaviour patterns 
across stores, dependencies among businesses are typically measured 
by physical proximity, assuming similar patronage to nearby busi-
nesses. As a result, several studies have investigated the resilience of 
business areas based only on the type and diversity of businesses and 
amenities27–29. These studies fail to incorporate the actual patterns of 
how individuals visit and interact with different businesses and places.

Recently, studies have used large-scale human mobility data (for 
example, mobile phone global positioning systems (GPS)30,31) as scal-
able low-cost proxies for visitation patterns to various places in urban 
environments to study behavioural segregation32, pandemic response33 
and disaster recovery34. Moreover, mobile phone location data have 
been used to estimate the losses of businesses that rely on foot traffic 
(for example, restaurants and cafes) during disaster events35,36. Analysis 
of human behaviour patterns using mobility and credit card purchasing 
data have revealed that activity patterns are clustered into a mixture 
of behavioural lifestyles (for example, health and exercise, local trips, 
shopping weekends and so on)37,38, suggesting that certain industries 
or place categories could have a high dependency on visitors arriving 
from other specific industries or places. For example, a gas station on 
a commuting route to business districts might be affected, as well as 
the cafe in that business district, if people change their visitation pat-
terns to offices. However, studies on economic resilience have so far 
neglected such interdependent relationships that human behaviour 
patterns may generate between businesses and other amenities.

This study investigates the interdependencies between urban busi-
nesses and amenities using human mobility data and presents a quan-
titative framework to measuring economic resilience to large-scale 
behavioural changes. Using a large and longitudinal dataset of GPS 
location records in five major metropolitan areas in the United States 
(New York, Boston, Los Angeles, Seattle and Dallas), we construct and 
analyse behaviour-based dependency networks between businesses 
and amenities and further use the empirical networks to analyse and 
simulate the cascades of urban shocks. We find that empirical depend-
ency networks generated via movements between points of interest 
(POIs) contain a significantly higher rate of long-distance connections 
between places and are biased towards specific POI category pairs in 
comparison with a baseline network based on the gravity model. This 
means shocks in one part of the economy have a greater potential to 
cascade across a city than would be expected. Analysis reveals that 
using the behaviour-based dependency network improves the predict-
ability of the resilience of businesses during shocks, such as COVID-19, 
compared with dependency networks based on physical proximity. 
We further predict the propagation of changes in visits to POIs under 
hypothetical external shock scenarios via network simulations and 
demonstrate how neglecting such dependency relationships may 
underestimate the extent of the shock. Behaviour-based dependency 
networks enable better measurements of the effects of urban shocks, 
including natural hazards, new technology and urban development 
policies mediated by human behaviour.

Results
Using a large and longitudinal dataset of GPS location records in five 
major US metropolitan areas, we construct the behaviour-based 
dependency network at the level of POIs (for example, businesses 
and amenities) in cities. Mobility data was provided by Spectus, who 
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Fig. 1 | Behaviour-based dependency networks between places in cities.  
a, The dependency wji of POI j (for example, a restaurant) on POI i (for example,  
a college) is computed as the proportion of the intersection of individuals that 
visit both the college i and cafe j (nij) on the same day within 6 h (Tc) and within  
1 step (Nc), out of the total count of individuals who visit cafe j, nj. Note that 
dependencies wij and wji are asymmetrical and bidirectional. A visualization of 
total in-weight (win

i = ∑jwji) for all POIs in the Manhattan area in New York is 
shown. The colours show the POI category and the node sizes show the total 
in-weight. b, A network diagram showing the average dependencies between POI 
subcategories in Boston (other cities shown in Supplementary Note 2). Each node 
is a POI subcategory, and the three largest outgoing dependency edges are shown 

for each node. The node sizes show the in-degree of the constructed network. 
c,d, A probability density distribution of the in-weight win

i  (c) and out-weight 
(wout

i = ∑jwij) (d) per node in the five cities, labeled with different marker 
shapes. The total in-weight win

i  has a substantially larger variance compared with 
the out-weight wout

i , indicating the existence of nodes with a large attraction of 
dependencies, such as New York University (NYU, annotated in a). e, Average 
dependency wij  of all POIs i and j with a Haversine distance of dij. Average 
dependency decays with dij with a slope of wij ∝ d−1.49ij . a was designed using 
icons from Flaticon.com created by Freepik and Education. The maps were 
produced in Python using the TIGER shapefiles from the US Census Bureau48.
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Figure 1c,d shows the probability density distribution of win
i  and 

wout
i , respectively. Despite the geographical, sociodemographic and 

economic differences across the five metropolitan areas, we observe 
striking similarities in the in- and out-weight distributions across cities. 
The total in-weight win

i  has a substantially larger variance, ranging from 
0.01 to 10, compared with the out-weight wout

i , which mostly ranges 
between 0.1 and 1. This is mainly due to the functional form of wij, which 
allows an arbitrary number of places to depend on a specific place but 
limits how much one place can depend on others. The long tail of P(win

i ) 
indicates the existence of nodes with a large attraction of dependen-
cies, such as the Metropolitan Museum of Art in New York City (anno-
tated in Fig. 1a), as well as major retail stores such as Walmart, Market 
Basket and Home Depot (Supplementary Note 2.2 shows a list of places 
with high win

i  and wout
i ). The stability of dependency networks are 

further tested in Supplementary Note 3.1. Supplementary Figs. 18–21 
show that the in-weights, out-weights and category pairwise weight 
proportions are highly correlated (Pearson correlation >0.7) across 
different time periods ( January–April 2019 and May–August 2019) with 
the baseline time period (September–December 2019).

Behaviour-based dependency networks are different from 
colocation networks
‘Everything is related to everything else, but near things are more 
related than distant things’, according to Tobler’s First Law of Geogra-
phy39. The behaviour-based dependency network is no exception, due 
to the spatial limits in human mobility30. Figure 1e plots the average 
dependency wij  of all POIs i and j separated by a Haversine distance of 
dij (in kilometres). In all five metropolitan areas, the average depend-
ency wij  of all POIs i and j with a Haversine distance of dij is relatively 
constant until around 100 m but decays with dij in a power-law trend 
with a slope of wij ∝ d−1.49ij , estimated by fitting the domain dij ∈ (0.5 km, 
100 km). The slow decay shows that dependency between businesses 
extends far beyond their local area. However, empirical dependency 
cannot be described by distance only. To test that idea, we compare 
empirical dependency networks to null networks generated from prin-
ciples of physical colocation.

To generate null networks that have similar density and physical 
characteristics, the total in-weight and in-degree of each node were 
conserved from the empirical network. The links of the null networks 
were generated stochastically according to probabilities proportional 
to the gravity law gij = nin j/(d0 + dij)

γ , where ni and nj are the total 
number of visits to POIs i and j, dij is the physical distance between POIs 
i and j, d0 is the distance cutoff parameter and γ is the exponent param-
eter of the gravity model (Methods). Parameters d0 and γ were fitted 
empirically to maximize the correlation between gij and nij, which is the 
total number of common visitors between POIs i and j, and were esti-
mated as d0 = 0.2 and γ = 1.5 (Supplementary Note 4.1). Figure 2a com-
pares the empirical behaviour-based dependency network (left) and 
the simulated null network (right). Despite controlling for the in-degree 
and total in-weight of each node, the empirical network is more spatially 
dispersed compared with the null network, indicating the existence of 
longer-distance dependencies between places. On the other hand, the 
null network exhibits clustered local connections around large hubs 
including university campuses and shopping malls as shown quanti-
tatively using the average clustering coefficients in Fig. 2b, even though 
all nodes have the same in-degree and in-weight in both networks.

Furthermore, to disentangle the physical and behavioural factors that 
generate the observed dependency networks, we tested a simple regression 
model with the specification: logwij ≈ logdij + n j + ηi + ηj + θi + θj ,  
where nj is the total number of visits to place j, and ηi and θi denote the 
fixed effects of the place category and Public Use Microdata Area 
(PUMA) of place i, respectively. Figure 2c shows the summary of the 
regression results. The regression results reveal that distance, POI type 
and neighbourhood, which are all statistically significant (P < 0.001) 
in all cities, only explain around 9–12% of the variance observed in the 

dependency weights, suggesting that the empirical behaviour-based 
dependency network contains much more nuanced and specific infor-
mation about the relationships between places, which cannot be fully 
captured using physical factors of the places. Full regression results, 
as well as robustness tests against the choice of model parameters and 
selected time period, are shown in Supplementary Note 4 and Sup-
plementary Tables 3–7.

Predictability of economic resilience via behaviour-based 
dependency
The results so far show that the behaviour-based dependency networks 
encode place-specific relationships between businesses and urban 
amenities that cannot be fully captured by physical characteristics 
alone. Here, we empirically investigate whether using the dependency 
network could improve the predictability of how shocks cascade across 
places in cities, using the COVID-19 pandemic as an example of an 
extreme empirical shock. The observed change in visits to different 
places is computed by ̃vi = (vCOVIDi /vprei − 1) × 100%, where vCOVIDi  and 
vprei  denote the number of visits to place i during the pandemic  
(March–June 2020) and the prepandemic period (September–Decem-
ber 2019), respectively. Figure 3a plots the change in visits ̃vi in the Los 
Angeles metropolitan statistical area, which indicates that most but 
not all places experienced a negative effect. The probability density 
distributions for ̃vi for each metropolitan area and for different periods 
during the pandemic can be found in Supplementary Note 5.1.

Given the dependency between places, we model the change in 
visits to i, ̃vi, as the sum of the direct loss of visits that place i experi-
enced due to the pandemic and the network effects from its network 
neighbours. Network neighbours j are defined as the set of nodes that 
have a non-zero dependency weight wij. The network effects compo-
nent, which is the weighted sum of the change in visits that its depended 
network neighbours j experienced, is described as ̃vi = ∑jwij ̃vj , as 
depicted in the schematic in Fig. 3a (right). The dependency weights 
wij are computed using mobility covisit data from before the pandemic 
(September–December 2019). We test whether there is a significant 
correlation between the change in visits to the ego ̃vi and the weighted 
sum of the network neighbours ∑jwij ̃vj  for different place category 
pairs. Indeed, Fig. 3b shows that most coefficients are significant and 
positive indicating that loss in visits in the network neighbour nodes 
is shared with the ego node. Loss of visits to service and shopping stores 
has the most substantial correlation with other nodes through the 
behaviour-based dependency network. We further observe that health 
and office POIs are least affected by the failure of alter nodes, suggest-
ing structural differences in resilience of foot traffic among essential 
and non-essential POIs.

To demonstrate that these correlations between POI types are not 
the result of the blanket impact of COVID on all POIs, we consider 
several alternative null models to predict ̃vi and find that the empirical 
dependency network is most predictive. Combining the network 
effects with the fixed effects of the place i’s subcategory ηi and the 
PUMA θi, we model the change in visits of i, ̃vi as

̃vi = β0 + βW∑
j
wij ̃vj

⏟⎵⎵⏟⎵⎵⏟
network effects

+ ηi + θi⏟⎵⏟⎵⏟
egofixedeffects

+ ϵ, (1)

where β0 and βW are the estimated coefficients of this regression mode. 
As a baseline for comparison, we also prepare an alternative model 
that models the dependency between places based on the gravity-based 
null network weights ŵij  instead of the empirical dependency 
 weight wij.

Figure 3c shows the adjusted R2 of the normalized visits using (1) 
area and category fixed effects, (2) fixed effects and gravity-based null 
model ŵij  and (3) fixed effects with behaviour-based dependency wij. 
Using the behaviour-based dependency network substantially 
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improves the R2 by at least 40% compared with using the physical 
proximity-based network model, from an average of 0.148 to 0.228. 
Figure 3d shows the estimated regression coefficients for the physical 
distance-based dependency ( β̂null) and behaviour-based dependency 
( β̂w) for the five cities and the pooled model. All variables were stand-
ardized by subtracting the mean and dividing by the standard deviation 
for the coefficients to be comparable. Full regression tables are shown 
in Supplementary Note 5.3. The effects of the behaviour-based depend-
ency are two to three times in magnitude and statistically significant 
(P < 0.001) compared with the physical distance-based dependency, 
as shown in the regression tables in Supplementary Tables 8–12.  
Supplementary Note 5.4 shows the estimation results for the different 
time periods, which all showed better predictability using the  
behaviour-based dependency network. Additional analysis in Sup-
plementary Note 5.5 showed that using the dependency network fur-
ther improves the predictability of visitation recovery patterns  

(for example, visitation during September–November 2020 compared 
with March–May 2020). Furthermore, similar results were obtained 
when using summer breaks as exogenous shocks. The dependency 
network was able to predict the changes in visits to places that have 
high dependency on college campuses (Supplementary Note 5.8).

Cascading impacts of hypothetical urban shocks
Besides the COVID-19 pandemic, what can the behaviour-based depend-
ency network tell us about other types of future shock, such as the 
increase in online education, remote health services and fewer visits 
to gas stations due to higher adoption of electrical vehicles? To explore 
these questions, we apply the network effects model (equation (1)) to 
simulate the spatial cascades of such shocks in different cities. More 
specifically, rewriting and reorganizing equation (1) in matrix form, 
we obtain v = Wv + f , where v is a vector of ̃vi for all N places, W is an 
N × N matrix where each element is w̃ij = β̂Wwij  and vector f is an 

a Empirical behaviour-based dependency network Gravity-based null network

b

Kendall Square

Museums and 
Colleges

Harvard Square

Downtown 
Boston

Newbury St.

0.2

0.15

0.10

NY BOS SEA LA DAL NY BOS

Node size nj

Distance log dij

SEA LA DAL

0.05

0

0

0.1

–0.1

–0.2

NY

BOS

SEA

LA

DAL

0.1

C
lu

st
er

in
g 

co
e�

ic
ie

nt

Ad
ju

st
ed

 R
2

Be
ta

 c
oe

�i
ci

en
ts

Dependency weightij ≈ distanceij +
category{i, j} + PUMA area{i, j}

Null Actual

Medical
School

Massachusetts Avenue

Downtown 
Boston

Shopping mall

Shopping malls

2 km
N

2 km
N

Airport

Harvard Square

c

Fig. 2 | Behaviour-based dependency networks are different from colocation 
networks. a, A visual comparison of the empirical behaviour-based dependency 
network (left) and the simulated null network (right) that stochastically 
generates network weights between places based on the fitted gravity law, while 
controlling for the in-degree and the total in-weight of the nodes. Although the 
number of links and the total weight of each node are consistent, the empirical 
network is more spatially dispersed compared with the null, indicating the 
existence of long-distance dependencies between places. On the other hand, the 
null network exhibits clustered local connections around large hubs, including 
university campuses and shopping malls. b, The null network has a higher 
average clustering coefficient compared with the empirical network. NY, New 
York; BOS, Boston; SEA, Seattle; LA, Los Angeles; DAL, Dallas. c, Adjusted R2 of the 
ordinary least squares (OLS) regression model that regresses logged dependency 

weight logwij  by physical factors, including the logged distance between POIs  
i and j, the total number of visits and POI subcategories of POIs i and j. The low  
R2 between 0.09 and 0.12 indicates that the dependency weights have distinct 
characteristics other than physical factors. β coefficients of the size of the node  
nj and the physical distance dij between nodes i and j in the OLS model are 
statistically significant using a two-sided test (P < 0.001). The error bars around 
the β coefficients indicate the 95% confidence intervals. Dependency weights are 
larger when the node has more visitors and when the distance is shorter. Full 
regression results, as well as exact P values and robustness tests against the 
choice of model parameters and selected time period, are shown in 
Supplementary Note 4 and Supplementary Tables 3–7. The maps were produced 
in Python using the TIGER shapefiles from the US Census Bureau48.
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aggregation of all fixed effects β0, ηi and θi. This model specification is 
known as the Leontief open model, which is a simplified and linear 
economic model for an economy in which input equals output40. To 
predict the propagation of shocks throughout places in the city, the 
shocks are modelled in the fixed effect vector f (for example, all colleges 
experience an external shock where visits are reduced by 50% due to 
uptake of online education), and the production vector v is computed 
by solving the linear system v̂ = (I −W )−1f .

The shift to online education, which occurred during the pan-
demic, is reported to have a continuing effect, with roughly 20% of 
school systems planning to or have already started online school pro-
grammes41. Previous studies42, as well as analysis in Fig. 2, have pointed 
out that college campuses have a substantial impact on the local econ-
omy. If online learning and remote education were permanent and 
increased with the help of advanced technology (for example, aug-
mented reality), what impacts would it have on other businesses and 
amenities? Figure 4a shows the simulated effects of a 50% reduction 

in visits to college POIs (grey points) on nearby non-college POIs (red 
points, the darker red indicates larger negative impacts). Impacted 
POIs are limited to those not only in proximity to college POIs but also 
in locations that are popular with college students, for example, Mas-
sachusetts Avenue, which connects the Massachusetts Institute of 
Technology and Harvard University. For comparison, we simulated the 
shocks to non-college POIs using the physical distance network Ŵ , 
where ŵij  is used as the matrix elements instead of behaviour-based 
dependency wij (Supplementary Note 6.1). Comparing the simulation 
results using the dependency network and the null network shows that 
neglecting the behaviour-based dependencies results in a substantial 
underestimation of the effects on POIs that are located further away 
from colleges.

The effects of online education were heterogeneous for different 
place categories located at different distances from colleges. Figure 4b 
shows the 90th percentile of impacts on POIs by category and distance 
(log scaled). While most substantial impacts occur within 0.5 km, places 
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Fig. 3 | Behaviour-based dependency networks shape economic resilience.  
a, A map visualizing the change in visitation patterns to places 
ṽi = (vCOVIDi /vprei − 1) × 100%, during the pandemic (March–May 2020) 
compared with the prepandemic period (September–December 2019) in Los 
Angeles (LA). LAX, Los Angeles International Airport. Right: the specification of 
the model, where the normalized visits at place i are regressed using the sum of 
dependency weights weighted by the normalized visits of the network neighbour 
nodes, ∑jwijṽ j , and PUMAs and place category fixed effects for POI i.  
b, A correlation between the change in visits to the ego ṽi∈A, which belongs to 
category A, and the weighted sum of the network neighbours, which belong to 
category B, ∑j∈Bwijṽ j . Indeed, most coefficients are significant and positive 
indicating that loss in visits in the network neighbours is shared with the ego.  
c, Adjusted R2 of the normalized visits using (1) area and category fixed effects,  
(2) fixed effects and gravity model-based dependency weights ̂wij  and (3) fixed 

effects with behaviour-based dependency weights wij. Using the behaviour-based 
dependency network significantly improves the adjusted R2 by 40% (from 0.148 
to 0.228) compared with using the distance-based null network. The full results 
are shown in the regression tables in Supplementary Tables 8–12. NY, New York; 
BOS, Boston; SEA, Seattle; LA, Los Angeles; DAL, Dallas; FE, fixed effects.  
d, Regression coefficients for the physical distance-based dependency (βnull) and 
behaviour-based dependency (βw) for the five cities and the pooled model. All 
variables were centred and standardized. The error bars show the 95% confidence 
interval of the coefficient estimates. The effects of the behaviour-based 
dependency are two to three times in magnitude compared with the physical 
distance-based dependency and are statistically significant using a two-sided test 
at P < 0.001. The full results are shown in the regression tables in Supplementary 
Tables 8–12. The maps were produced in Python using the TIGER shapefiles from 
the US Census Bureau48.
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such as arts and museums, food and service places experience sub-
stantial long-distance impacts. Simulations assuming different levels 
of visit decrease to colleges (for example, −100%, −25%) show a similar 
long-distance cascade of shocks (Supplementary Note 6.1). These 
persistent spatial cascades emphasize the importance of considering 
behaviour-based dependency relationships between places to grasp 
the holistic impact of such urban shocks for resilient urban planning.

Further leveraging the network model, we are able to simulate the 
impacts of POI closure scenarios and identify the seed nodes (POIs) 
that have the largest cascading effects on other POIs if inflicted by other 
urban shocks. For each node, we simulate the cascading impacts of a 
100% visit change to a single POI i, by computing ν̂(i) = (I −W )−1e(i), 
where e(i) is a one-hot encoding vector of the initial shock that assigns 
a change in visits of +1 to node i and 0 otherwise, and ν̂(i) is the resulting 
vector of the cascading impacts, where each element measures the 
impacts of the initial shock to all nodes. The total impacts of changes 

in the number of visits to all nodes can be computed by multiplying 
ν̂(i) = (ν̂(i)1 ,… , ν̂(i)N )  with the vector of total visits to each POI, 
n = (n1,⋯ ,nN) . Thus, the total impacts of the initial shock to node  
i can be computed by Ci = ∑j; j≠iν̂

(i)
j n j. By further scaling the impact to 

its own size ni, we obtain the total relative cascading effect as ̂Ci = Ci/ni. 
For example, ̂Ci = 0.3 would indicate that increasing the number of 
visits to node i by 100% (or equal to ni) results in a total of 30% × ni 
increase in visits across all other nodes. The mean relative cascading 
impacts of each POI category, ̂Ccategory  are shown in the y axis of  
Fig. 4c. POI categories such as airports, supercentres, colleges, furni-
ture stores, theme parks, railway stations and sports stadiums have a 
high impact on other POIs in urban areas propagated through 
behaviour-based dependency networks.

When implementing policies to close down certain POIs for emer-
gency response (for example, lockdowns during pandemics), it is 
important to understand the spatial extent of the cascade. To quantify 

a bImpact of –50% college visits on other POIs 90th percentile of visit decrease

Arts/museum

City/outdoors
–1%

–5%

–20%

Co�ee/tea

Entertainment

Predicted decrease in visits

Distance from closest college POI

Food

Grocery

Health

O�ice

Service

Shopping

Sports

Transportation

0.1 km

Back Bay

MITHarvard

Tufts
42.40

42.35

42.30

–71.2

0.4

0.3

0.2

1.5 km 2.5 km 3.5 km

Weighted distance range of impact d̂category (km)

To
ta

l r
el

at
iv

e 
ca

sc
ad

in
g 

e�
ec

t Ĉ
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Fig. 4 | Cascading impacts of hypothetical urban shocks. a, Simulated effects 
of a 50% reduction in visits to college POIs (grey points) on nearby non-college 
POIs (red points, the darker red indicates larger negative impacts), using the 
fitted Leontief open model. Impacted POIs are limited to those not only in 
proximity to college POIs but also in locations that are popular with college 
students. Neglecting the behaviour-based dependencies results in a substantial 
underestimation of the effects on POIs that are located further away from 
colleges. MIT, Massachusetts Institute of Technology; BU, Boston University;  
U Mass, University of Massachusetts. b, The impacts of the 50% visit reduction 
to colleges on places by category and distance (90th percentile decrease in 

visits are shown, log scaled). While most significant impacts occur within 
0.5 km, places such as arts and museums, food and service locations experience 
substantial long-distance impacts. c, Total cascading impact of closing places on 
other locations, relative to its own size (x axis) and the weighted distance range 
of the impact (y axis) for different POI subcategories. The node sizes indicate 
the average number of visitors per POI. Supercentres and colleges have high 
cascading effects but are focused locally (~1.5 km around the POI). On the other 
hand, the impacts of airports, stadiums, theme parks and gas stations are both 
large and far reaching (around 2.5–3.5 km). The maps were produced in Python 
using the TIGER shapefiles from the US Census Bureau48.
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this, we defined the distance range of the cascade by computing the 
average distance to impacted nodes, weighted by the magnitude of the 
impacts. More specifically, we compute the weighted distance range 
of POI i by ̂di = ∑j; j≠iν̂

(i)
j dij/∑j; j≠iν̂

(i)
j . The weighted distance range of 

impact for each POI category, ̂dcategory are shown in the x axis of Fig. 4c. 
Supercentres and colleges have high cascading effects but are focused 
locally (~1.5 km around the POI). On the other hand, the impacts of 
airports, stadiums, theme parks and gas stations are both large and far 
reaching (around 2.5–3.5 km). Estimation results for all cities are shown 
in Supplementary Note 6.2. Understanding the magnitude and spatial 
extent of the cascading effects could be applied to design emergency 
management policies to effectively close places while minimizing 
economic losses. The large magnitude of the spatial cascades that occur 
due to behaviour-based dependency networks calls for new urban 
policy-making approaches that balance the benefits of mobility restric-
tion measures (for example, preventing the spread of diseases) while 
minimizing the total cascading economic impacts to urban places and 
amenities.

Discussion
Fostering the resilience of urban systems to shocks is an urgent chal-
lenge for cities and communities, with increasing risks of climate 
change-induced disasters, long-lasting effects of the COVID-19 pan-
demic and unprecedented technological shifts in how we move (electric 
vehicles and autonomous vehicles), work43, shop and learn44. Such 
urban shocks could induce substantial shifts in human behaviour and 
urban activity patterns by changing the various incentive and cost 
mechanisms that motivate activities in cities. A plethora of research 
has focused on modelling the spillover effects of disruptions on supply 
chains across industries (for example, ref. 5); however, there has been 
limited investigation into the spillover effects that could be mediated 
through the movement of people in cities. The broader socioeconomic 
impacts that such behavioural changes could have on cities, for exam-
ple, on the social fabric of communities7, economic networks and local 
businesses and urban infrastructure systems, are not well understood. 
Motivated by these critical challenges, we used empirical data from 
mobile phone devices collected from five major metropolitan areas 
in the United States to quantitatively measure and analyse the urban 
economic networks mediated by human behaviour and their resilience 
to potential urban shocks.

In this context, our study contains three important contributions 
towards understanding the economic network dependencies in cities. 
First, our approach measures and reveals that the dependent relation-
ships that exist between businesses and places are highly complex 
products of human behavioural preferences and decisions rather than 
a measure determined solely by the urban form, including the physi-
cal distance between places, and their physical locations, popularity 
and categories (which only explain around 10% of the variance). We 
observe the existence of places that are highly dependent on hundreds 
of other places (for example, gas stations and gyms) and others that 
are depended by many other locations (for example, major shopping 
centres, universities and major hospitals). Our results show that urban 
economic networks are determined by the behaviour generated by 
individual activity patterns, connecting distant businesses and ameni-
ties due to the combination of work, leisure and shopping activities on 
the same day. However, businesses that are next door to each other are 
not necessarily dependent on each other, since they target and attract 
people with different interests and lifestyles. Second, using different 
periods of the COVID-19 pandemic as external shocks, we showed 
that using the prepandemic behaviour-based dependency network 
with a Leontief input–output formulation improves the predictability 
of the spillover shocks to different businesses, compared with the 
distance-based colocation network. Third, simulations of hypotheti-
cal urban shocks showed that the dependencies generated by human 

behaviour significantly amplify the shocks to places that are located 
further away from the origins of the shocks. Our results show that, for 
example, while supercentres affect mostly local POIs, airports, sports 
stadiums and gas stations have a substantial long-range effect on POIs 
across the city. Policies to contain the spread of pandemics or future 
urban shocks need to incorporate the spatial extent of the impacts 
mediated by the dependency network. This points to the importance 
of shifting from a place-based approach to a network-based approach 
in designing urban interventions and, in general, in understanding the 
socioeconomic impacts of urban changes.

Our study has several limitations. First, dependency weights 
between places were computed using all mobile phone users that 
were observed to visit both places (‘covisit’); however, we were not 
able to differentiate between visitations of different natures. We could 
further classify covisits into different types, such as routine and explo-
ration behaviour. Moreover, following recent studies focusing on 
the substantial differences in mobility behaviour across sociodemo-
graphic groups (for example, refs. 45,46), we could decompose the 
dependencies into different income ranges to better understand which 
sociodemographic segments are contributing to different types of 
dependency relationship. Therefore, the dependency metric com-
puted in our study should be interpreted as an aggregated measure 
of all covisits that occur in cities, and further decomposition and con-
textualization of the dependency metric could be conducted when 
applying this approach to analyse specific urban shocks and policies. 
Second, another challenge lies in understanding how the dependency 
networks between places reorganize due to various urban shocks. The 
assumption in this study did not consider such dynamic reorganization 
because of the sudden and short-term nature of the shocks we ana-
lysed (for example, COVID-19 and closures of colleges). Modelling the 
dynamics of the behaviour-based dependency networks using human 
behaviour data observed across a longer time frame, and applying the 
method to a broader range of realistic urban disruptions including 
climate change-induced disasters could be an interesting topic for 
future research. Third, in this study, simple linear models (for example, 
the Leontief open model) were used to test the effectiveness of our 
approach to modelling economic resilience. Given the advancements 
in nonlinear and complex models for graph structured data (for exam-
ple, graph neural networks47), there is potential for future works that 
develop models that improve the predictability of resilience and are 
capable of describing the microscopic temporal dynamics of disrup-
tion and recovery. Four, this method measures the dependency rela-
tionships between places through foot traffic patterns, and this may 
not capture the full breadth of economic interactions. This approach 
simplifies complex economic relationships and may not capture other 
channels of economic interactions, such as online transactions or ser-
vices not tied to physical visits. Follow-up work using other behaviour 
datasets, such as credit card purchase data, would be an interesting 
avenue for future research37.

Our findings have implications for our understanding of the resil-
ience of urban systems to shocks. While spillover effects of urban 
shocks (for example, disasters and power outages) have been often 
studied with a focus on supply chains that connect firms and industries, 
our results show that human behaviour and mobility patterns also con-
tribute to the cascade of shocks across businesses and amenities in dif-
ferent industries. This study shows robust results on the predictability 
of economic resilience, laying the groundwork for future investigations 
into causal effects of dependencies on economic resilience (for exam-
ple, through natural experiments around natural disasters, rainfall or 
construction projects that impact mobility). To better understand how 
the effects of urban shocks or technological shifts would manifest in 
cities, a spatial understanding of risk (which in itself underestimates 
the broader impacts of shocks) should be complemented by how the 
flow of individuals connects different firms and places. This framework 
could be applied to assess the impacts of both negative and positive 
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shocks on cities. Examples of negative shocks include natural hazards 
and pandemics, while urban transportation (for example, fare-free 
bus programmes) and land use policies (for example, pedestrian-only 
streets) could have positive shocks on businesses in the neighbour-
hoods. Urban planners could leverage the observed dependency rela-
tionships to target such policies, mitigate potential disruptions better 
and amplify the positive impacts on local businesses and the wellbeing 
of communities. It also calls for a more holistic understanding of shop-
ping, innovation or shopping districts, since the vibrancy of those 
places and their impact on other areas might depend on business and 
amenities across the city.

Methods
Mobility and POI data
We utilize an anonymized location dataset of mobile phones and smart-
phone devices provided by Spectus, a location data intelligence com-
pany that collects anonymous, privacy-compliant location data of 
mobile devices using their software development kit technology in 
mobile applications and privacy framework. Spectus processes data 
collected from mobile devices whose owners have actively opted in 
to share their location and require all application partners to disclose 
their relationship with Spectus, directly or by category, in the privacy 
policy. With this commitment to privacy, the dataset contains loca-
tion data for roughly 15 million daily active users in the United States. 
All data analysed in this study are aggregated to preserve privacy. To 
measure the visitation patterns of individuals in urban environments, 
we attribute the stops of individual users to specific places in the city. 
To study the stops at different places, we use stops that are longer than 
10 min but shorter than 10 h. In our study, we use location data of places 
collected by Safegraph. To protect the users’ privacy, we have removed 
various privacy-sensitive places from our places database, including 
health-related places, places where the vulnerable population are 
located, military-related, religious facilities, places that are related 
to sexual orientation and adult-oriented places. As a result, we have 
a total of over 1 million places in the five cities. The home locations of 
individual users are estimated at the Census Block Group level using 
different variables including the number of days spent in a given loca-
tion in the last month, the daily average number of hours spent in that 
location and the time of the day spent in the location during nighttime 
(see Supplementary Note 1.1 for more details). The representativeness 
of this data has been tested and corrected in Supplementary Notes 1.3 
and 1.4 using poststratification techniques. Since the data used were 
anonymized and spatially aggregated at places, categories or census 
areas, we were granted an exemption by the Massachusetts Institute 
of Technology Committee on the Use of Humans as Experimental Sub-
jects (COUHES protocol no. 1812635935) and its extension no. E-2962.

Behaviour-based dependency networks
We define the dependence of a POI i on another POI j as wij =

nij

ni
, where 

ni denotes the number of visits to POI i and nij denotes the number of 
‘covisits’ between POIs i and j. A covisit is defined as an instance in which 
POIs i and j were visited by the same individual (1) on the same day, (2) 
within Tc (threshold parameter, Tc= 6 hours used in main results) hours 
from exiting POI i (j) to entering POI j (i) and (3) within Nc intermediate 
POIs (threshold parameter; Nc= 1 is used in main results). Because the 
denominator is based on the number of visits to the target POI, wij ≠ wji. 
This simple but intuitive measure considers the asymmetric nature of 
dependencies between POIs. By computing the dependency weights 
wij ∀ i, j, we obtain the behaviour-based dependency matrix W ∈ ℝN×N, 
where N is the total number of POIs present in the CBSA. As a baseline 
parameter setting, we use Tc = 6 h and Ts = 1 POI. The sensitivity and 
statistical robustness of the dependency network when using different 
covisit detection threshold parameters Tc and Ts, only short non-work 
visits and data from different time periods are tested and discussed in 
Supplementary Notes 2 and 3.

Distance-based null networks
To generate null networks that preserve basic structural properties, 
(1) the weight wij decays with physical distance and (2) the in-weight wij 
is larger for nodes with larger visitation ni, we generated edges based 
on the generalized gravity law: gij = nin j/(d0 + dij)

γ, where ni and nj are 
the total number of visits to POIs i and j, dij is the physical distance 
between POIs i and j, d0 is the distance cutoff parameter and γ is the 
exponent parameter of the gravity model. Parameters d0 = 0.2 and 
γ = 1.5 were fitted empirically to maximize the correlation between gij 
and nij, which is the total number of common visitors between POIs i 
and j (Supplementary Note 4.1). For each edge in the actual dependency 
network connecting i and j with a dependency weight wij, we compute 
its gravity component using the empirical fit between gij and wij and 
select an alternative node with the same level of corresponding gravity 
weight from its 10,000 closest nodes and is assigned the same weight 
wij. This algorithm enables us to construct a null network where we (1) 
maintain the linear relationship between wij and gij, (2) the same number 
of in-edges are selected for each node and (3) the total in-weight for 
each node is kept consistent. The details about the null network genera-
tion procedure, as well as statistical analysis of the null network and 
their differences from the actual dependency network, can be found 
in Supplementary Note 4.

Modelling impacts of COVID-19 using dependency networks
To investigate the utility of the dependency network for predicting the 
resilience of businesses, we construct regression models that predict 
the change in visitation patterns to a POI using information about the 
change in visitation patterns to its alters and the dependency network. 
The observed change in visits to different places is computed by 
̃vi = vafteri /vbeforei − 1 × 100(%), where vbeforei  and vafteri  denote the number 

of visits to place i before the pandemic (September–December 2019) 
and during different periods of the pandemic period (March–Novem-
ber 2020), respectively. We build a simple linear regression model of 
the form:

̃vi ≈ ∑
j
wij ̃vj +∑

j
ŵij ̃vj + ηi + θi, (2)

where ̃vi denotes the change in visitations to POI i during the different 
stages of the pandemic in 2020, ∑jwij ̃vj is the sum of the network neigh-
bours’ (POIs j) change in visitations ( ̃vj) weighted by the dependency 
network weights, wij, ∑jŵij ̃vj  is the sum of the network neighbours’ 
(POIs j) change in visitations ( ̃vj) weighted by the distance-based null 
network weights, ŵij, ηi is the fixed effect for POI i’s subcategory, and 
θi is the fixed effect for POI i’s located PUMA. Robustness of regression 
results to the choice of the time period used to generate the depend-
ency network, different model parameters and similar results obtained 
using the case study of college summer breaks are shown in Supple-
mentary Note 5.

Simulating cascades of hypothetical urban shocks
To simulate the spatial cascades of shocks in different cities, we use the 
model specification of the Leontief open model. Rewriting and reorgan-
izing the regression model in matrix form, we obtain v = Wv + f, where 
v is a vector of ̃vi for all N places, W is an N × N matrix, where each ele-
ment is w̃ij = β̂Wwij, and vector f is an aggregation of all fixed effects β0, 
ηi and θi. To predict the propagation of shocks throughout places in 
the city, the shocks are modelled in the fixed effect vector f (for exam-
ple, all colleges experience an external shock of −50% visits reduction 
due to uptake of online education), and the production vector v is 
computed by solving the linear system v̂ = (I −W )−1f via the generalized 
minimal residual iteration method. Details and parameter sensitivity 
analysis can be found in Supplementary Note 6.1.

Furthermore, we simulate the impacts of POI closure scenarios 
and identify the seed nodes (POIs) that have the largest cascading 
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effects on other POIs if inflicted by other urban shocks. For each node, 
we simulate the cascading impacts of a 100% visit change to a single 
node i, by computing ν̂(i) = (I −W)−1e(i), where e(i) is a one-hot encoding 
vector of the initial shock that assigns a change in visits of +1 to node i 
and 0 otherwise, and ν̂(i) is the resulting vector of the cascading impacts, 
where each element measures the impacts of the initial shock to all 
nodes. The total impacts of changes in the number of visits to all nodes 
can be computed by multiplying ν̂(i) = (ν̂(i)1 ,… , ν̂(i)N )  with the vector of 
total visits to each POI, n = (n1,⋯ ,nN). Thus, the total impacts of the 
initial shock to node i can be computed by Ci = ∑j; j≠iν̂

(i)
j n j. By further 

scaling the impact to its own size ni, we obtain the total relative cascad-
ing effect as ̂Ci = Ci/ni. The distance range of the cascade is computed 
as the average distance to impacted nodes, weighted by the magnitude 
of the impacts. More specifically, we compute the weighted distance 
range of POI i by ̂di = ∑j; j≠iν̂

(i)
j dij/∑j; j≠iν̂

(i)
j . Figure 4c plots the relative 

cascading impacts and distance ranges of each POI category, ̂Ccategory 
and ̂dcategory . More details and results for all cities can be found in  
Supplementary Note 6.2.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from 
Spectus through their Social Impact programme, but restrictions apply 
to the availability of these data, which were used under the license for 
the current study and are, therefore, not publicly available. Informa-
tion about how to request access to the data and its conditions and 
limitations can be found in https://spectus.ai/social-impact/. Data 
access requests should be submitted through Spectus’ Social Impact 
customer page via https://spectus.ai/lp/book-a-demo/, where the 
sales team at Spectus may be contacted in a timely manner. Data about 
the POI locations were provided by Safegraph, who can be contacted 
through https://www.safegraph.com/. The Safegraph data are available 
through the Dewey platform through a paid subscription via https://
app.deweydata.io/home. Tiger shapefiles can be downloaded from 
the US Census Bureau via https://www.census.gov/programs-surveys/
geography/guidance/tiger-data-products-guide.html.

Code availability
The analysis was conducted using Python. The code to reproduce the 
main results in the figures from the aggregated data is publicly available 
on GitHub via https://github.com/takayabe0505/dependencynetwork.

References
1.	 Balland, P.-A. et al. Complex economic activities concentrate in 

large cities. Nat. Hum. Behav. 4, 248–254 (2020).
2.	 Pentland, A. Social Physics: How Good Ideas Spread—The Lessons 

from a New Science (Penguin, 2014).
3.	 Vespignani, A. Modelling dynamical processes in complex 

socio-technical systems. Nat. Phys. 8, 32–39 (2012).
4.	 Moro, E. et al. Universal resilience patterns in labor markets.  

Nat. Commun. 12, 1972 (2021).
5.	 Inoue, H. & Todo, Y. Firm-level propagation of shocks through 

supply-chain networks. Nat. Sustain. 2, 841–847 (2019).
6.	 Pichler, A. et al. Building an alliance to map global supply 

networks. Science 382, 270–272 (2023).
7.	 Yabe, T., Bueno, B. G. B., Dong, X., Pentland, A. & Moro, E. 

Behavioral changes during the COVID-19 pandemic decreased 
income diversity of urban encounters. Nat. Commun. 14, 2310 
(2023).

8.	 Ouyang, M. & Duenas-Osorio, L. Time-dependent resilience 
assessment and improvement of urban infrastructure systems. 
Chaos J. Nonlinear Sci. 22, 033122 (2012).

9.	 Elmqvist, T. et al. Sustainability and resilience for transformation 
in the urban century. Nat. Sustain. 2, 267–273 (2019).

10.	 Modica, M. & Reggiani, A. Spatial economic resilience: overview 
and perspectives. Network. Spat. Econ. 15, 211–233 (2015).

11.	 Hidalgo, C. A. Economic complexity theory and applications.  
Nat. Rev. Phys. 3, 92–113 (2021).

12.	 Rose, A. Defining and measuring economic resilience to disasters. 
Disaster Prev. Manage. Int. J. 13, 307–314 (2004).

13.	 Verschuur, J., Koks, E. & Hall, J. Ports’ criticality in international 
trade and global supply-chains. Nat. Commun. 13, 4351 (2022).

14.	 Klimek, P., Poledna, S. & Thurner, S. Quantifying economic 
resilience from input–output susceptibility to improve 
predictions of economic growth and recovery. Nat. Commun. 
10, 1677 (2019).

15.	 Colon, C., Hallegatte, S. & Rozenberg, J. Criticality analysis of 
a country’s transport network via an agent-based supply chain 
model. Nat. Sustain. 4, 209–215 (2021).

16.	 Levermann, A. Climate economics: make supply chains 
climate-smart. Nature 506, 27–29 (2014).

17.	 Barrero, J. M., Bloom, N., & Davis, S. J. Why Working From Home 
Will Stick No. w28731 https://www.nber.org/papers/w28731 
(National Bureau of Economic Research, 2021).

18.	 Lucchini, L. et al. Living in a pandemic: changes in mobility 
routines, social activity and adherence to COVID-19 protective 
measures. Sci. Rep. 11, 1–12 (2021).

19.	 I’ll be latte to the office. Bank of America Institute https://business.
bofa.com/content/dam/flagship/bank-of-america-institute/
economic-insights/i-will-be-latte-to-the-office-july-2022.pdf 
(2022).

20.	 Salon, D. et al. The potential stickiness of pandemic-induced 
behavior changes in the united states. Proc. Natl Acad. Sci. USA 
118, e2106499118 (2021).

21.	 Zhai, W. & Yue, H. Economic resilience during COVID-19: an 
insight from permanent business closures. Environ. Plan. A 54, 
219–221 (2022).

22.	 Becker, G. S. A theory of the allocation of time. Econ. J. 75, 
493–517 (1965).

23.	 Baltas, G., Argouslidis, P. C. & Skarmeas, D. The role of customer 
factors in multiple store patronage: a cost–benefit approach.  
J. Retail. 86, 37–50 (2010).

24.	 Maruyama, M. & Wu, L. Multiple store patronage: the effects of 
store characteristics. J. Retail. Consum. Serv. 21, 601–609 (2014).

25.	 Seock, Y.-K. Influence of retail store environmental cues on 
consumer patronage behavior across different retail store 
formats: an empirical analysis of us hispanic consumers.  
J. Retail. Consum. Serv. 16, 329–339 (2009).

26.	 Uncles, M. D. & Kwok, S. Generalizing patterns of store-type 
patronage: an analysis across major chinese cities. The Int. Rev. 
Retail Distrib. Consum. Res. 18, 473–493 (2008).

27.	 Hidalgo, C. A., Castañer, E. & Sevtsuk, A. The amenity mix of 
urban neighborhoods. Habitat Int. 106, 102205 (2020).

28.	 Bahrami, M., Xu, Y., Tweed, M. & Bozkaya, B. et al. Using gravity 
model to make store closing decisions: a data driven approach. 
Expert Sys. Appl. 205, 117703 (2022).

29.	 Sevtsuk, A. Street Commerce: Creating Vibrant Urban Sidewalks 
(Univ. Pennsylvania Press, 2020).

30.	 Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A. -L. Understanding 
individual human mobility patterns. Nature 453, 779 (2008).

31.	 Blondel, V. D., Decuyper, A. & Krings, G. A survey of results on 
mobile phone datasets analysis. EPJ Data Sci. 4, 10 (2015).

32.	 Moro, E., Calacci, D., Dong, X. & Pentland, A. Mobility patterns 
are associated with experienced income segregation in large us 
cities. Nat. Commun. 12, 1–10 (2021).

33.	 Chang, S. et al. Mobility network models of COVID-19 explain 
inequities and inform reopening. Nature 589, 82–87 (2021).

http://www.nature.com/nathumbehav
https://spectus.ai/social-impact/
https://spectus.ai/lp/book-a-demo/
https://www.safegraph.com/
https://app.deweydata.io/home
https://app.deweydata.io/home
https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html
https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html
https://github.com/takayabe0505/dependencynetwork
https://www.nber.org/papers/w28731
https://business.bofa.com/content/dam/flagship/bank-of-america-institute/economic-insights/i-will-be-latte-to-the-office-july-2022.pdf
https://business.bofa.com/content/dam/flagship/bank-of-america-institute/economic-insights/i-will-be-latte-to-the-office-july-2022.pdf
https://business.bofa.com/content/dam/flagship/bank-of-america-institute/economic-insights/i-will-be-latte-to-the-office-july-2022.pdf


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-02072-7

34.	 Yabe, T., Rao, P. S. C., Ukkusuri, S. V. & Cutter, S. L. Toward 
data-driven, dynamical complex systems approaches to disaster 
resilience. Proc. Natl Acad. Sci. USA 119, e2111997119 (2022).

35.	 Yabe, T., Zhang, Y. & Ukkusuri, S. V. Quantifying the economic 
impact of disasters on businesses using human mobility data: a 
bayesian causal inference approach. EPJ Data Sci. 9, 36 (2020).

36.	 Podesta, C., Coleman, N., Esmalian, A., Yuan, F. & Mostafavi, A. 
Quantifying community resilience based on fluctuations in visits 
to points-of-interest derived from digital trace data. J. R. Soc. 
Interface 18, 20210158 (2021).

37.	 Di Clemente, R. et al. Sequences of purchases in credit card data 
reveal lifestyles in urban populations. Nat. Commun. 9, 1–8 (2018).

38.	 Yang, Y., Pentland, A. & Moro, E. Identifying latent activity 
behaviors and lifestyles using mobility data to describe urban 
dynamics. EPJ Data Sci. 12, 15 (2023).

39.	 Tobler, W. R. A computer movie simulating urban growth in the 
detroit region. Econ. Geogr. 46, 234–240 (1970).

40.	 Leontief, W. Input–Output Economics (Oxford Univ. Press, 1986).
41.	 Schwartz, H. L. et al. Remote Learning is Here to Stay.  

Results From the First American School District Panel Survey 
(RAND Corporation, 2020).

42.	 Bonner, E. R. The economic impact of a university on its local 
community. J. Am. Inst. Planners 34, 339–343 (1968).

43.	 Hansen, S., Lambert, P. J., Bloom, N., Davis, S. J., Sadun, R., & 
Taska, B. Remote Work Across Jobs, Companies, and Space. No. 
w31007 https://www.nber.org/papers/w31007 (National Bureau of 
Economic Research, 2023).

44.	 Schwartz, A. How the Red Cross used tweets to save lives during 
Hurricane Sandy. Fast Company https://www.fastcompany.
com/3020923/how-the-red-cross-used-tweets-to-save-lives- 
during-hurricane-sandy (2013).

45.	 Gauvin, L. et al. Gender gaps in urban mobility. Hum. Soc. Sci. 
Commun. 7, 1–13 (2020).

46.	 Wang, Q., Phillips, N. E., Small, M. L. & Sampson, R. J. Urban 
mobility and neighborhood isolation in America’s 50 largest 
cities. Proc. Natl Acad. Sci. USA 115, 7735–7740 (2018).

47.	 Xue, J. et al. Quantifying the spatial homogeneity of urban road 
networks via graph neural networks. Nat. Mach. Intell. 4, 246–257 
(2022).

48.	 Tiger data products guide. United States Census Bureau https://
www.census.gov/programs-surveys/geography/guidance/tiger- 
data-products-guide.html (2024).

Acknowledgements 
We thank Spectus, who kindly provided us with the mobility data 
set for this research through their Data for Good programme. T.Y. 
acknowledges support by the National Science Foundation under 
grant number 2425021. E.M. acknowledges support by Ministerio 
de Ciencia e Innovación/Agencia Española de Investigación (MCIN/
AEI/10.13039/501100011033) through grant PID2019-106811GB-C32 

and the National Science Foundation under grants 2218748 and 
2420945. The funders had no role in study design, data collection and 
analysis, decision to publish or preparation of the manuscript.

Author contributions
T.Y. designed the algorithms, performed the analysis, and developed 
models and simulations. B.G.B.B. and E.M. performed part of the 
analysis and partially developed models and simulations. M.F., A.P. 
and E.M. supervised the research. All authors wrote the paper. The 
company data were processed by T.Y., B.G.B.B. and E.M. All authors 
had access to aggregated (non-individual) processed data. All authors 
reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41562-024-02072-7.

Correspondence and requests for materials should be addressed to 
Takahiro Yabe or Esteban Moro.

Peer review information Nature Human Behaviour thanks Federico 
Botta, Wei Zhai and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work. Peer reviewer reports  
are available.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/nathumbehav
https://www.nber.org/papers/w31007
https://www.fastcompany.com/3020923/how-the-red-cross-used-tweets-to-save-lives-during-hurricane-sandy
https://www.fastcompany.com/3020923/how-the-red-cross-used-tweets-to-save-lives-during-hurricane-sandy
https://www.fastcompany.com/3020923/how-the-red-cross-used-tweets-to-save-lives-during-hurricane-sandy
https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html
https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html
https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html
https://doi.org/10.1038/s41562-024-02072-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/







	Behaviour-based dependency networks between places shape urban economic resilience

	Results

	Behaviour-based dependency networks

	Behaviour-based dependency networks are different from colocation networks

	Predictability of economic resilience via behaviour-based dependency

	Cascading impacts of hypothetical urban shocks


	Discussion

	Methods

	Mobility and POI data

	Behaviour-based dependency networks

	Distance-based null networks

	Modelling impacts of COVID-19 using dependency networks

	Simulating cascades of hypothetical urban shocks

	Reporting summary


	Acknowledgements
	Fig. 1 Behaviour-based dependency networks between places in cities.
	Fig. 2 Behaviour-based dependency networks are different from colocation networks.
	Fig. 3 Behaviour-based dependency networks shape economic resilience.
	Fig. 4 Cascading impacts of hypothetical urban shocks.




